Properties

Label 650.6.b.f
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{145})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 73x^{2} + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_1 q^{2} + (\beta_{2} - 3 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} - 12) q^{6} + (\beta_{2} + 65 \beta_1) q^{7} + 64 \beta_1 q^{8} + (6 \beta_{3} + 89) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 \beta_1 q^{2} + (\beta_{2} - 3 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} - 12) q^{6} + (\beta_{2} + 65 \beta_1) q^{7} + 64 \beta_1 q^{8} + (6 \beta_{3} + 89) q^{9} + (30 \beta_{3} + 102) q^{11} + ( - 16 \beta_{2} + 48 \beta_1) q^{12} + 169 \beta_1 q^{13} + (4 \beta_{3} + 260) q^{14} + 256 q^{16} + (172 \beta_{2} - 202 \beta_1) q^{17} + ( - 24 \beta_{2} - 356 \beta_1) q^{18} + (56 \beta_{3} - 56) q^{19} + ( - 62 \beta_{3} + 50) q^{21} + ( - 120 \beta_{2} - 408 \beta_1) q^{22} + (153 \beta_{2} - 131 \beta_1) q^{23} + ( - 64 \beta_{3} + 192) q^{24} + 676 q^{26} + (314 \beta_{2} - 126 \beta_1) q^{27} + ( - 16 \beta_{2} - 1040 \beta_1) q^{28} + (204 \beta_{3} + 3406) q^{29} + ( - 32 \beta_{3} - 160) q^{31} - 1024 \beta_1 q^{32} + (12 \beta_{2} + 4044 \beta_1) q^{33} + (688 \beta_{3} - 808) q^{34} + ( - 96 \beta_{3} - 1424) q^{36} + ( - 472 \beta_{2} - 6638 \beta_1) q^{37} + ( - 224 \beta_{2} + 224 \beta_1) q^{38} + ( - 169 \beta_{3} + 507) q^{39} + ( - 14 \beta_{3} - 17540) q^{41} + (248 \beta_{2} - 200 \beta_1) q^{42} + ( - 943 \beta_{2} - 1267 \beta_1) q^{43} + ( - 480 \beta_{3} - 1632) q^{44} + (612 \beta_{3} - 524) q^{46} + ( - 411 \beta_{2} - 11019 \beta_1) q^{47} + (256 \beta_{2} - 768 \beta_1) q^{48} + ( - 130 \beta_{3} + 12437) q^{49} + (718 \beta_{3} - 25546) q^{51} - 2704 \beta_1 q^{52} + (488 \beta_{2} + 22054 \beta_1) q^{53} + (1256 \beta_{3} - 504) q^{54} + ( - 64 \beta_{3} - 4160) q^{56} + ( - 224 \beta_{2} + 8288 \beta_1) q^{57} + ( - 816 \beta_{2} - 13624 \beta_1) q^{58} + (936 \beta_{3} + 10944) q^{59} + (2174 \beta_{3} - 20636) q^{61} + (128 \beta_{2} + 640 \beta_1) q^{62} + (479 \beta_{2} + 6655 \beta_1) q^{63} - 4096 q^{64} + (48 \beta_{3} + 16176) q^{66} + (667 \beta_{2} + 51615 \beta_1) q^{67} + ( - 2752 \beta_{2} + 3232 \beta_1) q^{68} + (590 \beta_{3} - 22578) q^{69} + ( - 4940 \beta_{3} - 7740) q^{71} + (384 \beta_{2} + 5696 \beta_1) q^{72} + ( - 3350 \beta_{2} - 27044 \beta_1) q^{73} + ( - 1888 \beta_{3} - 26552) q^{74} + ( - 896 \beta_{3} + 896) q^{76} + (2052 \beta_{2} + 10980 \beta_1) q^{77} + (676 \beta_{2} - 2028 \beta_1) q^{78} + (5204 \beta_{3} - 13604) q^{79} + (2526 \beta_{3} - 24281) q^{81} + (56 \beta_{2} + 70160 \beta_1) q^{82} + (731 \beta_{2} - 21345 \beta_1) q^{83} + (992 \beta_{3} - 800) q^{84} + ( - 3772 \beta_{3} - 5068) q^{86} + (2794 \beta_{2} + 19362 \beta_1) q^{87} + (1920 \beta_{2} + 6528 \beta_1) q^{88} + ( - 2716 \beta_{3} + 34066) q^{89} + ( - 169 \beta_{3} - 10985) q^{91} + ( - 2448 \beta_{2} + 2096 \beta_1) q^{92} + ( - 64 \beta_{2} - 4160 \beta_1) q^{93} + ( - 1644 \beta_{3} - 44076) q^{94} + (1024 \beta_{3} - 3072) q^{96} + ( - 3878 \beta_{2} + 104728 \beta_1) q^{97} + (520 \beta_{2} - 49748 \beta_1) q^{98} + (3282 \beta_{3} + 35178) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 48 q^{6} + 356 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} - 48 q^{6} + 356 q^{9} + 408 q^{11} + 1040 q^{14} + 1024 q^{16} - 224 q^{19} + 200 q^{21} + 768 q^{24} + 2704 q^{26} + 13624 q^{29} - 640 q^{31} - 3232 q^{34} - 5696 q^{36} + 2028 q^{39} - 70160 q^{41} - 6528 q^{44} - 2096 q^{46} + 49748 q^{49} - 102184 q^{51} - 2016 q^{54} - 16640 q^{56} + 43776 q^{59} - 82544 q^{61} - 16384 q^{64} + 64704 q^{66} - 90312 q^{69} - 30960 q^{71} - 106208 q^{74} + 3584 q^{76} - 54416 q^{79} - 97124 q^{81} - 3200 q^{84} - 20272 q^{86} + 136264 q^{89} - 43940 q^{91} - 176304 q^{94} - 12288 q^{96} + 140712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 73x^{2} + 1296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 37\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 109\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 73 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 73 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -37\beta_{2} + 109\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
6.52080i
5.52080i
5.52080i
6.52080i
4.00000i 15.0416i −16.0000 0 −60.1664 52.9584i 64.0000i 16.7504 0
599.2 4.00000i 9.04159i −16.0000 0 36.1664 77.0416i 64.0000i 161.250 0
599.3 4.00000i 9.04159i −16.0000 0 36.1664 77.0416i 64.0000i 161.250 0
599.4 4.00000i 15.0416i −16.0000 0 −60.1664 52.9584i 64.0000i 16.7504 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.f 4
5.b even 2 1 inner 650.6.b.f 4
5.c odd 4 1 130.6.a.c 2
5.c odd 4 1 650.6.a.f 2
20.e even 4 1 1040.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.c 2 5.c odd 4 1
650.6.a.f 2 5.c odd 4 1
650.6.b.f 4 1.a even 1 1 trivial
650.6.b.f 4 5.b even 2 1 inner
1040.6.a.c 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 308T_{3}^{2} + 18496 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 308 T^{2} + 18496 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 8740 T^{2} + 16646400 \) Copy content Toggle raw display
$11$ \( (T^{2} - 204 T - 120096)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 18052947263376 \) Copy content Toggle raw display
$19$ \( (T^{2} + 112 T - 451584)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 11405101596736 \) Copy content Toggle raw display
$29$ \( (T^{2} - 6812 T + 5566516)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 320 T - 122880)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 138282641684496 \) Copy content Toggle raw display
$41$ \( (T^{2} + 35080 T + 307623180)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 93\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( (T^{2} - 21888 T - 7262784)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 41272 T - 259465524)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 67\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{2} + 15480 T - 3478614400)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 80\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( (T^{2} + 27208 T - 3741765504)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 68132 T + 90877236)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 77\!\cdots\!16 \) Copy content Toggle raw display
show more
show less