Properties

Label 650.6.b.f.599.1
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{145})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 73x^{2} + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.1
Root \(-6.52080i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.f.599.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -15.0416i q^{3} -16.0000 q^{4} -60.1664 q^{6} +52.9584i q^{7} +64.0000i q^{8} +16.7504 q^{9} -259.248 q^{11} +240.666i q^{12} +169.000i q^{13} +211.834 q^{14} +256.000 q^{16} -2273.15i q^{17} -67.0017i q^{18} -730.329 q^{19} +796.579 q^{21} +1036.99i q^{22} -1973.36i q^{23} +962.662 q^{24} +676.000 q^{26} -3907.06i q^{27} -847.334i q^{28} +949.515 q^{29} +225.331 q^{31} -1024.00i q^{32} +3899.50i q^{33} -9092.62 q^{34} -268.007 q^{36} -954.367i q^{37} +2921.32i q^{38} +2542.03 q^{39} -17371.4 q^{41} -3186.32i q^{42} +10088.2i q^{43} +4147.97 q^{44} -7893.46 q^{46} -6069.90i q^{47} -3850.65i q^{48} +14002.4 q^{49} -34191.9 q^{51} -2704.00i q^{52} +16177.7i q^{53} -15628.2 q^{54} -3389.34 q^{56} +10985.3i q^{57} -3798.06i q^{58} -326.933 q^{59} -46814.4 q^{61} -901.324i q^{62} +887.076i q^{63} -4096.00 q^{64} +15598.0 q^{66} +43583.3i q^{67} +36370.5i q^{68} -29682.5 q^{69} +51745.5 q^{71} +1072.03i q^{72} +13295.3i q^{73} -3817.47 q^{74} +11685.3 q^{76} -13729.4i q^{77} -10168.1i q^{78} -76268.5 q^{79} -54698.1 q^{81} +69485.7i q^{82} -30147.4i q^{83} -12745.3 q^{84} +40352.9 q^{86} -14282.2i q^{87} -16591.9i q^{88} +66771.0 q^{89} -8949.97 q^{91} +31573.8i q^{92} -3389.34i q^{93} -24279.6 q^{94} -15402.6 q^{96} +151425. i q^{97} -56009.6i q^{98} -4342.51 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 48 q^{6} + 356 q^{9} + 408 q^{11} + 1040 q^{14} + 1024 q^{16} - 224 q^{19} + 200 q^{21} + 768 q^{24} + 2704 q^{26} + 13624 q^{29} - 640 q^{31} - 3232 q^{34} - 5696 q^{36} + 2028 q^{39}+ \cdots + 140712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) − 15.0416i − 0.964919i −0.875918 0.482459i \(-0.839744\pi\)
0.875918 0.482459i \(-0.160256\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −60.1664 −0.682301
\(7\) 52.9584i 0.408498i 0.978919 + 0.204249i \(0.0654752\pi\)
−0.978919 + 0.204249i \(0.934525\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 16.7504 0.0689318
\(10\) 0 0
\(11\) −259.248 −0.646001 −0.323001 0.946399i \(-0.604692\pi\)
−0.323001 + 0.946399i \(0.604692\pi\)
\(12\) 240.666i 0.482459i
\(13\) 169.000i 0.277350i
\(14\) 211.834 0.288852
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 2273.15i − 1.90768i −0.300308 0.953842i \(-0.597089\pi\)
0.300308 0.953842i \(-0.402911\pi\)
\(18\) − 67.0017i − 0.0487422i
\(19\) −730.329 −0.464125 −0.232062 0.972701i \(-0.574547\pi\)
−0.232062 + 0.972701i \(0.574547\pi\)
\(20\) 0 0
\(21\) 796.579 0.394167
\(22\) 1036.99i 0.456792i
\(23\) − 1973.36i − 0.777835i −0.921273 0.388918i \(-0.872849\pi\)
0.921273 0.388918i \(-0.127151\pi\)
\(24\) 962.662 0.341150
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) − 3907.06i − 1.03143i
\(28\) − 847.334i − 0.204249i
\(29\) 949.515 0.209656 0.104828 0.994490i \(-0.466571\pi\)
0.104828 + 0.994490i \(0.466571\pi\)
\(30\) 0 0
\(31\) 225.331 0.0421131 0.0210565 0.999778i \(-0.493297\pi\)
0.0210565 + 0.999778i \(0.493297\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 3899.50i 0.623339i
\(34\) −9092.62 −1.34894
\(35\) 0 0
\(36\) −268.007 −0.0344659
\(37\) − 954.367i − 0.114607i −0.998357 0.0573035i \(-0.981750\pi\)
0.998357 0.0573035i \(-0.0182503\pi\)
\(38\) 2921.32i 0.328186i
\(39\) 2542.03 0.267620
\(40\) 0 0
\(41\) −17371.4 −1.61390 −0.806948 0.590622i \(-0.798882\pi\)
−0.806948 + 0.590622i \(0.798882\pi\)
\(42\) − 3186.32i − 0.278718i
\(43\) 10088.2i 0.832039i 0.909356 + 0.416019i \(0.136575\pi\)
−0.909356 + 0.416019i \(0.863425\pi\)
\(44\) 4147.97 0.323001
\(45\) 0 0
\(46\) −7893.46 −0.550013
\(47\) − 6069.90i − 0.400809i −0.979713 0.200404i \(-0.935774\pi\)
0.979713 0.200404i \(-0.0642256\pi\)
\(48\) − 3850.65i − 0.241230i
\(49\) 14002.4 0.833129
\(50\) 0 0
\(51\) −34191.9 −1.84076
\(52\) − 2704.00i − 0.138675i
\(53\) 16177.7i 0.791092i 0.918446 + 0.395546i \(0.129445\pi\)
−0.918446 + 0.395546i \(0.870555\pi\)
\(54\) −15628.2 −0.729333
\(55\) 0 0
\(56\) −3389.34 −0.144426
\(57\) 10985.3i 0.447843i
\(58\) − 3798.06i − 0.148249i
\(59\) −326.933 −0.0122272 −0.00611362 0.999981i \(-0.501946\pi\)
−0.00611362 + 0.999981i \(0.501946\pi\)
\(60\) 0 0
\(61\) −46814.4 −1.61085 −0.805425 0.592698i \(-0.798063\pi\)
−0.805425 + 0.592698i \(0.798063\pi\)
\(62\) − 901.324i − 0.0297784i
\(63\) 887.076i 0.0281585i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 15598.0 0.440767
\(67\) 43583.3i 1.18613i 0.805154 + 0.593066i \(0.202082\pi\)
−0.805154 + 0.593066i \(0.797918\pi\)
\(68\) 36370.5i 0.953842i
\(69\) −29682.5 −0.750548
\(70\) 0 0
\(71\) 51745.5 1.21822 0.609111 0.793085i \(-0.291526\pi\)
0.609111 + 0.793085i \(0.291526\pi\)
\(72\) 1072.03i 0.0243711i
\(73\) 13295.3i 0.292006i 0.989284 + 0.146003i \(0.0466410\pi\)
−0.989284 + 0.146003i \(0.953359\pi\)
\(74\) −3817.47 −0.0810394
\(75\) 0 0
\(76\) 11685.3 0.232062
\(77\) − 13729.4i − 0.263890i
\(78\) − 10168.1i − 0.189236i
\(79\) −76268.5 −1.37492 −0.687460 0.726223i \(-0.741274\pi\)
−0.687460 + 0.726223i \(0.741274\pi\)
\(80\) 0 0
\(81\) −54698.1 −0.926317
\(82\) 69485.7i 1.14120i
\(83\) − 30147.4i − 0.480347i −0.970730 0.240173i \(-0.922796\pi\)
0.970730 0.240173i \(-0.0772043\pi\)
\(84\) −12745.3 −0.197084
\(85\) 0 0
\(86\) 40352.9 0.588340
\(87\) − 14282.2i − 0.202301i
\(88\) − 16591.9i − 0.228396i
\(89\) 66771.0 0.893537 0.446769 0.894650i \(-0.352575\pi\)
0.446769 + 0.894650i \(0.352575\pi\)
\(90\) 0 0
\(91\) −8949.97 −0.113297
\(92\) 31573.8i 0.388918i
\(93\) − 3389.34i − 0.0406357i
\(94\) −24279.6 −0.283415
\(95\) 0 0
\(96\) −15402.6 −0.170575
\(97\) 151425.i 1.63406i 0.576592 + 0.817032i \(0.304382\pi\)
−0.576592 + 0.817032i \(0.695618\pi\)
\(98\) − 56009.6i − 0.589112i
\(99\) −4342.51 −0.0445300
\(100\) 0 0
\(101\) −145198. −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(102\) 136767.i 1.30161i
\(103\) 71524.1i 0.664293i 0.943228 + 0.332146i \(0.107773\pi\)
−0.943228 + 0.332146i \(0.892227\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) 64710.8 0.559387
\(107\) 93356.6i 0.788289i 0.919048 + 0.394145i \(0.128959\pi\)
−0.919048 + 0.394145i \(0.871041\pi\)
\(108\) 62513.0i 0.515716i
\(109\) −102373. −0.825315 −0.412658 0.910886i \(-0.635399\pi\)
−0.412658 + 0.910886i \(0.635399\pi\)
\(110\) 0 0
\(111\) −14355.2 −0.110586
\(112\) 13557.4i 0.102124i
\(113\) − 132979.i − 0.979685i −0.871811 0.489843i \(-0.837054\pi\)
0.871811 0.489843i \(-0.162946\pi\)
\(114\) 43941.3 0.316673
\(115\) 0 0
\(116\) −15192.2 −0.104828
\(117\) 2830.82i 0.0191182i
\(118\) 1307.73i 0.00864596i
\(119\) 120383. 0.779285
\(120\) 0 0
\(121\) −93841.6 −0.582682
\(122\) 187258.i 1.13904i
\(123\) 261294.i 1.55728i
\(124\) −3605.30 −0.0210565
\(125\) 0 0
\(126\) 3548.30 0.0199111
\(127\) 53858.8i 0.296311i 0.988964 + 0.148155i \(0.0473336\pi\)
−0.988964 + 0.148155i \(0.952666\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 151743. 0.802850
\(130\) 0 0
\(131\) 125815. 0.640552 0.320276 0.947324i \(-0.396224\pi\)
0.320276 + 0.947324i \(0.396224\pi\)
\(132\) − 62392.0i − 0.311669i
\(133\) − 38677.1i − 0.189594i
\(134\) 174333. 0.838721
\(135\) 0 0
\(136\) 145482. 0.674468
\(137\) − 55609.4i − 0.253132i −0.991958 0.126566i \(-0.959604\pi\)
0.991958 0.126566i \(-0.0403955\pi\)
\(138\) 118730.i 0.530717i
\(139\) 200026. 0.878113 0.439056 0.898460i \(-0.355313\pi\)
0.439056 + 0.898460i \(0.355313\pi\)
\(140\) 0 0
\(141\) −91301.0 −0.386748
\(142\) − 206982.i − 0.861413i
\(143\) − 43812.9i − 0.179169i
\(144\) 4288.11 0.0172330
\(145\) 0 0
\(146\) 53181.4 0.206480
\(147\) − 210619.i − 0.803902i
\(148\) 15269.9i 0.0573035i
\(149\) 126007. 0.464974 0.232487 0.972599i \(-0.425314\pi\)
0.232487 + 0.972599i \(0.425314\pi\)
\(150\) 0 0
\(151\) 13524.5 0.0482701 0.0241351 0.999709i \(-0.492317\pi\)
0.0241351 + 0.999709i \(0.492317\pi\)
\(152\) − 46741.1i − 0.164093i
\(153\) − 38076.3i − 0.131500i
\(154\) −54917.4 −0.186599
\(155\) 0 0
\(156\) −40672.5 −0.133810
\(157\) 422943.i 1.36941i 0.728821 + 0.684704i \(0.240069\pi\)
−0.728821 + 0.684704i \(0.759931\pi\)
\(158\) 305074.i 0.972215i
\(159\) 243338. 0.763340
\(160\) 0 0
\(161\) 104506. 0.317744
\(162\) 218792.i 0.655005i
\(163\) − 668710.i − 1.97137i −0.168585 0.985687i \(-0.553920\pi\)
0.168585 0.985687i \(-0.446080\pi\)
\(164\) 277943. 0.806948
\(165\) 0 0
\(166\) −120590. −0.339656
\(167\) 328083.i 0.910316i 0.890411 + 0.455158i \(0.150417\pi\)
−0.890411 + 0.455158i \(0.849583\pi\)
\(168\) 50981.0i 0.139359i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −12233.3 −0.0319930
\(172\) − 161412.i − 0.416019i
\(173\) − 62008.7i − 0.157520i −0.996894 0.0787602i \(-0.974904\pi\)
0.996894 0.0787602i \(-0.0250962\pi\)
\(174\) −57128.9 −0.143048
\(175\) 0 0
\(176\) −66367.4 −0.161500
\(177\) 4917.59i 0.0117983i
\(178\) − 267084.i − 0.631826i
\(179\) −110227. −0.257131 −0.128566 0.991701i \(-0.541037\pi\)
−0.128566 + 0.991701i \(0.541037\pi\)
\(180\) 0 0
\(181\) −371375. −0.842589 −0.421295 0.906924i \(-0.638424\pi\)
−0.421295 + 0.906924i \(0.638424\pi\)
\(182\) 35799.9i 0.0801130i
\(183\) 704164.i 1.55434i
\(184\) 126295. 0.275006
\(185\) 0 0
\(186\) −13557.4 −0.0287338
\(187\) 589310.i 1.23237i
\(188\) 97118.5i 0.200404i
\(189\) 206912. 0.421338
\(190\) 0 0
\(191\) −973641. −1.93115 −0.965573 0.260131i \(-0.916234\pi\)
−0.965573 + 0.260131i \(0.916234\pi\)
\(192\) 61610.4i 0.120615i
\(193\) 17937.3i 0.0346628i 0.999850 + 0.0173314i \(0.00551704\pi\)
−0.999850 + 0.0173314i \(0.994483\pi\)
\(194\) 605701. 1.15546
\(195\) 0 0
\(196\) −224039. −0.416565
\(197\) 396284.i 0.727514i 0.931494 + 0.363757i \(0.118506\pi\)
−0.931494 + 0.363757i \(0.881494\pi\)
\(198\) 17370.1i 0.0314875i
\(199\) 374690. 0.670718 0.335359 0.942090i \(-0.391142\pi\)
0.335359 + 0.942090i \(0.391142\pi\)
\(200\) 0 0
\(201\) 655562. 1.14452
\(202\) 580794.i 1.00148i
\(203\) 50284.8i 0.0856439i
\(204\) 547070. 0.920380
\(205\) 0 0
\(206\) 286096. 0.469726
\(207\) − 33054.7i − 0.0536176i
\(208\) 43264.0i 0.0693375i
\(209\) 189336. 0.299825
\(210\) 0 0
\(211\) 666091. 1.02998 0.514988 0.857197i \(-0.327796\pi\)
0.514988 + 0.857197i \(0.327796\pi\)
\(212\) − 258843.i − 0.395546i
\(213\) − 778334.i − 1.17549i
\(214\) 373426. 0.557405
\(215\) 0 0
\(216\) 250052. 0.364666
\(217\) 11933.2i 0.0172031i
\(218\) 409493.i 0.583586i
\(219\) 199983. 0.281762
\(220\) 0 0
\(221\) 384163. 0.529097
\(222\) 57420.8i 0.0781964i
\(223\) 840415.i 1.13170i 0.824508 + 0.565851i \(0.191452\pi\)
−0.824508 + 0.565851i \(0.808548\pi\)
\(224\) 54229.4 0.0722129
\(225\) 0 0
\(226\) −531915. −0.692742
\(227\) − 880953.i − 1.13472i −0.823470 0.567359i \(-0.807965\pi\)
0.823470 0.567359i \(-0.192035\pi\)
\(228\) − 175765.i − 0.223921i
\(229\) 622076. 0.783889 0.391945 0.919989i \(-0.371802\pi\)
0.391945 + 0.919989i \(0.371802\pi\)
\(230\) 0 0
\(231\) −206511. −0.254633
\(232\) 60768.9i 0.0741245i
\(233\) 1.09326e6i 1.31927i 0.751588 + 0.659633i \(0.229288\pi\)
−0.751588 + 0.659633i \(0.770712\pi\)
\(234\) 11323.3 0.0135186
\(235\) 0 0
\(236\) 5230.92 0.00611362
\(237\) 1.14720e6i 1.32669i
\(238\) − 481531.i − 0.551038i
\(239\) −153202. −0.173488 −0.0867442 0.996231i \(-0.527646\pi\)
−0.0867442 + 0.996231i \(0.527646\pi\)
\(240\) 0 0
\(241\) 1.24027e6 1.37554 0.687771 0.725927i \(-0.258589\pi\)
0.687771 + 0.725927i \(0.258589\pi\)
\(242\) 375366.i 0.412019i
\(243\) − 126670.i − 0.137612i
\(244\) 749031. 0.805425
\(245\) 0 0
\(246\) 1.04518e6 1.10116
\(247\) − 123426.i − 0.128725i
\(248\) 14421.2i 0.0148892i
\(249\) −453465. −0.463495
\(250\) 0 0
\(251\) −1.52653e6 −1.52940 −0.764702 0.644384i \(-0.777114\pi\)
−0.764702 + 0.644384i \(0.777114\pi\)
\(252\) − 14193.2i − 0.0140793i
\(253\) 511590.i 0.502483i
\(254\) 215435. 0.209523
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.27524e6i 1.20436i 0.798359 + 0.602182i \(0.205702\pi\)
−0.798359 + 0.602182i \(0.794298\pi\)
\(258\) − 606972.i − 0.567701i
\(259\) 50541.8 0.0468167
\(260\) 0 0
\(261\) 15904.8 0.0144520
\(262\) − 503260.i − 0.452938i
\(263\) − 942046.i − 0.839813i −0.907567 0.419907i \(-0.862063\pi\)
0.907567 0.419907i \(-0.137937\pi\)
\(264\) −249568. −0.220384
\(265\) 0 0
\(266\) −154708. −0.134063
\(267\) − 1.00434e6i − 0.862191i
\(268\) − 697332.i − 0.593066i
\(269\) −806087. −0.679205 −0.339603 0.940569i \(-0.610293\pi\)
−0.339603 + 0.940569i \(0.610293\pi\)
\(270\) 0 0
\(271\) 600088. 0.496354 0.248177 0.968715i \(-0.420169\pi\)
0.248177 + 0.968715i \(0.420169\pi\)
\(272\) − 581927.i − 0.476921i
\(273\) 134622.i 0.109322i
\(274\) −222438. −0.178991
\(275\) 0 0
\(276\) 474921. 0.375274
\(277\) 1.62719e6i 1.27421i 0.770779 + 0.637103i \(0.219867\pi\)
−0.770779 + 0.637103i \(0.780133\pi\)
\(278\) − 800105.i − 0.620919i
\(279\) 3774.39 0.00290293
\(280\) 0 0
\(281\) −228378. −0.172539 −0.0862697 0.996272i \(-0.527495\pi\)
−0.0862697 + 0.996272i \(0.527495\pi\)
\(282\) 365204.i 0.273472i
\(283\) 1.27404e6i 0.945619i 0.881165 + 0.472809i \(0.156760\pi\)
−0.881165 + 0.472809i \(0.843240\pi\)
\(284\) −827928. −0.609111
\(285\) 0 0
\(286\) −175252. −0.126691
\(287\) − 919963.i − 0.659273i
\(288\) − 17152.4i − 0.0121855i
\(289\) −3.74737e6 −2.63926
\(290\) 0 0
\(291\) 2.27768e6 1.57674
\(292\) − 212725.i − 0.146003i
\(293\) 2.84127e6i 1.93350i 0.255725 + 0.966749i \(0.417686\pi\)
−0.255725 + 0.966749i \(0.582314\pi\)
\(294\) −842474. −0.568445
\(295\) 0 0
\(296\) 61079.5 0.0405197
\(297\) 1.01290e6i 0.666307i
\(298\) − 504028.i − 0.328786i
\(299\) 333499. 0.215733
\(300\) 0 0
\(301\) −534256. −0.339886
\(302\) − 54097.9i − 0.0341321i
\(303\) 2.18402e6i 1.36662i
\(304\) −186964. −0.116031
\(305\) 0 0
\(306\) −152305. −0.0929847
\(307\) − 452866.i − 0.274235i −0.990555 0.137118i \(-0.956216\pi\)
0.990555 0.137118i \(-0.0437839\pi\)
\(308\) 219670.i 0.131945i
\(309\) 1.07584e6 0.640988
\(310\) 0 0
\(311\) −1.43388e6 −0.840645 −0.420323 0.907375i \(-0.638083\pi\)
−0.420323 + 0.907375i \(0.638083\pi\)
\(312\) 162690.i 0.0946181i
\(313\) 165281.i 0.0953588i 0.998863 + 0.0476794i \(0.0151826\pi\)
−0.998863 + 0.0476794i \(0.984817\pi\)
\(314\) 1.69177e6 0.968318
\(315\) 0 0
\(316\) 1.22030e6 0.687460
\(317\) − 1.53580e6i − 0.858395i −0.903211 0.429198i \(-0.858796\pi\)
0.903211 0.429198i \(-0.141204\pi\)
\(318\) − 973354.i − 0.539763i
\(319\) −246160. −0.135438
\(320\) 0 0
\(321\) 1.40423e6 0.760635
\(322\) − 418025.i − 0.224679i
\(323\) 1.66015e6i 0.885404i
\(324\) 875169. 0.463158
\(325\) 0 0
\(326\) −2.67484e6 −1.39397
\(327\) 1.53986e6i 0.796362i
\(328\) − 1.11177e6i − 0.570599i
\(329\) 321452. 0.163730
\(330\) 0 0
\(331\) −1.57759e6 −0.791449 −0.395725 0.918369i \(-0.629507\pi\)
−0.395725 + 0.918369i \(0.629507\pi\)
\(332\) 482358.i 0.240173i
\(333\) − 15986.1i − 0.00790007i
\(334\) 1.31233e6 0.643691
\(335\) 0 0
\(336\) 203924. 0.0985418
\(337\) − 303917.i − 0.145774i −0.997340 0.0728869i \(-0.976779\pi\)
0.997340 0.0728869i \(-0.0232212\pi\)
\(338\) 114244.i 0.0543928i
\(339\) −2.00021e6 −0.945316
\(340\) 0 0
\(341\) −58416.6 −0.0272051
\(342\) 48933.3i 0.0226224i
\(343\) 1.63162e6i 0.748829i
\(344\) −645646. −0.294170
\(345\) 0 0
\(346\) −248035. −0.111384
\(347\) − 3.29844e6i − 1.47057i −0.677760 0.735283i \(-0.737049\pi\)
0.677760 0.735283i \(-0.262951\pi\)
\(348\) 228515.i 0.101150i
\(349\) 356002. 0.156455 0.0782273 0.996936i \(-0.475074\pi\)
0.0782273 + 0.996936i \(0.475074\pi\)
\(350\) 0 0
\(351\) 660293. 0.286068
\(352\) 265470.i 0.114198i
\(353\) − 3.72901e6i − 1.59279i −0.604780 0.796393i \(-0.706739\pi\)
0.604780 0.796393i \(-0.293261\pi\)
\(354\) 19670.3 0.00834265
\(355\) 0 0
\(356\) −1.06834e6 −0.446769
\(357\) − 1.81075e6i − 0.751947i
\(358\) 440907.i 0.181819i
\(359\) 2.27503e6 0.931647 0.465824 0.884878i \(-0.345758\pi\)
0.465824 + 0.884878i \(0.345758\pi\)
\(360\) 0 0
\(361\) −1.94272e6 −0.784588
\(362\) 1.48550e6i 0.595801i
\(363\) 1.41153e6i 0.562241i
\(364\) 143200. 0.0566485
\(365\) 0 0
\(366\) 2.81665e6 1.09908
\(367\) 1.21410e6i 0.470534i 0.971931 + 0.235267i \(0.0755964\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(368\) − 505181.i − 0.194459i
\(369\) −290979. −0.111249
\(370\) 0 0
\(371\) −856745. −0.323160
\(372\) 54229.4i 0.0203178i
\(373\) 1.56733e6i 0.583294i 0.956526 + 0.291647i \(0.0942033\pi\)
−0.956526 + 0.291647i \(0.905797\pi\)
\(374\) 2.35724e6 0.871415
\(375\) 0 0
\(376\) 388474. 0.141707
\(377\) 160468.i 0.0581480i
\(378\) − 827647.i − 0.297931i
\(379\) −4.40321e6 −1.57461 −0.787303 0.616567i \(-0.788523\pi\)
−0.787303 + 0.616567i \(0.788523\pi\)
\(380\) 0 0
\(381\) 810122. 0.285916
\(382\) 3.89456e6i 1.36553i
\(383\) 3.45596e6i 1.20385i 0.798554 + 0.601924i \(0.205599\pi\)
−0.798554 + 0.601924i \(0.794401\pi\)
\(384\) 246441. 0.0852876
\(385\) 0 0
\(386\) 71749.3 0.0245103
\(387\) 168982.i 0.0573539i
\(388\) − 2.42280e6i − 0.817032i
\(389\) −556620. −0.186503 −0.0932513 0.995643i \(-0.529726\pi\)
−0.0932513 + 0.995643i \(0.529726\pi\)
\(390\) 0 0
\(391\) −4.48576e6 −1.48386
\(392\) 896154.i 0.294556i
\(393\) − 1.89246e6i − 0.618080i
\(394\) 1.58514e6 0.514430
\(395\) 0 0
\(396\) 69480.2 0.0222650
\(397\) − 225504.i − 0.0718089i −0.999355 0.0359045i \(-0.988569\pi\)
0.999355 0.0359045i \(-0.0114312\pi\)
\(398\) − 1.49876e6i − 0.474269i
\(399\) −581765. −0.182943
\(400\) 0 0
\(401\) 898293. 0.278970 0.139485 0.990224i \(-0.455455\pi\)
0.139485 + 0.990224i \(0.455455\pi\)
\(402\) − 2.62225e6i − 0.809298i
\(403\) 38080.9i 0.0116801i
\(404\) 2.32317e6 0.708155
\(405\) 0 0
\(406\) 201139. 0.0605594
\(407\) 247418.i 0.0740363i
\(408\) − 2.18828e6i − 0.650807i
\(409\) 1.77186e6 0.523746 0.261873 0.965102i \(-0.415660\pi\)
0.261873 + 0.965102i \(0.415660\pi\)
\(410\) 0 0
\(411\) −836454. −0.244252
\(412\) − 1.14439e6i − 0.332146i
\(413\) − 17313.8i − 0.00499480i
\(414\) −132219. −0.0379134
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) − 3.00871e6i − 0.847307i
\(418\) − 757345.i − 0.212008i
\(419\) −617010. −0.171695 −0.0858474 0.996308i \(-0.527360\pi\)
−0.0858474 + 0.996308i \(0.527360\pi\)
\(420\) 0 0
\(421\) −6.27988e6 −1.72682 −0.863409 0.504505i \(-0.831675\pi\)
−0.863409 + 0.504505i \(0.831675\pi\)
\(422\) − 2.66436e6i − 0.728303i
\(423\) − 101674.i − 0.0276285i
\(424\) −1.03537e6 −0.279693
\(425\) 0 0
\(426\) −3.11334e6 −0.831194
\(427\) − 2.47922e6i − 0.658029i
\(428\) − 1.49371e6i − 0.394145i
\(429\) −659016. −0.172883
\(430\) 0 0
\(431\) 2.03052e6 0.526519 0.263259 0.964725i \(-0.415202\pi\)
0.263259 + 0.964725i \(0.415202\pi\)
\(432\) − 1.00021e6i − 0.257858i
\(433\) 1.29410e6i 0.331702i 0.986151 + 0.165851i \(0.0530371\pi\)
−0.986151 + 0.165851i \(0.946963\pi\)
\(434\) 47732.7 0.0121644
\(435\) 0 0
\(436\) 1.63797e6 0.412658
\(437\) 1.44121e6i 0.361013i
\(438\) − 799933.i − 0.199236i
\(439\) 2.53819e6 0.628584 0.314292 0.949326i \(-0.398233\pi\)
0.314292 + 0.949326i \(0.398233\pi\)
\(440\) 0 0
\(441\) 234546. 0.0574291
\(442\) − 1.53665e6i − 0.374128i
\(443\) − 6.27678e6i − 1.51959i −0.650160 0.759797i \(-0.725298\pi\)
0.650160 0.759797i \(-0.274702\pi\)
\(444\) 229683. 0.0552932
\(445\) 0 0
\(446\) 3.36166e6 0.800234
\(447\) − 1.89535e6i − 0.448662i
\(448\) − 216918.i − 0.0510622i
\(449\) 1.91186e6 0.447549 0.223775 0.974641i \(-0.428162\pi\)
0.223775 + 0.974641i \(0.428162\pi\)
\(450\) 0 0
\(451\) 4.50350e6 1.04258
\(452\) 2.12766e6i 0.489843i
\(453\) − 203430.i − 0.0465767i
\(454\) −3.52381e6 −0.802367
\(455\) 0 0
\(456\) −703060. −0.158336
\(457\) 7.83658e6i 1.75524i 0.479360 + 0.877619i \(0.340869\pi\)
−0.479360 + 0.877619i \(0.659131\pi\)
\(458\) − 2.48830e6i − 0.554294i
\(459\) −8.88135e6 −1.96765
\(460\) 0 0
\(461\) −3.95695e6 −0.867178 −0.433589 0.901111i \(-0.642753\pi\)
−0.433589 + 0.901111i \(0.642753\pi\)
\(462\) 826045.i 0.180052i
\(463\) − 2.70615e6i − 0.586677i −0.956009 0.293338i \(-0.905234\pi\)
0.956009 0.293338i \(-0.0947663\pi\)
\(464\) 243076. 0.0524139
\(465\) 0 0
\(466\) 4.37303e6 0.932862
\(467\) − 5.13059e6i − 1.08862i −0.838885 0.544308i \(-0.816792\pi\)
0.838885 0.544308i \(-0.183208\pi\)
\(468\) − 45293.2i − 0.00955912i
\(469\) −2.30810e6 −0.484532
\(470\) 0 0
\(471\) 6.36174e6 1.32137
\(472\) − 20923.7i − 0.00432298i
\(473\) − 2.61535e6i − 0.537498i
\(474\) 4.58880e6 0.938108
\(475\) 0 0
\(476\) −1.92612e6 −0.389643
\(477\) 270984.i 0.0545314i
\(478\) 612809.i 0.122675i
\(479\) −2.22034e6 −0.442162 −0.221081 0.975255i \(-0.570958\pi\)
−0.221081 + 0.975255i \(0.570958\pi\)
\(480\) 0 0
\(481\) 161288. 0.0317863
\(482\) − 4.96108e6i − 0.972656i
\(483\) − 1.57194e6i − 0.306597i
\(484\) 1.50146e6 0.291341
\(485\) 0 0
\(486\) −506678. −0.0973065
\(487\) − 5.01311e6i − 0.957822i −0.877863 0.478911i \(-0.841032\pi\)
0.877863 0.478911i \(-0.158968\pi\)
\(488\) − 2.99612e6i − 0.569522i
\(489\) −1.00585e7 −1.90222
\(490\) 0 0
\(491\) −3.79096e6 −0.709652 −0.354826 0.934932i \(-0.615460\pi\)
−0.354826 + 0.934932i \(0.615460\pi\)
\(492\) − 4.18070e6i − 0.778639i
\(493\) − 2.15839e6i − 0.399957i
\(494\) −493703. −0.0910224
\(495\) 0 0
\(496\) 57684.7 0.0105283
\(497\) 2.74036e6i 0.497641i
\(498\) 1.81386e6i 0.327741i
\(499\) −7.59448e6 −1.36536 −0.682679 0.730718i \(-0.739185\pi\)
−0.682679 + 0.730718i \(0.739185\pi\)
\(500\) 0 0
\(501\) 4.93489e6 0.878381
\(502\) 6.10614e6i 1.08145i
\(503\) − 2.64250e6i − 0.465688i −0.972514 0.232844i \(-0.925197\pi\)
0.972514 0.232844i \(-0.0748032\pi\)
\(504\) −56772.9 −0.00995553
\(505\) 0 0
\(506\) 2.04636e6 0.355309
\(507\) 429603.i 0.0742245i
\(508\) − 861741.i − 0.148155i
\(509\) −9.84097e6 −1.68362 −0.841809 0.539776i \(-0.818509\pi\)
−0.841809 + 0.539776i \(0.818509\pi\)
\(510\) 0 0
\(511\) −704100. −0.119284
\(512\) − 262144.i − 0.0441942i
\(513\) 2.85344e6i 0.478713i
\(514\) 5.10095e6 0.851614
\(515\) 0 0
\(516\) −2.42789e6 −0.401425
\(517\) 1.57361e6i 0.258923i
\(518\) − 202167.i − 0.0331044i
\(519\) −932709. −0.151994
\(520\) 0 0
\(521\) 994770. 0.160557 0.0802783 0.996772i \(-0.474419\pi\)
0.0802783 + 0.996772i \(0.474419\pi\)
\(522\) − 63619.1i − 0.0102191i
\(523\) − 5.82741e6i − 0.931582i −0.884895 0.465791i \(-0.845770\pi\)
0.884895 0.465791i \(-0.154230\pi\)
\(524\) −2.01304e6 −0.320276
\(525\) 0 0
\(526\) −3.76818e6 −0.593838
\(527\) − 512212.i − 0.0803384i
\(528\) 998272.i 0.155835i
\(529\) 2.54218e6 0.394972
\(530\) 0 0
\(531\) −5476.26 −0.000842845 0
\(532\) 618833.i 0.0947970i
\(533\) − 2.93577e6i − 0.447614i
\(534\) −4.01737e6 −0.609661
\(535\) 0 0
\(536\) −2.78933e6 −0.419361
\(537\) 1.65799e6i 0.248111i
\(538\) 3.22435e6i 0.480271i
\(539\) −3.63009e6 −0.538203
\(540\) 0 0
\(541\) −4.57878e6 −0.672599 −0.336300 0.941755i \(-0.609175\pi\)
−0.336300 + 0.941755i \(0.609175\pi\)
\(542\) − 2.40035e6i − 0.350975i
\(543\) 5.58607e6i 0.813030i
\(544\) −2.32771e6 −0.337234
\(545\) 0 0
\(546\) 538487. 0.0773026
\(547\) − 7.15998e6i − 1.02316i −0.859236 0.511580i \(-0.829060\pi\)
0.859236 0.511580i \(-0.170940\pi\)
\(548\) 889751.i 0.126566i
\(549\) −784162. −0.111039
\(550\) 0 0
\(551\) −693458. −0.0973064
\(552\) − 1.89968e6i − 0.265359i
\(553\) − 4.03906e6i − 0.561652i
\(554\) 6.50877e6 0.901000
\(555\) 0 0
\(556\) −3.20042e6 −0.439056
\(557\) − 2.24322e6i − 0.306361i −0.988198 0.153180i \(-0.951048\pi\)
0.988198 0.153180i \(-0.0489516\pi\)
\(558\) − 15097.6i − 0.00205268i
\(559\) −1.70491e6 −0.230766
\(560\) 0 0
\(561\) 8.86417e6 1.18913
\(562\) 913512.i 0.122004i
\(563\) − 9.93603e6i − 1.32112i −0.750774 0.660560i \(-0.770319\pi\)
0.750774 0.660560i \(-0.229681\pi\)
\(564\) 1.46082e6 0.193374
\(565\) 0 0
\(566\) 5.09615e6 0.668653
\(567\) − 2.89672e6i − 0.378398i
\(568\) 3.31171e6i 0.430707i
\(569\) 1.17630e7 1.52313 0.761567 0.648086i \(-0.224430\pi\)
0.761567 + 0.648086i \(0.224430\pi\)
\(570\) 0 0
\(571\) −9.88308e6 −1.26853 −0.634267 0.773114i \(-0.718698\pi\)
−0.634267 + 0.773114i \(0.718698\pi\)
\(572\) 701006.i 0.0895843i
\(573\) 1.46451e7i 1.86340i
\(574\) −3.67985e6 −0.466177
\(575\) 0 0
\(576\) −68609.8 −0.00861648
\(577\) − 6.86460e6i − 0.858372i −0.903216 0.429186i \(-0.858800\pi\)
0.903216 0.429186i \(-0.141200\pi\)
\(578\) 1.49895e7i 1.86624i
\(579\) 269806. 0.0334468
\(580\) 0 0
\(581\) 1.59656e6 0.196221
\(582\) − 9.11071e6i − 1.11492i
\(583\) − 4.19403e6i − 0.511047i
\(584\) −850902. −0.103240
\(585\) 0 0
\(586\) 1.13651e7 1.36719
\(587\) − 3.09692e6i − 0.370966i −0.982647 0.185483i \(-0.940615\pi\)
0.982647 0.185483i \(-0.0593850\pi\)
\(588\) 3.36990e6i 0.401951i
\(589\) −164566. −0.0195457
\(590\) 0 0
\(591\) 5.96075e6 0.701992
\(592\) − 244318.i − 0.0286518i
\(593\) 5.60192e6i 0.654184i 0.944992 + 0.327092i \(0.106069\pi\)
−0.944992 + 0.327092i \(0.893931\pi\)
\(594\) 4.05159e6 0.471150
\(595\) 0 0
\(596\) −2.01611e6 −0.232487
\(597\) − 5.63594e6i − 0.647188i
\(598\) − 1.33399e6i − 0.152546i
\(599\) −1.17534e7 −1.33843 −0.669214 0.743070i \(-0.733369\pi\)
−0.669214 + 0.743070i \(0.733369\pi\)
\(600\) 0 0
\(601\) −8.93997e6 −1.00960 −0.504800 0.863236i \(-0.668434\pi\)
−0.504800 + 0.863236i \(0.668434\pi\)
\(602\) 2.13702e6i 0.240336i
\(603\) 730038.i 0.0817622i
\(604\) −216392. −0.0241351
\(605\) 0 0
\(606\) 8.73606e6 0.966349
\(607\) − 1.73574e7i − 1.91211i −0.293194 0.956053i \(-0.594718\pi\)
0.293194 0.956053i \(-0.405282\pi\)
\(608\) 747857.i 0.0820464i
\(609\) 756363. 0.0826394
\(610\) 0 0
\(611\) 1.02581e6 0.111164
\(612\) 609221.i 0.0657501i
\(613\) 1.63664e7i 1.75915i 0.475760 + 0.879575i \(0.342173\pi\)
−0.475760 + 0.879575i \(0.657827\pi\)
\(614\) −1.81146e6 −0.193914
\(615\) 0 0
\(616\) 878679. 0.0932993
\(617\) − 6.81573e6i − 0.720775i −0.932803 0.360387i \(-0.882645\pi\)
0.932803 0.360387i \(-0.117355\pi\)
\(618\) − 4.30335e6i − 0.453247i
\(619\) 3.32032e6 0.348300 0.174150 0.984719i \(-0.444282\pi\)
0.174150 + 0.984719i \(0.444282\pi\)
\(620\) 0 0
\(621\) −7.71005e6 −0.802284
\(622\) 5.73553e6i 0.594426i
\(623\) 3.53608e6i 0.365008i
\(624\) 650760. 0.0669051
\(625\) 0 0
\(626\) 661122. 0.0674289
\(627\) − 2.84792e6i − 0.289307i
\(628\) − 6.76709e6i − 0.684704i
\(629\) −2.16942e6 −0.218634
\(630\) 0 0
\(631\) −1.25729e7 −1.25708 −0.628541 0.777777i \(-0.716347\pi\)
−0.628541 + 0.777777i \(0.716347\pi\)
\(632\) − 4.88118e6i − 0.486107i
\(633\) − 1.00191e7i − 0.993844i
\(634\) −6.14321e6 −0.606977
\(635\) 0 0
\(636\) −3.89341e6 −0.381670
\(637\) 2.36641e6i 0.231069i
\(638\) 984639.i 0.0957690i
\(639\) 866759. 0.0839743
\(640\) 0 0
\(641\) 5.56432e6 0.534893 0.267446 0.963573i \(-0.413820\pi\)
0.267446 + 0.963573i \(0.413820\pi\)
\(642\) − 5.61693e6i − 0.537850i
\(643\) 1.05294e7i 1.00433i 0.864772 + 0.502165i \(0.167463\pi\)
−0.864772 + 0.502165i \(0.832537\pi\)
\(644\) −1.67210e6 −0.158872
\(645\) 0 0
\(646\) 6.64060e6 0.626075
\(647\) 1.29138e7i 1.21281i 0.795155 + 0.606406i \(0.207389\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(648\) − 3.50068e6i − 0.327502i
\(649\) 84756.6 0.00789881
\(650\) 0 0
\(651\) 179494. 0.0165996
\(652\) 1.06994e7i 0.985687i
\(653\) 1.36537e7i 1.25305i 0.779403 + 0.626523i \(0.215523\pi\)
−0.779403 + 0.626523i \(0.784477\pi\)
\(654\) 6.15942e6 0.563113
\(655\) 0 0
\(656\) −4.44708e6 −0.403474
\(657\) 222703.i 0.0201285i
\(658\) − 1.28581e6i − 0.115774i
\(659\) 612348. 0.0549268 0.0274634 0.999623i \(-0.491257\pi\)
0.0274634 + 0.999623i \(0.491257\pi\)
\(660\) 0 0
\(661\) 1.10774e7 0.986129 0.493064 0.869993i \(-0.335877\pi\)
0.493064 + 0.869993i \(0.335877\pi\)
\(662\) 6.31034e6i 0.559639i
\(663\) − 5.77843e6i − 0.510535i
\(664\) 1.92943e6 0.169828
\(665\) 0 0
\(666\) −63944.3 −0.00558619
\(667\) − 1.87374e6i − 0.163078i
\(668\) − 5.24932e6i − 0.455158i
\(669\) 1.26412e7 1.09200
\(670\) 0 0
\(671\) 1.21365e7 1.04061
\(672\) − 815697.i − 0.0696796i
\(673\) − 1.39729e6i − 0.118918i −0.998231 0.0594590i \(-0.981062\pi\)
0.998231 0.0594590i \(-0.0189376\pi\)
\(674\) −1.21567e6 −0.103078
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 1.49879e7i 1.25681i 0.777886 + 0.628406i \(0.216292\pi\)
−0.777886 + 0.628406i \(0.783708\pi\)
\(678\) 8.00086e6i 0.668440i
\(679\) −8.01924e6 −0.667512
\(680\) 0 0
\(681\) −1.32509e7 −1.09491
\(682\) 233666.i 0.0192369i
\(683\) 5.44672e6i 0.446769i 0.974730 + 0.223384i \(0.0717105\pi\)
−0.974730 + 0.223384i \(0.928289\pi\)
\(684\) 195733. 0.0159965
\(685\) 0 0
\(686\) 6.52647e6 0.529502
\(687\) − 9.35702e6i − 0.756390i
\(688\) 2.58259e6i 0.208010i
\(689\) −2.73403e6 −0.219410
\(690\) 0 0
\(691\) 1.20363e7 0.958951 0.479475 0.877555i \(-0.340827\pi\)
0.479475 + 0.877555i \(0.340827\pi\)
\(692\) 992138.i 0.0787602i
\(693\) − 229973.i − 0.0181904i
\(694\) −1.31937e7 −1.03985
\(695\) 0 0
\(696\) 914062. 0.0715241
\(697\) 3.94879e7i 3.07881i
\(698\) − 1.42401e6i − 0.110630i
\(699\) 1.64443e7 1.27299
\(700\) 0 0
\(701\) 793102. 0.0609585 0.0304792 0.999535i \(-0.490297\pi\)
0.0304792 + 0.999535i \(0.490297\pi\)
\(702\) − 2.64117e6i − 0.202281i
\(703\) 697002.i 0.0531920i
\(704\) 1.06188e6 0.0807502
\(705\) 0 0
\(706\) −1.49161e7 −1.12627
\(707\) − 7.68947e6i − 0.578560i
\(708\) − 78681.4i − 0.00589914i
\(709\) 1.94248e7 1.45125 0.725623 0.688092i \(-0.241552\pi\)
0.725623 + 0.688092i \(0.241552\pi\)
\(710\) 0 0
\(711\) −1.27753e6 −0.0947757
\(712\) 4.27334e6i 0.315913i
\(713\) − 444660.i − 0.0327570i
\(714\) −7.24299e6 −0.531707
\(715\) 0 0
\(716\) 1.76363e6 0.128566
\(717\) 2.30441e6i 0.167402i
\(718\) − 9.10013e6i − 0.658774i
\(719\) 5.30618e6 0.382789 0.191395 0.981513i \(-0.438699\pi\)
0.191395 + 0.981513i \(0.438699\pi\)
\(720\) 0 0
\(721\) −3.78780e6 −0.271362
\(722\) 7.77087e6i 0.554788i
\(723\) − 1.86557e7i − 1.32729i
\(724\) 5.94200e6 0.421295
\(725\) 0 0
\(726\) 5.64611e6 0.397564
\(727\) − 2.30593e7i − 1.61812i −0.587728 0.809059i \(-0.699977\pi\)
0.587728 0.809059i \(-0.300023\pi\)
\(728\) − 572798.i − 0.0400565i
\(729\) −1.51969e7 −1.05910
\(730\) 0 0
\(731\) 2.29321e7 1.58727
\(732\) − 1.12666e7i − 0.777170i
\(733\) − 1.84481e7i − 1.26821i −0.773248 0.634104i \(-0.781369\pi\)
0.773248 0.634104i \(-0.218631\pi\)
\(734\) 4.85641e6 0.332717
\(735\) 0 0
\(736\) −2.02072e6 −0.137503
\(737\) − 1.12989e7i − 0.766242i
\(738\) 1.16392e6i 0.0786648i
\(739\) 6.14417e6 0.413859 0.206929 0.978356i \(-0.433653\pi\)
0.206929 + 0.978356i \(0.433653\pi\)
\(740\) 0 0
\(741\) −1.85652e6 −0.124209
\(742\) 3.42698e6i 0.228508i
\(743\) 1.18784e7i 0.789383i 0.918814 + 0.394691i \(0.129148\pi\)
−0.918814 + 0.394691i \(0.870852\pi\)
\(744\) 216918. 0.0143669
\(745\) 0 0
\(746\) 6.26931e6 0.412451
\(747\) − 504982.i − 0.0331112i
\(748\) − 9.42897e6i − 0.616183i
\(749\) −4.94402e6 −0.322014
\(750\) 0 0
\(751\) −3.38234e6 −0.218835 −0.109418 0.993996i \(-0.534899\pi\)
−0.109418 + 0.993996i \(0.534899\pi\)
\(752\) − 1.55390e6i − 0.100202i
\(753\) 2.29615e7i 1.47575i
\(754\) 641872. 0.0411169
\(755\) 0 0
\(756\) −3.31059e6 −0.210669
\(757\) − 2.42823e6i − 0.154010i −0.997031 0.0770052i \(-0.975464\pi\)
0.997031 0.0770052i \(-0.0245358\pi\)
\(758\) 1.76129e7i 1.11341i
\(759\) 7.69513e6 0.484855
\(760\) 0 0
\(761\) −2.18931e7 −1.37040 −0.685199 0.728356i \(-0.740285\pi\)
−0.685199 + 0.728356i \(0.740285\pi\)
\(762\) − 3.24049e6i − 0.202173i
\(763\) − 5.42152e6i − 0.337139i
\(764\) 1.55782e7 0.965573
\(765\) 0 0
\(766\) 1.38238e7 0.851249
\(767\) − 55251.6i − 0.00339122i
\(768\) − 985766.i − 0.0603074i
\(769\) 1.96376e7 1.19749 0.598747 0.800939i \(-0.295666\pi\)
0.598747 + 0.800939i \(0.295666\pi\)
\(770\) 0 0
\(771\) 1.91816e7 1.16211
\(772\) − 286997.i − 0.0173314i
\(773\) − 1.21015e7i − 0.728433i −0.931314 0.364216i \(-0.881337\pi\)
0.931314 0.364216i \(-0.118663\pi\)
\(774\) 675928. 0.0405554
\(775\) 0 0
\(776\) −9.69122e6 −0.577729
\(777\) − 760229.i − 0.0451743i
\(778\) 2.22648e6i 0.131877i
\(779\) 1.26869e7 0.749049
\(780\) 0 0
\(781\) −1.34149e7 −0.786973
\(782\) 1.79430e7i 1.04925i
\(783\) − 3.70981e6i − 0.216246i
\(784\) 3.58462e6 0.208282
\(785\) 0 0
\(786\) −7.56983e6 −0.437049
\(787\) 2.30778e7i 1.32818i 0.747651 + 0.664092i \(0.231182\pi\)
−0.747651 + 0.664092i \(0.768818\pi\)
\(788\) − 6.34055e6i − 0.363757i
\(789\) −1.41699e7 −0.810351
\(790\) 0 0
\(791\) 7.04235e6 0.400199
\(792\) − 277921.i − 0.0157438i
\(793\) − 7.91164e6i − 0.446769i
\(794\) −902017. −0.0507766
\(795\) 0 0
\(796\) −5.99505e6 −0.335359
\(797\) 8.88351e6i 0.495380i 0.968839 + 0.247690i \(0.0796715\pi\)
−0.968839 + 0.247690i \(0.920328\pi\)
\(798\) 2.32706e6i 0.129360i
\(799\) −1.37978e7 −0.764617
\(800\) 0 0
\(801\) 1.11844e6 0.0615932
\(802\) − 3.59317e6i − 0.197261i
\(803\) − 3.44679e6i − 0.188637i
\(804\) −1.04890e7 −0.572260
\(805\) 0 0
\(806\) 152324. 0.00825905
\(807\) 1.21248e7i 0.655378i
\(808\) − 9.29270e6i − 0.500741i
\(809\) 1.27959e7 0.687382 0.343691 0.939083i \(-0.388323\pi\)
0.343691 + 0.939083i \(0.388323\pi\)
\(810\) 0 0
\(811\) 3.55180e6 0.189626 0.0948128 0.995495i \(-0.469775\pi\)
0.0948128 + 0.995495i \(0.469775\pi\)
\(812\) − 804557.i − 0.0428220i
\(813\) − 9.02627e6i − 0.478941i
\(814\) 989671. 0.0523516
\(815\) 0 0
\(816\) −8.75312e6 −0.460190
\(817\) − 7.36773e6i − 0.386170i
\(818\) − 7.08744e6i − 0.370345i
\(819\) −149916. −0.00780976
\(820\) 0 0
\(821\) −4.71136e6 −0.243943 −0.121971 0.992534i \(-0.538922\pi\)
−0.121971 + 0.992534i \(0.538922\pi\)
\(822\) 3.34582e6i 0.172712i
\(823\) 4.15156e6i 0.213654i 0.994278 + 0.106827i \(0.0340691\pi\)
−0.994278 + 0.106827i \(0.965931\pi\)
\(824\) −4.57754e6 −0.234863
\(825\) 0 0
\(826\) −69255.3 −0.00353186
\(827\) 2.57396e7i 1.30869i 0.756195 + 0.654346i \(0.227056\pi\)
−0.756195 + 0.654346i \(0.772944\pi\)
\(828\) 528875.i 0.0268088i
\(829\) 1.95125e7 0.986114 0.493057 0.869997i \(-0.335879\pi\)
0.493057 + 0.869997i \(0.335879\pi\)
\(830\) 0 0
\(831\) 2.44756e7 1.22951
\(832\) − 692224.i − 0.0346688i
\(833\) − 3.18296e7i − 1.58935i
\(834\) −1.20349e7 −0.599137
\(835\) 0 0
\(836\) −3.02938e6 −0.149913
\(837\) − 880382.i − 0.0434368i
\(838\) 2.46804e6i 0.121407i
\(839\) 1.56844e7 0.769243 0.384621 0.923074i \(-0.374332\pi\)
0.384621 + 0.923074i \(0.374332\pi\)
\(840\) 0 0
\(841\) −1.96096e7 −0.956044
\(842\) 2.51195e7i 1.22104i
\(843\) 3.43517e6i 0.166487i
\(844\) −1.06575e7 −0.514988
\(845\) 0 0
\(846\) −406694. −0.0195363
\(847\) − 4.96970e6i − 0.238024i
\(848\) 4.14149e6i 0.197773i
\(849\) 1.91635e7 0.912445
\(850\) 0 0
\(851\) −1.88331e6 −0.0891454
\(852\) 1.24534e7i 0.587743i
\(853\) 2.35674e7i 1.10902i 0.832177 + 0.554510i \(0.187094\pi\)
−0.832177 + 0.554510i \(0.812906\pi\)
\(854\) −9.91687e6 −0.465297
\(855\) 0 0
\(856\) −5.97482e6 −0.278702
\(857\) 4.23900e6i 0.197157i 0.995129 + 0.0985783i \(0.0314295\pi\)
−0.995129 + 0.0985783i \(0.968571\pi\)
\(858\) 2.63606e6i 0.122247i
\(859\) −1.30196e7 −0.602026 −0.301013 0.953620i \(-0.597325\pi\)
−0.301013 + 0.953620i \(0.597325\pi\)
\(860\) 0 0
\(861\) −1.38377e7 −0.636145
\(862\) − 8.12208e6i − 0.372305i
\(863\) − 3.41837e7i − 1.56240i −0.624280 0.781200i \(-0.714608\pi\)
0.624280 0.781200i \(-0.285392\pi\)
\(864\) −4.00083e6 −0.182333
\(865\) 0 0
\(866\) 5.17640e6 0.234549
\(867\) 5.63665e7i 2.54667i
\(868\) − 190931.i − 0.00860155i
\(869\) 1.97724e7 0.888200
\(870\) 0 0
\(871\) −7.36557e6 −0.328974
\(872\) − 6.55188e6i − 0.291793i
\(873\) 2.53644e6i 0.112639i
\(874\) 5.76482e6 0.255274
\(875\) 0 0
\(876\) −3.19973e6 −0.140881
\(877\) 3.07617e7i 1.35055i 0.737566 + 0.675275i \(0.235975\pi\)
−0.737566 + 0.675275i \(0.764025\pi\)
\(878\) − 1.01528e7i − 0.444476i
\(879\) 4.27373e7 1.86567
\(880\) 0 0
\(881\) 8.83910e6 0.383679 0.191840 0.981426i \(-0.438555\pi\)
0.191840 + 0.981426i \(0.438555\pi\)
\(882\) − 938186.i − 0.0406085i
\(883\) 2.09708e7i 0.905136i 0.891730 + 0.452568i \(0.149492\pi\)
−0.891730 + 0.452568i \(0.850508\pi\)
\(884\) −6.14661e6 −0.264548
\(885\) 0 0
\(886\) −2.51071e7 −1.07452
\(887\) 3.98177e7i 1.69929i 0.527357 + 0.849644i \(0.323183\pi\)
−0.527357 + 0.849644i \(0.676817\pi\)
\(888\) − 918733.i − 0.0390982i
\(889\) −2.85228e6 −0.121042
\(890\) 0 0
\(891\) 1.41804e7 0.598402
\(892\) − 1.34466e7i − 0.565851i
\(893\) 4.43303e6i 0.186025i
\(894\) −7.58138e6 −0.317252
\(895\) 0 0
\(896\) −867671. −0.0361065
\(897\) − 5.01635e6i − 0.208165i
\(898\) − 7.64745e6i − 0.316465i
\(899\) 213955. 0.00882924
\(900\) 0 0
\(901\) 3.67744e7 1.50915
\(902\) − 1.80140e7i − 0.737215i
\(903\) 8.03607e6i 0.327962i
\(904\) 8.51065e6 0.346371
\(905\) 0 0
\(906\) −813719. −0.0329347
\(907\) 3.42787e6i 0.138358i 0.997604 + 0.0691792i \(0.0220380\pi\)
−0.997604 + 0.0691792i \(0.977962\pi\)
\(908\) 1.40953e7i 0.567359i
\(909\) −2.43214e6 −0.0976288
\(910\) 0 0
\(911\) −3.60531e7 −1.43929 −0.719643 0.694344i \(-0.755695\pi\)
−0.719643 + 0.694344i \(0.755695\pi\)
\(912\) 2.81224e6i 0.111961i
\(913\) 7.81565e6i 0.310305i
\(914\) 3.13463e7 1.24114
\(915\) 0 0
\(916\) −9.95322e6 −0.391945
\(917\) 6.66296e6i 0.261664i
\(918\) 3.55254e7i 1.39134i
\(919\) 2.96521e7 1.15816 0.579078 0.815272i \(-0.303413\pi\)
0.579078 + 0.815272i \(0.303413\pi\)
\(920\) 0 0
\(921\) −6.81182e6 −0.264615
\(922\) 1.58278e7i 0.613187i
\(923\) 8.74499e6i 0.337874i
\(924\) 3.30418e6 0.127316
\(925\) 0 0
\(926\) −1.08246e7 −0.414843
\(927\) 1.19806e6i 0.0457909i
\(928\) − 972303.i − 0.0370622i
\(929\) 1.01663e7 0.386478 0.193239 0.981152i \(-0.438101\pi\)
0.193239 + 0.981152i \(0.438101\pi\)
\(930\) 0 0
\(931\) −1.02264e7 −0.386676
\(932\) − 1.74921e7i − 0.659633i
\(933\) 2.15679e7i 0.811154i
\(934\) −2.05223e7 −0.769768
\(935\) 0 0
\(936\) −181173. −0.00675932
\(937\) − 3.22787e7i − 1.20107i −0.799599 0.600534i \(-0.794955\pi\)
0.799599 0.600534i \(-0.205045\pi\)
\(938\) 9.23240e6i 0.342616i
\(939\) 2.48608e6 0.0920135
\(940\) 0 0
\(941\) 2.53184e7 0.932100 0.466050 0.884758i \(-0.345677\pi\)
0.466050 + 0.884758i \(0.345677\pi\)
\(942\) − 2.54470e7i − 0.934348i
\(943\) 3.42801e7i 1.25535i
\(944\) −83694.7 −0.00305681
\(945\) 0 0
\(946\) −1.04614e7 −0.380069
\(947\) 4.70863e7i 1.70616i 0.521780 + 0.853080i \(0.325268\pi\)
−0.521780 + 0.853080i \(0.674732\pi\)
\(948\) − 1.83552e7i − 0.663343i
\(949\) −2.24691e6 −0.0809880
\(950\) 0 0
\(951\) −2.31009e7 −0.828282
\(952\) 7.70449e6i 0.275519i
\(953\) − 6.95299e6i − 0.247993i −0.992283 0.123997i \(-0.960429\pi\)
0.992283 0.123997i \(-0.0395712\pi\)
\(954\) 1.08393e6 0.0385595
\(955\) 0 0
\(956\) 2.45124e6 0.0867442
\(957\) 3.70263e6i 0.130687i
\(958\) 8.88137e6i 0.312656i
\(959\) 2.94499e6 0.103404
\(960\) 0 0
\(961\) −2.85784e7 −0.998226
\(962\) − 645152.i − 0.0224763i
\(963\) 1.56376e6i 0.0543382i
\(964\) −1.98443e7 −0.687771
\(965\) 0 0
\(966\) −6.28776e6 −0.216797
\(967\) − 4.00072e7i − 1.37585i −0.725780 0.687927i \(-0.758521\pi\)
0.725780 0.687927i \(-0.241479\pi\)
\(968\) − 6.00586e6i − 0.206009i
\(969\) 2.49713e7 0.854343
\(970\) 0 0
\(971\) 5.12102e7 1.74305 0.871523 0.490355i \(-0.163133\pi\)
0.871523 + 0.490355i \(0.163133\pi\)
\(972\) 2.02671e6i 0.0688061i
\(973\) 1.05931e7i 0.358707i
\(974\) −2.00524e7 −0.677283
\(975\) 0 0
\(976\) −1.19845e7 −0.402713
\(977\) 7.74195e6i 0.259486i 0.991548 + 0.129743i \(0.0414152\pi\)
−0.991548 + 0.129743i \(0.958585\pi\)
\(978\) 4.02339e7i 1.34507i
\(979\) −1.73102e7 −0.577226
\(980\) 0 0
\(981\) −1.71479e6 −0.0568905
\(982\) 1.51638e7i 0.501800i
\(983\) − 2.28293e7i − 0.753544i −0.926306 0.376772i \(-0.877034\pi\)
0.926306 0.376772i \(-0.122966\pi\)
\(984\) −1.67228e7 −0.550581
\(985\) 0 0
\(986\) −8.63357e6 −0.282812
\(987\) − 4.83516e6i − 0.157986i
\(988\) 1.97481e6i 0.0643625i
\(989\) 1.99077e7 0.647189
\(990\) 0 0
\(991\) 3.12601e7 1.01113 0.505564 0.862789i \(-0.331284\pi\)
0.505564 + 0.862789i \(0.331284\pi\)
\(992\) − 230739.i − 0.00744461i
\(993\) 2.37294e7i 0.763684i
\(994\) 1.09614e7 0.351885
\(995\) 0 0
\(996\) 7.25544e6 0.231748
\(997\) 1.09102e7i 0.347611i 0.984780 + 0.173805i \(0.0556064\pi\)
−0.984780 + 0.173805i \(0.944394\pi\)
\(998\) 3.03779e7i 0.965454i
\(999\) −3.72877e6 −0.118209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.f.599.1 4
5.2 odd 4 650.6.a.f.1.1 2
5.3 odd 4 130.6.a.c.1.2 2
5.4 even 2 inner 650.6.b.f.599.4 4
20.3 even 4 1040.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.c.1.2 2 5.3 odd 4
650.6.a.f.1.1 2 5.2 odd 4
650.6.b.f.599.1 4 1.1 even 1 trivial
650.6.b.f.599.4 4 5.4 even 2 inner
1040.6.a.c.1.1 2 20.3 even 4