Properties

Label 650.4.b.k.599.1
Level $650$
Weight $4$
Character 650.599
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-8,0,0,-76,0,108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.1
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.4.b.k.599.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -7.70820i q^{3} -4.00000 q^{4} -15.4164 q^{6} +17.8885i q^{7} +8.00000i q^{8} -32.4164 q^{9} +38.1803 q^{11} +30.8328i q^{12} +13.0000i q^{13} +35.7771 q^{14} +16.0000 q^{16} +69.7771i q^{17} +64.8328i q^{18} +152.928 q^{19} +137.889 q^{21} -76.3607i q^{22} -167.125i q^{23} +61.6656 q^{24} +26.0000 q^{26} +41.7508i q^{27} -71.5542i q^{28} -187.305 q^{29} +91.7082 q^{31} -32.0000i q^{32} -294.302i q^{33} +139.554 q^{34} +129.666 q^{36} -127.974i q^{37} -305.856i q^{38} +100.207 q^{39} +239.941 q^{41} -275.777i q^{42} +203.485i q^{43} -152.721 q^{44} -334.249 q^{46} -333.495i q^{47} -123.331i q^{48} +23.0000 q^{49} +537.856 q^{51} -52.0000i q^{52} +585.712i q^{53} +83.5016 q^{54} -143.108 q^{56} -1178.80i q^{57} +374.610i q^{58} +568.895 q^{59} +278.912 q^{61} -183.416i q^{62} -579.882i q^{63} -64.0000 q^{64} -588.604 q^{66} -617.698i q^{67} -279.108i q^{68} -1288.23 q^{69} +319.656 q^{71} -259.331i q^{72} +241.574i q^{73} -255.947 q^{74} -611.712 q^{76} +682.991i q^{77} -200.413i q^{78} +60.4659 q^{79} -553.420 q^{81} -479.882i q^{82} +1204.87i q^{83} -551.554 q^{84} +406.971 q^{86} +1443.78i q^{87} +305.443i q^{88} -557.437 q^{89} -232.551 q^{91} +668.498i q^{92} -706.906i q^{93} -666.991 q^{94} -246.663 q^{96} -241.895i q^{97} -46.0000i q^{98} -1237.67 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 8 q^{6} - 76 q^{9} + 108 q^{11} + 64 q^{16} + 84 q^{19} + 480 q^{21} + 32 q^{24} + 104 q^{26} - 624 q^{29} + 340 q^{31} + 272 q^{34} + 304 q^{36} + 52 q^{39} + 280 q^{41} - 432 q^{44} - 1176 q^{46}+ \cdots - 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 7.70820i − 1.48344i −0.670707 0.741722i \(-0.734009\pi\)
0.670707 0.741722i \(-0.265991\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −15.4164 −1.04895
\(7\) 17.8885i 0.965891i 0.875651 + 0.482945i \(0.160433\pi\)
−0.875651 + 0.482945i \(0.839567\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −32.4164 −1.20061
\(10\) 0 0
\(11\) 38.1803 1.04653 0.523264 0.852171i \(-0.324714\pi\)
0.523264 + 0.852171i \(0.324714\pi\)
\(12\) 30.8328i 0.741722i
\(13\) 13.0000i 0.277350i
\(14\) 35.7771 0.682988
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 69.7771i 0.995496i 0.867322 + 0.497748i \(0.165840\pi\)
−0.867322 + 0.497748i \(0.834160\pi\)
\(18\) 64.8328i 0.848958i
\(19\) 152.928 1.84653 0.923266 0.384162i \(-0.125510\pi\)
0.923266 + 0.384162i \(0.125510\pi\)
\(20\) 0 0
\(21\) 137.889 1.43285
\(22\) − 76.3607i − 0.740007i
\(23\) − 167.125i − 1.51513i −0.652762 0.757563i \(-0.726390\pi\)
0.652762 0.757563i \(-0.273610\pi\)
\(24\) 61.6656 0.524477
\(25\) 0 0
\(26\) 26.0000 0.196116
\(27\) 41.7508i 0.297590i
\(28\) − 71.5542i − 0.482945i
\(29\) −187.305 −1.19937 −0.599684 0.800237i \(-0.704707\pi\)
−0.599684 + 0.800237i \(0.704707\pi\)
\(30\) 0 0
\(31\) 91.7082 0.531332 0.265666 0.964065i \(-0.414408\pi\)
0.265666 + 0.964065i \(0.414408\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 294.302i − 1.55247i
\(34\) 139.554 0.703922
\(35\) 0 0
\(36\) 129.666 0.600304
\(37\) − 127.974i − 0.568615i −0.958733 0.284307i \(-0.908236\pi\)
0.958733 0.284307i \(-0.0917636\pi\)
\(38\) − 305.856i − 1.30569i
\(39\) 100.207 0.411433
\(40\) 0 0
\(41\) 239.941 0.913964 0.456982 0.889476i \(-0.348930\pi\)
0.456982 + 0.889476i \(0.348930\pi\)
\(42\) − 275.777i − 1.01317i
\(43\) 203.485i 0.721656i 0.932632 + 0.360828i \(0.117506\pi\)
−0.932632 + 0.360828i \(0.882494\pi\)
\(44\) −152.721 −0.523264
\(45\) 0 0
\(46\) −334.249 −1.07136
\(47\) − 333.495i − 1.03501i −0.855681 0.517503i \(-0.826862\pi\)
0.855681 0.517503i \(-0.173138\pi\)
\(48\) − 123.331i − 0.370861i
\(49\) 23.0000 0.0670554
\(50\) 0 0
\(51\) 537.856 1.47676
\(52\) − 52.0000i − 0.138675i
\(53\) 585.712i 1.51800i 0.651094 + 0.758998i \(0.274311\pi\)
−0.651094 + 0.758998i \(0.725689\pi\)
\(54\) 83.5016 0.210428
\(55\) 0 0
\(56\) −143.108 −0.341494
\(57\) − 1178.80i − 2.73923i
\(58\) 374.610i 0.848081i
\(59\) 568.895 1.25532 0.627660 0.778488i \(-0.284013\pi\)
0.627660 + 0.778488i \(0.284013\pi\)
\(60\) 0 0
\(61\) 278.912 0.585426 0.292713 0.956200i \(-0.405442\pi\)
0.292713 + 0.956200i \(0.405442\pi\)
\(62\) − 183.416i − 0.375708i
\(63\) − 579.882i − 1.15966i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −588.604 −1.09776
\(67\) − 617.698i − 1.12633i −0.826346 0.563163i \(-0.809584\pi\)
0.826346 0.563163i \(-0.190416\pi\)
\(68\) − 279.108i − 0.497748i
\(69\) −1288.23 −2.24760
\(70\) 0 0
\(71\) 319.656 0.534312 0.267156 0.963653i \(-0.413916\pi\)
0.267156 + 0.963653i \(0.413916\pi\)
\(72\) − 259.331i − 0.424479i
\(73\) 241.574i 0.387317i 0.981069 + 0.193658i \(0.0620354\pi\)
−0.981069 + 0.193658i \(0.937965\pi\)
\(74\) −255.947 −0.402071
\(75\) 0 0
\(76\) −611.712 −0.923266
\(77\) 682.991i 1.01083i
\(78\) − 200.413i − 0.290927i
\(79\) 60.4659 0.0861133 0.0430566 0.999073i \(-0.486290\pi\)
0.0430566 + 0.999073i \(0.486290\pi\)
\(80\) 0 0
\(81\) −553.420 −0.759149
\(82\) − 479.882i − 0.646270i
\(83\) 1204.87i 1.59339i 0.604382 + 0.796695i \(0.293420\pi\)
−0.604382 + 0.796695i \(0.706580\pi\)
\(84\) −551.554 −0.716423
\(85\) 0 0
\(86\) 406.971 0.510288
\(87\) 1443.78i 1.77920i
\(88\) 305.443i 0.370003i
\(89\) −557.437 −0.663912 −0.331956 0.943295i \(-0.607709\pi\)
−0.331956 + 0.943295i \(0.607709\pi\)
\(90\) 0 0
\(91\) −232.551 −0.267890
\(92\) 668.498i 0.757563i
\(93\) − 706.906i − 0.788201i
\(94\) −666.991 −0.731860
\(95\) 0 0
\(96\) −246.663 −0.262238
\(97\) − 241.895i − 0.253203i −0.991954 0.126602i \(-0.959593\pi\)
0.991954 0.126602i \(-0.0404069\pi\)
\(98\) − 46.0000i − 0.0474153i
\(99\) −1237.67 −1.25647
\(100\) 0 0
\(101\) −283.102 −0.278908 −0.139454 0.990229i \(-0.544535\pi\)
−0.139454 + 0.990229i \(0.544535\pi\)
\(102\) − 1075.71i − 1.04423i
\(103\) − 1932.07i − 1.84828i −0.382059 0.924138i \(-0.624785\pi\)
0.382059 0.924138i \(-0.375215\pi\)
\(104\) −104.000 −0.0980581
\(105\) 0 0
\(106\) 1171.42 1.07338
\(107\) − 468.547i − 0.423329i −0.977342 0.211664i \(-0.932112\pi\)
0.977342 0.211664i \(-0.0678884\pi\)
\(108\) − 167.003i − 0.148795i
\(109\) 1504.37 1.32195 0.660977 0.750406i \(-0.270142\pi\)
0.660977 + 0.750406i \(0.270142\pi\)
\(110\) 0 0
\(111\) −986.447 −0.843508
\(112\) 286.217i 0.241473i
\(113\) 1311.97i 1.09221i 0.837717 + 0.546105i \(0.183890\pi\)
−0.837717 + 0.546105i \(0.816110\pi\)
\(114\) −2357.60 −1.93693
\(115\) 0 0
\(116\) 749.220 0.599684
\(117\) − 421.413i − 0.332989i
\(118\) − 1137.79i − 0.887645i
\(119\) −1248.21 −0.961540
\(120\) 0 0
\(121\) 126.738 0.0952204
\(122\) − 557.823i − 0.413959i
\(123\) − 1849.52i − 1.35581i
\(124\) −366.833 −0.265666
\(125\) 0 0
\(126\) −1159.76 −0.820000
\(127\) − 1857.03i − 1.29752i −0.760994 0.648758i \(-0.775289\pi\)
0.760994 0.648758i \(-0.224711\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 1568.51 1.07054
\(130\) 0 0
\(131\) 2023.27 1.34942 0.674708 0.738084i \(-0.264269\pi\)
0.674708 + 0.738084i \(0.264269\pi\)
\(132\) 1177.21i 0.776233i
\(133\) 2735.66i 1.78355i
\(134\) −1235.40 −0.796433
\(135\) 0 0
\(136\) −558.217 −0.351961
\(137\) − 1447.75i − 0.902842i −0.892311 0.451421i \(-0.850917\pi\)
0.892311 0.451421i \(-0.149083\pi\)
\(138\) 2576.46i 1.58930i
\(139\) −1527.02 −0.931802 −0.465901 0.884837i \(-0.654270\pi\)
−0.465901 + 0.884837i \(0.654270\pi\)
\(140\) 0 0
\(141\) −2570.65 −1.53537
\(142\) − 639.311i − 0.377816i
\(143\) 496.344i 0.290255i
\(144\) −518.663 −0.300152
\(145\) 0 0
\(146\) 483.149 0.273874
\(147\) − 177.289i − 0.0994730i
\(148\) 511.895i 0.284307i
\(149\) −2307.18 −1.26854 −0.634268 0.773114i \(-0.718698\pi\)
−0.634268 + 0.773114i \(0.718698\pi\)
\(150\) 0 0
\(151\) 1093.09 0.589104 0.294552 0.955635i \(-0.404830\pi\)
0.294552 + 0.955635i \(0.404830\pi\)
\(152\) 1223.42i 0.652847i
\(153\) − 2261.92i − 1.19520i
\(154\) 1365.98 0.714766
\(155\) 0 0
\(156\) −400.827 −0.205717
\(157\) − 348.046i − 0.176924i −0.996080 0.0884622i \(-0.971805\pi\)
0.996080 0.0884622i \(-0.0281952\pi\)
\(158\) − 120.932i − 0.0608913i
\(159\) 4514.79 2.25186
\(160\) 0 0
\(161\) 2989.62 1.46345
\(162\) 1106.84i 0.536799i
\(163\) − 2388.98i − 1.14797i −0.818865 0.573986i \(-0.805396\pi\)
0.818865 0.573986i \(-0.194604\pi\)
\(164\) −959.765 −0.456982
\(165\) 0 0
\(166\) 2409.73 1.12670
\(167\) 4264.95i 1.97624i 0.153695 + 0.988118i \(0.450883\pi\)
−0.153695 + 0.988118i \(0.549117\pi\)
\(168\) 1103.11i 0.506587i
\(169\) −169.000 −0.0769231
\(170\) 0 0
\(171\) −4957.38 −2.21696
\(172\) − 813.941i − 0.360828i
\(173\) − 2871.68i − 1.26202i −0.775774 0.631011i \(-0.782640\pi\)
0.775774 0.631011i \(-0.217360\pi\)
\(174\) 2887.57 1.25808
\(175\) 0 0
\(176\) 610.885 0.261632
\(177\) − 4385.16i − 1.86220i
\(178\) 1114.87i 0.469457i
\(179\) −982.845 −0.410398 −0.205199 0.978720i \(-0.565784\pi\)
−0.205199 + 0.978720i \(0.565784\pi\)
\(180\) 0 0
\(181\) 3342.85 1.37277 0.686386 0.727237i \(-0.259196\pi\)
0.686386 + 0.727237i \(0.259196\pi\)
\(182\) 465.102i 0.189427i
\(183\) − 2149.91i − 0.868447i
\(184\) 1337.00 0.535678
\(185\) 0 0
\(186\) −1413.81 −0.557342
\(187\) 2664.11i 1.04181i
\(188\) 1333.98i 0.517503i
\(189\) −746.861 −0.287440
\(190\) 0 0
\(191\) 16.1052 0.00610123 0.00305061 0.999995i \(-0.499029\pi\)
0.00305061 + 0.999995i \(0.499029\pi\)
\(192\) 493.325i 0.185431i
\(193\) 529.003i 0.197298i 0.995122 + 0.0986489i \(0.0314521\pi\)
−0.995122 + 0.0986489i \(0.968548\pi\)
\(194\) −483.790 −0.179042
\(195\) 0 0
\(196\) −92.0000 −0.0335277
\(197\) − 4716.72i − 1.70585i −0.522034 0.852924i \(-0.674827\pi\)
0.522034 0.852924i \(-0.325173\pi\)
\(198\) 2475.34i 0.888458i
\(199\) 4072.65 1.45077 0.725383 0.688346i \(-0.241663\pi\)
0.725383 + 0.688346i \(0.241663\pi\)
\(200\) 0 0
\(201\) −4761.34 −1.67084
\(202\) 566.204i 0.197218i
\(203\) − 3350.61i − 1.15846i
\(204\) −2151.42 −0.738381
\(205\) 0 0
\(206\) −3864.14 −1.30693
\(207\) 5417.58i 1.81907i
\(208\) 208.000i 0.0693375i
\(209\) 5838.84 1.93245
\(210\) 0 0
\(211\) −4689.58 −1.53006 −0.765032 0.643992i \(-0.777277\pi\)
−0.765032 + 0.643992i \(0.777277\pi\)
\(212\) − 2342.85i − 0.758998i
\(213\) − 2463.97i − 0.792622i
\(214\) −937.094 −0.299339
\(215\) 0 0
\(216\) −334.006 −0.105214
\(217\) 1640.53i 0.513208i
\(218\) − 3008.75i − 0.934762i
\(219\) 1862.10 0.574563
\(220\) 0 0
\(221\) −907.102 −0.276101
\(222\) 1972.89i 0.596451i
\(223\) − 2158.45i − 0.648164i −0.946029 0.324082i \(-0.894945\pi\)
0.946029 0.324082i \(-0.105055\pi\)
\(224\) 572.433 0.170747
\(225\) 0 0
\(226\) 2623.94 0.772309
\(227\) 4362.74i 1.27562i 0.770195 + 0.637808i \(0.220159\pi\)
−0.770195 + 0.637808i \(0.779841\pi\)
\(228\) 4715.20i 1.36961i
\(229\) 1071.83 0.309296 0.154648 0.987970i \(-0.450576\pi\)
0.154648 + 0.987970i \(0.450576\pi\)
\(230\) 0 0
\(231\) 5264.63 1.49951
\(232\) − 1498.44i − 0.424040i
\(233\) − 1472.88i − 0.414128i −0.978327 0.207064i \(-0.933609\pi\)
0.978327 0.207064i \(-0.0663908\pi\)
\(234\) −842.827 −0.235459
\(235\) 0 0
\(236\) −2275.58 −0.627660
\(237\) − 466.084i − 0.127744i
\(238\) 2496.42i 0.679912i
\(239\) 2380.83 0.644363 0.322182 0.946678i \(-0.395584\pi\)
0.322182 + 0.946678i \(0.395584\pi\)
\(240\) 0 0
\(241\) 4376.77 1.16984 0.584922 0.811090i \(-0.301125\pi\)
0.584922 + 0.811090i \(0.301125\pi\)
\(242\) − 253.477i − 0.0673310i
\(243\) 5393.14i 1.42375i
\(244\) −1115.65 −0.292713
\(245\) 0 0
\(246\) −3699.03 −0.958706
\(247\) 1988.06i 0.512136i
\(248\) 733.666i 0.187854i
\(249\) 9287.36 2.36370
\(250\) 0 0
\(251\) 1087.80 0.273551 0.136776 0.990602i \(-0.456326\pi\)
0.136776 + 0.990602i \(0.456326\pi\)
\(252\) 2319.53i 0.579828i
\(253\) − 6380.87i − 1.58562i
\(254\) −3714.06 −0.917483
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 5112.49i − 1.24089i −0.784251 0.620444i \(-0.786953\pi\)
0.784251 0.620444i \(-0.213047\pi\)
\(258\) − 3137.01i − 0.756984i
\(259\) 2289.26 0.549220
\(260\) 0 0
\(261\) 6071.75 1.43997
\(262\) − 4046.53i − 0.954182i
\(263\) 3790.88i 0.888805i 0.895827 + 0.444402i \(0.146584\pi\)
−0.895827 + 0.444402i \(0.853416\pi\)
\(264\) 2354.41 0.548880
\(265\) 0 0
\(266\) 5471.32 1.26116
\(267\) 4296.83i 0.984876i
\(268\) 2470.79i 0.563163i
\(269\) −3523.30 −0.798585 −0.399293 0.916824i \(-0.630744\pi\)
−0.399293 + 0.916824i \(0.630744\pi\)
\(270\) 0 0
\(271\) 4254.59 0.953682 0.476841 0.878990i \(-0.341782\pi\)
0.476841 + 0.878990i \(0.341782\pi\)
\(272\) 1116.43i 0.248874i
\(273\) 1792.55i 0.397400i
\(274\) −2895.49 −0.638405
\(275\) 0 0
\(276\) 5152.92 1.12380
\(277\) − 1312.77i − 0.284754i −0.989813 0.142377i \(-0.954526\pi\)
0.989813 0.142377i \(-0.0454745\pi\)
\(278\) 3054.05i 0.658883i
\(279\) −2972.85 −0.637921
\(280\) 0 0
\(281\) 3112.38 0.660743 0.330372 0.943851i \(-0.392826\pi\)
0.330372 + 0.943851i \(0.392826\pi\)
\(282\) 5141.30i 1.08567i
\(283\) 3983.53i 0.836736i 0.908278 + 0.418368i \(0.137398\pi\)
−0.908278 + 0.418368i \(0.862602\pi\)
\(284\) −1278.62 −0.267156
\(285\) 0 0
\(286\) 992.689 0.205241
\(287\) 4292.20i 0.882789i
\(288\) 1037.33i 0.212239i
\(289\) 44.1580 0.00898800
\(290\) 0 0
\(291\) −1864.57 −0.375613
\(292\) − 966.297i − 0.193658i
\(293\) − 6710.42i − 1.33798i −0.743273 0.668988i \(-0.766728\pi\)
0.743273 0.668988i \(-0.233272\pi\)
\(294\) −354.577 −0.0703380
\(295\) 0 0
\(296\) 1023.79 0.201036
\(297\) 1594.06i 0.311437i
\(298\) 4614.37i 0.896990i
\(299\) 2172.62 0.420220
\(300\) 0 0
\(301\) −3640.06 −0.697041
\(302\) − 2186.19i − 0.416559i
\(303\) 2182.21i 0.413745i
\(304\) 2446.85 0.461633
\(305\) 0 0
\(306\) −4523.85 −0.845134
\(307\) 3883.81i 0.722023i 0.932561 + 0.361011i \(0.117568\pi\)
−0.932561 + 0.361011i \(0.882432\pi\)
\(308\) − 2731.96i − 0.505416i
\(309\) −14892.8 −2.74181
\(310\) 0 0
\(311\) −9188.01 −1.67525 −0.837627 0.546242i \(-0.816058\pi\)
−0.837627 + 0.546242i \(0.816058\pi\)
\(312\) 801.653i 0.145464i
\(313\) 7475.45i 1.34996i 0.737836 + 0.674980i \(0.235848\pi\)
−0.737836 + 0.674980i \(0.764152\pi\)
\(314\) −696.093 −0.125104
\(315\) 0 0
\(316\) −241.864 −0.0430566
\(317\) 4668.43i 0.827145i 0.910471 + 0.413572i \(0.135719\pi\)
−0.910471 + 0.413572i \(0.864281\pi\)
\(318\) − 9029.58i − 1.59231i
\(319\) −7151.37 −1.25517
\(320\) 0 0
\(321\) −3611.66 −0.627985
\(322\) − 5979.23i − 1.03481i
\(323\) 10670.9i 1.83821i
\(324\) 2213.68 0.379574
\(325\) 0 0
\(326\) −4777.96 −0.811738
\(327\) − 11596.0i − 1.96104i
\(328\) 1919.53i 0.323135i
\(329\) 5965.75 0.999703
\(330\) 0 0
\(331\) 1544.67 0.256503 0.128252 0.991742i \(-0.459063\pi\)
0.128252 + 0.991742i \(0.459063\pi\)
\(332\) − 4819.47i − 0.796695i
\(333\) 4148.45i 0.682683i
\(334\) 8529.89 1.39741
\(335\) 0 0
\(336\) 2206.22 0.358211
\(337\) 3788.99i 0.612461i 0.951957 + 0.306231i \(0.0990679\pi\)
−0.951957 + 0.306231i \(0.900932\pi\)
\(338\) 338.000i 0.0543928i
\(339\) 10112.9 1.62023
\(340\) 0 0
\(341\) 3501.45 0.556053
\(342\) 9914.75i 1.56763i
\(343\) 6547.21i 1.03066i
\(344\) −1627.88 −0.255144
\(345\) 0 0
\(346\) −5743.36 −0.892385
\(347\) 4545.59i 0.703227i 0.936145 + 0.351614i \(0.114367\pi\)
−0.936145 + 0.351614i \(0.885633\pi\)
\(348\) − 5775.14i − 0.889598i
\(349\) −1545.04 −0.236975 −0.118487 0.992956i \(-0.537805\pi\)
−0.118487 + 0.992956i \(0.537805\pi\)
\(350\) 0 0
\(351\) −542.760 −0.0825367
\(352\) − 1221.77i − 0.185002i
\(353\) 4271.28i 0.644015i 0.946737 + 0.322008i \(0.104358\pi\)
−0.946737 + 0.322008i \(0.895642\pi\)
\(354\) −8770.32 −1.31677
\(355\) 0 0
\(356\) 2229.75 0.331956
\(357\) 9621.46i 1.42639i
\(358\) 1965.69i 0.290195i
\(359\) −1106.68 −0.162697 −0.0813484 0.996686i \(-0.525923\pi\)
−0.0813484 + 0.996686i \(0.525923\pi\)
\(360\) 0 0
\(361\) 16528.0 2.40968
\(362\) − 6685.69i − 0.970697i
\(363\) − 976.925i − 0.141254i
\(364\) 930.204 0.133945
\(365\) 0 0
\(366\) −4299.82 −0.614085
\(367\) 83.1275i 0.0118235i 0.999983 + 0.00591175i \(0.00188178\pi\)
−0.999983 + 0.00591175i \(0.998118\pi\)
\(368\) − 2673.99i − 0.378781i
\(369\) −7778.03 −1.09731
\(370\) 0 0
\(371\) −10477.5 −1.46622
\(372\) 2827.62i 0.394100i
\(373\) − 2509.17i − 0.348310i −0.984718 0.174155i \(-0.944281\pi\)
0.984718 0.174155i \(-0.0557194\pi\)
\(374\) 5328.23 0.736674
\(375\) 0 0
\(376\) 2667.96 0.365930
\(377\) − 2434.96i − 0.332645i
\(378\) 1493.72i 0.203251i
\(379\) −5959.76 −0.807738 −0.403869 0.914817i \(-0.632335\pi\)
−0.403869 + 0.914817i \(0.632335\pi\)
\(380\) 0 0
\(381\) −14314.4 −1.92479
\(382\) − 32.2105i − 0.00431422i
\(383\) 2191.58i 0.292388i 0.989256 + 0.146194i \(0.0467023\pi\)
−0.989256 + 0.146194i \(0.953298\pi\)
\(384\) 986.650 0.131119
\(385\) 0 0
\(386\) 1058.01 0.139511
\(387\) − 6596.26i − 0.866426i
\(388\) 967.579i 0.126602i
\(389\) 4157.52 0.541889 0.270944 0.962595i \(-0.412664\pi\)
0.270944 + 0.962595i \(0.412664\pi\)
\(390\) 0 0
\(391\) 11661.5 1.50830
\(392\) 184.000i 0.0237077i
\(393\) − 15595.7i − 2.00178i
\(394\) −9433.44 −1.20622
\(395\) 0 0
\(396\) 4950.68 0.628235
\(397\) − 13622.1i − 1.72210i −0.508524 0.861048i \(-0.669809\pi\)
0.508524 0.861048i \(-0.330191\pi\)
\(398\) − 8145.29i − 1.02585i
\(399\) 21087.0 2.64579
\(400\) 0 0
\(401\) −1679.41 −0.209142 −0.104571 0.994517i \(-0.533347\pi\)
−0.104571 + 0.994517i \(0.533347\pi\)
\(402\) 9522.69i 1.18146i
\(403\) 1192.21i 0.147365i
\(404\) 1132.41 0.139454
\(405\) 0 0
\(406\) −6701.23 −0.819153
\(407\) − 4886.08i − 0.595071i
\(408\) 4302.85i 0.522115i
\(409\) 15460.6 1.86914 0.934569 0.355781i \(-0.115785\pi\)
0.934569 + 0.355781i \(0.115785\pi\)
\(410\) 0 0
\(411\) −11159.5 −1.33932
\(412\) 7728.28i 0.924138i
\(413\) 10176.7i 1.21250i
\(414\) 10835.2 1.28628
\(415\) 0 0
\(416\) 416.000 0.0490290
\(417\) 11770.6i 1.38228i
\(418\) − 11677.7i − 1.36645i
\(419\) 13864.6 1.61654 0.808271 0.588811i \(-0.200404\pi\)
0.808271 + 0.588811i \(0.200404\pi\)
\(420\) 0 0
\(421\) −3626.36 −0.419806 −0.209903 0.977722i \(-0.567315\pi\)
−0.209903 + 0.977722i \(0.567315\pi\)
\(422\) 9379.15i 1.08192i
\(423\) 10810.7i 1.24264i
\(424\) −4685.70 −0.536692
\(425\) 0 0
\(426\) −4927.94 −0.560468
\(427\) 4989.33i 0.565458i
\(428\) 1874.19i 0.211664i
\(429\) 3825.92 0.430577
\(430\) 0 0
\(431\) 13189.5 1.47405 0.737023 0.675868i \(-0.236231\pi\)
0.737023 + 0.675868i \(0.236231\pi\)
\(432\) 668.012i 0.0743976i
\(433\) 3061.68i 0.339804i 0.985461 + 0.169902i \(0.0543451\pi\)
−0.985461 + 0.169902i \(0.945655\pi\)
\(434\) 3281.05 0.362893
\(435\) 0 0
\(436\) −6017.50 −0.660977
\(437\) − 25558.0i − 2.79773i
\(438\) − 3724.21i − 0.406277i
\(439\) −12751.4 −1.38632 −0.693158 0.720786i \(-0.743781\pi\)
−0.693158 + 0.720786i \(0.743781\pi\)
\(440\) 0 0
\(441\) −745.577 −0.0805072
\(442\) 1814.20i 0.195233i
\(443\) 6375.24i 0.683740i 0.939747 + 0.341870i \(0.111060\pi\)
−0.939747 + 0.341870i \(0.888940\pi\)
\(444\) 3945.79 0.421754
\(445\) 0 0
\(446\) −4316.90 −0.458321
\(447\) 17784.2i 1.88180i
\(448\) − 1144.87i − 0.120736i
\(449\) −14821.9 −1.55789 −0.778943 0.627095i \(-0.784244\pi\)
−0.778943 + 0.627095i \(0.784244\pi\)
\(450\) 0 0
\(451\) 9161.04 0.956488
\(452\) − 5247.88i − 0.546105i
\(453\) − 8425.79i − 0.873903i
\(454\) 8725.47 0.901997
\(455\) 0 0
\(456\) 9430.40 0.968463
\(457\) 9791.53i 1.00225i 0.865375 + 0.501125i \(0.167080\pi\)
−0.865375 + 0.501125i \(0.832920\pi\)
\(458\) − 2143.67i − 0.218705i
\(459\) −2913.25 −0.296250
\(460\) 0 0
\(461\) 7532.58 0.761013 0.380507 0.924778i \(-0.375750\pi\)
0.380507 + 0.924778i \(0.375750\pi\)
\(462\) − 10529.3i − 1.06032i
\(463\) − 2045.90i − 0.205359i −0.994715 0.102679i \(-0.967258\pi\)
0.994715 0.102679i \(-0.0327415\pi\)
\(464\) −2996.88 −0.299842
\(465\) 0 0
\(466\) −2945.77 −0.292832
\(467\) 17289.0i 1.71315i 0.516023 + 0.856574i \(0.327412\pi\)
−0.516023 + 0.856574i \(0.672588\pi\)
\(468\) 1685.65i 0.166494i
\(469\) 11049.7 1.08791
\(470\) 0 0
\(471\) −2682.81 −0.262458
\(472\) 4551.16i 0.443823i
\(473\) 7769.14i 0.755233i
\(474\) −932.167 −0.0903288
\(475\) 0 0
\(476\) 4992.84 0.480770
\(477\) − 18986.7i − 1.82252i
\(478\) − 4761.65i − 0.455634i
\(479\) −14488.7 −1.38206 −0.691028 0.722828i \(-0.742842\pi\)
−0.691028 + 0.722828i \(0.742842\pi\)
\(480\) 0 0
\(481\) 1663.66 0.157705
\(482\) − 8753.54i − 0.827205i
\(483\) − 23044.6i − 2.17094i
\(484\) −506.953 −0.0476102
\(485\) 0 0
\(486\) 10786.3 1.00674
\(487\) − 3451.25i − 0.321132i −0.987025 0.160566i \(-0.948668\pi\)
0.987025 0.160566i \(-0.0513319\pi\)
\(488\) 2231.29i 0.206979i
\(489\) −18414.7 −1.70295
\(490\) 0 0
\(491\) −20328.9 −1.86849 −0.934246 0.356630i \(-0.883926\pi\)
−0.934246 + 0.356630i \(0.883926\pi\)
\(492\) 7398.06i 0.677907i
\(493\) − 13069.6i − 1.19397i
\(494\) 3976.13 0.362135
\(495\) 0 0
\(496\) 1467.33 0.132833
\(497\) 5718.17i 0.516087i
\(498\) − 18574.7i − 1.67139i
\(499\) 4756.36 0.426701 0.213351 0.976976i \(-0.431562\pi\)
0.213351 + 0.976976i \(0.431562\pi\)
\(500\) 0 0
\(501\) 32875.1 2.93164
\(502\) − 2175.60i − 0.193430i
\(503\) − 18875.2i − 1.67317i −0.547840 0.836583i \(-0.684550\pi\)
0.547840 0.836583i \(-0.315450\pi\)
\(504\) 4639.06 0.410000
\(505\) 0 0
\(506\) −12761.7 −1.12120
\(507\) 1302.69i 0.114111i
\(508\) 7428.11i 0.648758i
\(509\) −13108.3 −1.14148 −0.570740 0.821131i \(-0.693343\pi\)
−0.570740 + 0.821131i \(0.693343\pi\)
\(510\) 0 0
\(511\) −4321.41 −0.374106
\(512\) − 512.000i − 0.0441942i
\(513\) 6384.86i 0.549510i
\(514\) −10225.0 −0.877440
\(515\) 0 0
\(516\) −6274.02 −0.535268
\(517\) − 12733.0i − 1.08316i
\(518\) − 4578.53i − 0.388357i
\(519\) −22135.5 −1.87214
\(520\) 0 0
\(521\) −1065.58 −0.0896047 −0.0448023 0.998996i \(-0.514266\pi\)
−0.0448023 + 0.998996i \(0.514266\pi\)
\(522\) − 12143.5i − 1.01821i
\(523\) − 11752.4i − 0.982591i −0.870993 0.491296i \(-0.836524\pi\)
0.870993 0.491296i \(-0.163476\pi\)
\(524\) −8093.06 −0.674708
\(525\) 0 0
\(526\) 7581.76 0.628480
\(527\) 6399.13i 0.528938i
\(528\) − 4708.83i − 0.388116i
\(529\) −15763.6 −1.29561
\(530\) 0 0
\(531\) −18441.5 −1.50715
\(532\) − 10942.6i − 0.891774i
\(533\) 3119.24i 0.253488i
\(534\) 8593.67 0.696413
\(535\) 0 0
\(536\) 4941.59 0.398216
\(537\) 7575.97i 0.608803i
\(538\) 7046.60i 0.564685i
\(539\) 878.148 0.0701753
\(540\) 0 0
\(541\) −11910.5 −0.946532 −0.473266 0.880920i \(-0.656925\pi\)
−0.473266 + 0.880920i \(0.656925\pi\)
\(542\) − 8509.17i − 0.674355i
\(543\) − 25767.3i − 2.03643i
\(544\) 2232.87 0.175980
\(545\) 0 0
\(546\) 3585.10 0.281004
\(547\) − 22283.2i − 1.74180i −0.491464 0.870898i \(-0.663538\pi\)
0.491464 0.870898i \(-0.336462\pi\)
\(548\) 5790.98i 0.451421i
\(549\) −9041.32 −0.702867
\(550\) 0 0
\(551\) −28644.2 −2.21467
\(552\) − 10305.8i − 0.794648i
\(553\) 1081.65i 0.0831760i
\(554\) −2625.54 −0.201351
\(555\) 0 0
\(556\) 6108.09 0.465901
\(557\) 8012.19i 0.609493i 0.952434 + 0.304746i \(0.0985717\pi\)
−0.952434 + 0.304746i \(0.901428\pi\)
\(558\) 5945.70i 0.451078i
\(559\) −2645.31 −0.200151
\(560\) 0 0
\(561\) 20535.5 1.54547
\(562\) − 6224.76i − 0.467216i
\(563\) 1086.28i 0.0813167i 0.999173 + 0.0406583i \(0.0129455\pi\)
−0.999173 + 0.0406583i \(0.987054\pi\)
\(564\) 10282.6 0.767687
\(565\) 0 0
\(566\) 7967.06 0.591661
\(567\) − 9899.87i − 0.733255i
\(568\) 2557.24i 0.188908i
\(569\) −1084.26 −0.0798850 −0.0399425 0.999202i \(-0.512717\pi\)
−0.0399425 + 0.999202i \(0.512717\pi\)
\(570\) 0 0
\(571\) 14671.2 1.07525 0.537627 0.843183i \(-0.319321\pi\)
0.537627 + 0.843183i \(0.319321\pi\)
\(572\) − 1985.38i − 0.145127i
\(573\) − 124.143i − 0.00905083i
\(574\) 8584.40 0.624226
\(575\) 0 0
\(576\) 2074.65 0.150076
\(577\) 25311.7i 1.82624i 0.407696 + 0.913118i \(0.366332\pi\)
−0.407696 + 0.913118i \(0.633668\pi\)
\(578\) − 88.3161i − 0.00635548i
\(579\) 4077.66 0.292680
\(580\) 0 0
\(581\) −21553.3 −1.53904
\(582\) 3729.15i 0.265598i
\(583\) 22362.7i 1.58862i
\(584\) −1932.59 −0.136937
\(585\) 0 0
\(586\) −13420.8 −0.946092
\(587\) − 11336.2i − 0.797093i −0.917148 0.398546i \(-0.869515\pi\)
0.917148 0.398546i \(-0.130485\pi\)
\(588\) 709.155i 0.0497365i
\(589\) 14024.8 0.981120
\(590\) 0 0
\(591\) −36357.4 −2.53053
\(592\) − 2047.58i − 0.142154i
\(593\) 9575.02i 0.663067i 0.943443 + 0.331534i \(0.107566\pi\)
−0.943443 + 0.331534i \(0.892434\pi\)
\(594\) 3188.12 0.220219
\(595\) 0 0
\(596\) 9228.73 0.634268
\(597\) − 31392.8i − 2.15213i
\(598\) − 4345.24i − 0.297141i
\(599\) −15495.6 −1.05698 −0.528491 0.848939i \(-0.677242\pi\)
−0.528491 + 0.848939i \(0.677242\pi\)
\(600\) 0 0
\(601\) 11100.9 0.753433 0.376717 0.926329i \(-0.377053\pi\)
0.376717 + 0.926329i \(0.377053\pi\)
\(602\) 7280.11i 0.492882i
\(603\) 20023.6i 1.35228i
\(604\) −4372.37 −0.294552
\(605\) 0 0
\(606\) 4364.42 0.292562
\(607\) 25928.7i 1.73379i 0.498487 + 0.866897i \(0.333889\pi\)
−0.498487 + 0.866897i \(0.666111\pi\)
\(608\) − 4893.70i − 0.326424i
\(609\) −25827.2 −1.71851
\(610\) 0 0
\(611\) 4335.44 0.287059
\(612\) 9047.69i 0.597600i
\(613\) 14208.7i 0.936188i 0.883679 + 0.468094i \(0.155059\pi\)
−0.883679 + 0.468094i \(0.844941\pi\)
\(614\) 7767.63 0.510547
\(615\) 0 0
\(616\) −5463.93 −0.357383
\(617\) − 21425.7i − 1.39800i −0.715121 0.699000i \(-0.753629\pi\)
0.715121 0.699000i \(-0.246371\pi\)
\(618\) 29785.6i 1.93876i
\(619\) −22816.0 −1.48151 −0.740755 0.671776i \(-0.765532\pi\)
−0.740755 + 0.671776i \(0.765532\pi\)
\(620\) 0 0
\(621\) 6977.58 0.450887
\(622\) 18376.0i 1.18458i
\(623\) − 9971.73i − 0.641266i
\(624\) 1603.31 0.102858
\(625\) 0 0
\(626\) 14950.9 0.954565
\(627\) − 45007.0i − 2.86668i
\(628\) 1392.19i 0.0884622i
\(629\) 8929.63 0.566054
\(630\) 0 0
\(631\) 27919.5 1.76142 0.880710 0.473656i \(-0.157066\pi\)
0.880710 + 0.473656i \(0.157066\pi\)
\(632\) 483.727i 0.0304456i
\(633\) 36148.2i 2.26977i
\(634\) 9336.85 0.584880
\(635\) 0 0
\(636\) −18059.2 −1.12593
\(637\) 299.000i 0.0185978i
\(638\) 14302.7i 0.887540i
\(639\) −10362.1 −0.641499
\(640\) 0 0
\(641\) −27914.7 −1.72007 −0.860033 0.510238i \(-0.829557\pi\)
−0.860033 + 0.510238i \(0.829557\pi\)
\(642\) 7223.32i 0.444052i
\(643\) 25491.8i 1.56345i 0.623622 + 0.781726i \(0.285661\pi\)
−0.623622 + 0.781726i \(0.714339\pi\)
\(644\) −11958.5 −0.731723
\(645\) 0 0
\(646\) 21341.7 1.29981
\(647\) − 30447.3i − 1.85009i −0.379857 0.925045i \(-0.624027\pi\)
0.379857 0.925045i \(-0.375973\pi\)
\(648\) − 4427.36i − 0.268400i
\(649\) 21720.6 1.31373
\(650\) 0 0
\(651\) 12645.5 0.761316
\(652\) 9555.92i 0.573986i
\(653\) − 14357.5i − 0.860418i −0.902729 0.430209i \(-0.858440\pi\)
0.902729 0.430209i \(-0.141560\pi\)
\(654\) −23192.1 −1.38667
\(655\) 0 0
\(656\) 3839.06 0.228491
\(657\) − 7830.97i − 0.465016i
\(658\) − 11931.5i − 0.706897i
\(659\) 7815.23 0.461970 0.230985 0.972957i \(-0.425805\pi\)
0.230985 + 0.972957i \(0.425805\pi\)
\(660\) 0 0
\(661\) −16755.3 −0.985938 −0.492969 0.870047i \(-0.664088\pi\)
−0.492969 + 0.870047i \(0.664088\pi\)
\(662\) − 3089.34i − 0.181375i
\(663\) 6992.13i 0.409580i
\(664\) −9638.93 −0.563348
\(665\) 0 0
\(666\) 8296.89 0.482730
\(667\) 31303.3i 1.81719i
\(668\) − 17059.8i − 0.988118i
\(669\) −16637.8 −0.961516
\(670\) 0 0
\(671\) 10648.9 0.612665
\(672\) − 4412.43i − 0.253294i
\(673\) 15704.8i 0.899517i 0.893150 + 0.449758i \(0.148490\pi\)
−0.893150 + 0.449758i \(0.851510\pi\)
\(674\) 7577.98 0.433076
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) 12623.1i 0.716608i 0.933605 + 0.358304i \(0.116645\pi\)
−0.933605 + 0.358304i \(0.883355\pi\)
\(678\) − 20225.8i − 1.14568i
\(679\) 4327.14 0.244566
\(680\) 0 0
\(681\) 33628.9 1.89231
\(682\) − 7002.90i − 0.393189i
\(683\) − 6822.45i − 0.382216i −0.981569 0.191108i \(-0.938792\pi\)
0.981569 0.191108i \(-0.0612081\pi\)
\(684\) 19829.5 1.10848
\(685\) 0 0
\(686\) 13094.4 0.728786
\(687\) − 8261.91i − 0.458823i
\(688\) 3255.76i 0.180414i
\(689\) −7614.26 −0.421016
\(690\) 0 0
\(691\) −26024.5 −1.43273 −0.716365 0.697725i \(-0.754196\pi\)
−0.716365 + 0.697725i \(0.754196\pi\)
\(692\) 11486.7i 0.631011i
\(693\) − 22140.1i − 1.21361i
\(694\) 9091.17 0.497257
\(695\) 0 0
\(696\) −11550.3 −0.629040
\(697\) 16742.4i 0.909847i
\(698\) 3090.09i 0.167567i
\(699\) −11353.3 −0.614335
\(700\) 0 0
\(701\) −3921.15 −0.211269 −0.105635 0.994405i \(-0.533687\pi\)
−0.105635 + 0.994405i \(0.533687\pi\)
\(702\) 1085.52i 0.0583623i
\(703\) − 19570.8i − 1.04996i
\(704\) −2443.54 −0.130816
\(705\) 0 0
\(706\) 8542.56 0.455387
\(707\) − 5064.29i − 0.269395i
\(708\) 17540.6i 0.931099i
\(709\) 28145.7 1.49088 0.745440 0.666572i \(-0.232239\pi\)
0.745440 + 0.666572i \(0.232239\pi\)
\(710\) 0 0
\(711\) −1960.09 −0.103388
\(712\) − 4459.49i − 0.234728i
\(713\) − 15326.7i − 0.805034i
\(714\) 19242.9 1.00861
\(715\) 0 0
\(716\) 3931.38 0.205199
\(717\) − 18351.9i − 0.955877i
\(718\) 2213.35i 0.115044i
\(719\) −24216.6 −1.25609 −0.628043 0.778179i \(-0.716144\pi\)
−0.628043 + 0.778179i \(0.716144\pi\)
\(720\) 0 0
\(721\) 34561.9 1.78523
\(722\) − 33056.0i − 1.70390i
\(723\) − 33737.0i − 1.73540i
\(724\) −13371.4 −0.686386
\(725\) 0 0
\(726\) −1953.85 −0.0998818
\(727\) − 12683.1i − 0.647027i −0.946224 0.323513i \(-0.895136\pi\)
0.946224 0.323513i \(-0.104864\pi\)
\(728\) − 1860.41i − 0.0947134i
\(729\) 26629.1 1.35290
\(730\) 0 0
\(731\) −14198.6 −0.718406
\(732\) 8599.63i 0.434224i
\(733\) 19816.4i 0.998546i 0.866445 + 0.499273i \(0.166400\pi\)
−0.866445 + 0.499273i \(0.833600\pi\)
\(734\) 166.255 0.00836047
\(735\) 0 0
\(736\) −5347.99 −0.267839
\(737\) − 23583.9i − 1.17873i
\(738\) 15556.1i 0.775917i
\(739\) −19586.7 −0.974976 −0.487488 0.873130i \(-0.662087\pi\)
−0.487488 + 0.873130i \(0.662087\pi\)
\(740\) 0 0
\(741\) 15324.4 0.759725
\(742\) 20955.1i 1.03677i
\(743\) − 12246.4i − 0.604680i −0.953200 0.302340i \(-0.902232\pi\)
0.953200 0.302340i \(-0.0977678\pi\)
\(744\) 5655.24 0.278671
\(745\) 0 0
\(746\) −5018.33 −0.246293
\(747\) − 39057.5i − 1.91304i
\(748\) − 10656.5i − 0.520907i
\(749\) 8381.63 0.408889
\(750\) 0 0
\(751\) −6566.74 −0.319073 −0.159537 0.987192i \(-0.551000\pi\)
−0.159537 + 0.987192i \(0.551000\pi\)
\(752\) − 5335.93i − 0.258752i
\(753\) − 8384.99i − 0.405798i
\(754\) −4869.93 −0.235215
\(755\) 0 0
\(756\) 2987.44 0.143720
\(757\) 7608.85i 0.365321i 0.983176 + 0.182661i \(0.0584710\pi\)
−0.983176 + 0.182661i \(0.941529\pi\)
\(758\) 11919.5i 0.571157i
\(759\) −49185.1 −2.35218
\(760\) 0 0
\(761\) 5763.27 0.274532 0.137266 0.990534i \(-0.456169\pi\)
0.137266 + 0.990534i \(0.456169\pi\)
\(762\) 28628.7i 1.36104i
\(763\) 26911.1i 1.27686i
\(764\) −64.4210 −0.00305061
\(765\) 0 0
\(766\) 4383.16 0.206749
\(767\) 7395.64i 0.348163i
\(768\) − 1973.30i − 0.0927153i
\(769\) 11841.4 0.555282 0.277641 0.960685i \(-0.410447\pi\)
0.277641 + 0.960685i \(0.410447\pi\)
\(770\) 0 0
\(771\) −39408.1 −1.84079
\(772\) − 2116.01i − 0.0986489i
\(773\) 5247.85i 0.244181i 0.992519 + 0.122091i \(0.0389598\pi\)
−0.992519 + 0.122091i \(0.961040\pi\)
\(774\) −13192.5 −0.612656
\(775\) 0 0
\(776\) 1935.16 0.0895208
\(777\) − 17646.1i − 0.814737i
\(778\) − 8315.05i − 0.383173i
\(779\) 36693.7 1.68766
\(780\) 0 0
\(781\) 12204.6 0.559172
\(782\) − 23322.9i − 1.06653i
\(783\) − 7820.13i − 0.356920i
\(784\) 368.000 0.0167638
\(785\) 0 0
\(786\) −31191.5 −1.41548
\(787\) 33333.8i 1.50981i 0.655835 + 0.754905i \(0.272317\pi\)
−0.655835 + 0.754905i \(0.727683\pi\)
\(788\) 18866.9i 0.852924i
\(789\) 29220.9 1.31849
\(790\) 0 0
\(791\) −23469.2 −1.05495
\(792\) − 9901.36i − 0.444229i
\(793\) 3625.85i 0.162368i
\(794\) −27244.1 −1.21771
\(795\) 0 0
\(796\) −16290.6 −0.725383
\(797\) 6999.18i 0.311071i 0.987830 + 0.155535i \(0.0497103\pi\)
−0.987830 + 0.155535i \(0.950290\pi\)
\(798\) − 42174.0i − 1.87086i
\(799\) 23270.3 1.03034
\(800\) 0 0
\(801\) 18070.1 0.797098
\(802\) 3358.82i 0.147886i
\(803\) 9223.39i 0.405338i
\(804\) 19045.4 0.835421
\(805\) 0 0
\(806\) 2384.41 0.104203
\(807\) 27158.3i 1.18466i
\(808\) − 2264.82i − 0.0986089i
\(809\) −10977.3 −0.477058 −0.238529 0.971135i \(-0.576665\pi\)
−0.238529 + 0.971135i \(0.576665\pi\)
\(810\) 0 0
\(811\) 31470.2 1.36260 0.681299 0.732005i \(-0.261415\pi\)
0.681299 + 0.732005i \(0.261415\pi\)
\(812\) 13402.5i 0.579229i
\(813\) − 32795.2i − 1.41473i
\(814\) −9772.16 −0.420779
\(815\) 0 0
\(816\) 8605.70 0.369191
\(817\) 31118.6i 1.33256i
\(818\) − 30921.2i − 1.32168i
\(819\) 7538.47 0.321631
\(820\) 0 0
\(821\) 970.042 0.0412359 0.0206180 0.999787i \(-0.493437\pi\)
0.0206180 + 0.999787i \(0.493437\pi\)
\(822\) 22319.0i 0.947039i
\(823\) 2108.31i 0.0892964i 0.999003 + 0.0446482i \(0.0142167\pi\)
−0.999003 + 0.0446482i \(0.985783\pi\)
\(824\) 15456.6 0.653464
\(825\) 0 0
\(826\) 20353.4 0.857368
\(827\) 35137.2i 1.47744i 0.674013 + 0.738719i \(0.264569\pi\)
−0.674013 + 0.738719i \(0.735431\pi\)
\(828\) − 21670.3i − 0.909536i
\(829\) 20626.9 0.864175 0.432088 0.901832i \(-0.357777\pi\)
0.432088 + 0.901832i \(0.357777\pi\)
\(830\) 0 0
\(831\) −10119.1 −0.422416
\(832\) − 832.000i − 0.0346688i
\(833\) 1604.87i 0.0667534i
\(834\) 23541.2 0.977417
\(835\) 0 0
\(836\) −23355.4 −0.966223
\(837\) 3828.89i 0.158119i
\(838\) − 27729.2i − 1.14307i
\(839\) 36738.4 1.51174 0.755870 0.654722i \(-0.227214\pi\)
0.755870 + 0.654722i \(0.227214\pi\)
\(840\) 0 0
\(841\) 10694.1 0.438482
\(842\) 7252.73i 0.296847i
\(843\) − 23990.8i − 0.980176i
\(844\) 18758.3 0.765032
\(845\) 0 0
\(846\) 21621.4 0.878677
\(847\) 2267.16i 0.0919725i
\(848\) 9371.39i 0.379499i
\(849\) 30705.8 1.24125
\(850\) 0 0
\(851\) −21387.6 −0.861523
\(852\) 9855.88i 0.396311i
\(853\) 14073.1i 0.564893i 0.959283 + 0.282446i \(0.0911459\pi\)
−0.959283 + 0.282446i \(0.908854\pi\)
\(854\) 9978.65 0.399839
\(855\) 0 0
\(856\) 3748.38 0.149669
\(857\) 48358.8i 1.92754i 0.266726 + 0.963772i \(0.414058\pi\)
−0.266726 + 0.963772i \(0.585942\pi\)
\(858\) − 7651.85i − 0.304464i
\(859\) −25856.3 −1.02702 −0.513508 0.858085i \(-0.671654\pi\)
−0.513508 + 0.858085i \(0.671654\pi\)
\(860\) 0 0
\(861\) 33085.1 1.30957
\(862\) − 26378.9i − 1.04231i
\(863\) 15097.4i 0.595507i 0.954643 + 0.297754i \(0.0962374\pi\)
−0.954643 + 0.297754i \(0.903763\pi\)
\(864\) 1336.02 0.0526070
\(865\) 0 0
\(866\) 6123.36 0.240277
\(867\) − 340.379i − 0.0133332i
\(868\) − 6562.10i − 0.256604i
\(869\) 2308.61 0.0901199
\(870\) 0 0
\(871\) 8030.08 0.312387
\(872\) 12035.0i 0.467381i
\(873\) 7841.36i 0.303997i
\(874\) −51116.1 −1.97829
\(875\) 0 0
\(876\) −7448.42 −0.287282
\(877\) 8455.97i 0.325585i 0.986660 + 0.162792i \(0.0520501\pi\)
−0.986660 + 0.162792i \(0.947950\pi\)
\(878\) 25502.9i 0.980273i
\(879\) −51725.3 −1.98481
\(880\) 0 0
\(881\) −5047.67 −0.193031 −0.0965154 0.995331i \(-0.530770\pi\)
−0.0965154 + 0.995331i \(0.530770\pi\)
\(882\) 1491.15i 0.0569272i
\(883\) 25885.9i 0.986558i 0.869871 + 0.493279i \(0.164202\pi\)
−0.869871 + 0.493279i \(0.835798\pi\)
\(884\) 3628.41 0.138050
\(885\) 0 0
\(886\) 12750.5 0.483477
\(887\) 12787.6i 0.484065i 0.970268 + 0.242032i \(0.0778141\pi\)
−0.970268 + 0.242032i \(0.922186\pi\)
\(888\) − 7891.58i − 0.298225i
\(889\) 33219.5 1.25326
\(890\) 0 0
\(891\) −21129.7 −0.794470
\(892\) 8633.81i 0.324082i
\(893\) − 51000.8i − 1.91117i
\(894\) 35568.5 1.33063
\(895\) 0 0
\(896\) −2289.73 −0.0853735
\(897\) − 16747.0i − 0.623373i
\(898\) 29643.9i 1.10159i
\(899\) −17177.4 −0.637262
\(900\) 0 0
\(901\) −40869.3 −1.51116
\(902\) − 18322.1i − 0.676339i
\(903\) 28058.3i 1.03402i
\(904\) −10495.8 −0.386154
\(905\) 0 0
\(906\) −16851.6 −0.617943
\(907\) − 4778.50i − 0.174937i −0.996167 0.0874683i \(-0.972122\pi\)
0.996167 0.0874683i \(-0.0278776\pi\)
\(908\) − 17450.9i − 0.637808i
\(909\) 9177.15 0.334859
\(910\) 0 0
\(911\) −581.524 −0.0211490 −0.0105745 0.999944i \(-0.503366\pi\)
−0.0105745 + 0.999944i \(0.503366\pi\)
\(912\) − 18860.8i − 0.684807i
\(913\) 46002.2i 1.66753i
\(914\) 19583.1 0.708698
\(915\) 0 0
\(916\) −4287.33 −0.154648
\(917\) 36193.3i 1.30339i
\(918\) 5826.50i 0.209480i
\(919\) −11885.1 −0.426610 −0.213305 0.976986i \(-0.568423\pi\)
−0.213305 + 0.976986i \(0.568423\pi\)
\(920\) 0 0
\(921\) 29937.2 1.07108
\(922\) − 15065.2i − 0.538117i
\(923\) 4155.52i 0.148191i
\(924\) −21058.5 −0.749756
\(925\) 0 0
\(926\) −4091.80 −0.145210
\(927\) 62630.7i 2.21905i
\(928\) 5993.76i 0.212020i
\(929\) −15219.6 −0.537502 −0.268751 0.963210i \(-0.586611\pi\)
−0.268751 + 0.963210i \(0.586611\pi\)
\(930\) 0 0
\(931\) 3517.34 0.123820
\(932\) 5891.53i 0.207064i
\(933\) 70823.1i 2.48515i
\(934\) 34578.0 1.21138
\(935\) 0 0
\(936\) 3371.31 0.117729
\(937\) − 48722.0i − 1.69870i −0.527832 0.849349i \(-0.676995\pi\)
0.527832 0.849349i \(-0.323005\pi\)
\(938\) − 22099.4i − 0.769267i
\(939\) 57622.3 2.00259
\(940\) 0 0
\(941\) −27151.1 −0.940597 −0.470299 0.882507i \(-0.655854\pi\)
−0.470299 + 0.882507i \(0.655854\pi\)
\(942\) 5365.63i 0.185585i
\(943\) − 40100.1i − 1.38477i
\(944\) 9102.33 0.313830
\(945\) 0 0
\(946\) 15538.3 0.534031
\(947\) 26266.5i 0.901317i 0.892696 + 0.450659i \(0.148811\pi\)
−0.892696 + 0.450659i \(0.851189\pi\)
\(948\) 1864.33i 0.0638721i
\(949\) −3140.47 −0.107422
\(950\) 0 0
\(951\) 35985.2 1.22702
\(952\) − 9985.68i − 0.339956i
\(953\) 27675.9i 0.940725i 0.882473 + 0.470363i \(0.155877\pi\)
−0.882473 + 0.470363i \(0.844123\pi\)
\(954\) −37973.4 −1.28871
\(955\) 0 0
\(956\) −9523.30 −0.322182
\(957\) 55124.2i 1.86198i
\(958\) 28977.4i 0.977261i
\(959\) 25898.1 0.872046
\(960\) 0 0
\(961\) −21380.6 −0.717687
\(962\) − 3327.32i − 0.111515i
\(963\) 15188.6i 0.508252i
\(964\) −17507.1 −0.584922
\(965\) 0 0
\(966\) −46089.1 −1.53509
\(967\) − 1676.34i − 0.0557471i −0.999611 0.0278736i \(-0.991126\pi\)
0.999611 0.0278736i \(-0.00887358\pi\)
\(968\) 1013.91i 0.0336655i
\(969\) 82253.3 2.72689
\(970\) 0 0
\(971\) 12176.4 0.402431 0.201215 0.979547i \(-0.435511\pi\)
0.201215 + 0.979547i \(0.435511\pi\)
\(972\) − 21572.6i − 0.711873i
\(973\) − 27316.2i − 0.900018i
\(974\) −6902.51 −0.227075
\(975\) 0 0
\(976\) 4462.59 0.146357
\(977\) − 4710.79i − 0.154259i −0.997021 0.0771297i \(-0.975424\pi\)
0.997021 0.0771297i \(-0.0245756\pi\)
\(978\) 36829.5i 1.20417i
\(979\) −21283.1 −0.694802
\(980\) 0 0
\(981\) −48766.4 −1.58715
\(982\) 40657.8i 1.32122i
\(983\) − 4834.94i − 0.156878i −0.996919 0.0784388i \(-0.975006\pi\)
0.996919 0.0784388i \(-0.0249935\pi\)
\(984\) 14796.1 0.479353
\(985\) 0 0
\(986\) −26139.2 −0.844261
\(987\) − 45985.2i − 1.48300i
\(988\) − 7952.26i − 0.256068i
\(989\) 34007.4 1.09340
\(990\) 0 0
\(991\) 28637.9 0.917973 0.458987 0.888443i \(-0.348213\pi\)
0.458987 + 0.888443i \(0.348213\pi\)
\(992\) − 2934.66i − 0.0939270i
\(993\) − 11906.6i − 0.380509i
\(994\) 11436.3 0.364928
\(995\) 0 0
\(996\) −37149.4 −1.18185
\(997\) − 27133.9i − 0.861924i −0.902370 0.430962i \(-0.858174\pi\)
0.902370 0.430962i \(-0.141826\pi\)
\(998\) − 9512.72i − 0.301723i
\(999\) 5343.00 0.169214
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.b.k.599.1 4
5.2 odd 4 650.4.a.s.1.1 2
5.3 odd 4 130.4.a.e.1.2 2
5.4 even 2 inner 650.4.b.k.599.4 4
15.8 even 4 1170.4.a.z.1.2 2
20.3 even 4 1040.4.a.j.1.1 2
65.38 odd 4 1690.4.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.e.1.2 2 5.3 odd 4
650.4.a.s.1.1 2 5.2 odd 4
650.4.b.k.599.1 4 1.1 even 1 trivial
650.4.b.k.599.4 4 5.4 even 2 inner
1040.4.a.j.1.1 2 20.3 even 4
1170.4.a.z.1.2 2 15.8 even 4
1690.4.a.t.1.2 2 65.38 odd 4