Properties

Label 130.4.a.e.1.2
Level $130$
Weight $4$
Character 130.1
Self dual yes
Analytic conductor $7.670$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,4,Mod(1,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,2,8,-10,-4,0,-16,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67024830075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 130.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +7.70820 q^{3} +4.00000 q^{4} -5.00000 q^{5} -15.4164 q^{6} +17.8885 q^{7} -8.00000 q^{8} +32.4164 q^{9} +10.0000 q^{10} +38.1803 q^{11} +30.8328 q^{12} -13.0000 q^{13} -35.7771 q^{14} -38.5410 q^{15} +16.0000 q^{16} +69.7771 q^{17} -64.8328 q^{18} -152.928 q^{19} -20.0000 q^{20} +137.889 q^{21} -76.3607 q^{22} +167.125 q^{23} -61.6656 q^{24} +25.0000 q^{25} +26.0000 q^{26} +41.7508 q^{27} +71.5542 q^{28} +187.305 q^{29} +77.0820 q^{30} +91.7082 q^{31} -32.0000 q^{32} +294.302 q^{33} -139.554 q^{34} -89.4427 q^{35} +129.666 q^{36} -127.974 q^{37} +305.856 q^{38} -100.207 q^{39} +40.0000 q^{40} +239.941 q^{41} -275.777 q^{42} -203.485 q^{43} +152.721 q^{44} -162.082 q^{45} -334.249 q^{46} -333.495 q^{47} +123.331 q^{48} -23.0000 q^{49} -50.0000 q^{50} +537.856 q^{51} -52.0000 q^{52} -585.712 q^{53} -83.5016 q^{54} -190.902 q^{55} -143.108 q^{56} -1178.80 q^{57} -374.610 q^{58} -568.895 q^{59} -154.164 q^{60} +278.912 q^{61} -183.416 q^{62} +579.882 q^{63} +64.0000 q^{64} +65.0000 q^{65} -588.604 q^{66} -617.698 q^{67} +279.108 q^{68} +1288.23 q^{69} +178.885 q^{70} +319.656 q^{71} -259.331 q^{72} -241.574 q^{73} +255.947 q^{74} +192.705 q^{75} -611.712 q^{76} +682.991 q^{77} +200.413 q^{78} -60.4659 q^{79} -80.0000 q^{80} -553.420 q^{81} -479.882 q^{82} -1204.87 q^{83} +551.554 q^{84} -348.885 q^{85} +406.971 q^{86} +1443.78 q^{87} -305.443 q^{88} +557.437 q^{89} +324.164 q^{90} -232.551 q^{91} +668.498 q^{92} +706.906 q^{93} +666.991 q^{94} +764.640 q^{95} -246.663 q^{96} -241.895 q^{97} +46.0000 q^{98} +1237.67 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{3} + 8 q^{4} - 10 q^{5} - 4 q^{6} - 16 q^{8} + 38 q^{9} + 20 q^{10} + 54 q^{11} + 8 q^{12} - 26 q^{13} - 10 q^{15} + 32 q^{16} + 68 q^{17} - 76 q^{18} - 42 q^{19} - 40 q^{20} + 240 q^{21}+ \cdots + 1326 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 7.70820 1.48344 0.741722 0.670707i \(-0.234009\pi\)
0.741722 + 0.670707i \(0.234009\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −15.4164 −1.04895
\(7\) 17.8885 0.965891 0.482945 0.875651i \(-0.339567\pi\)
0.482945 + 0.875651i \(0.339567\pi\)
\(8\) −8.00000 −0.353553
\(9\) 32.4164 1.20061
\(10\) 10.0000 0.316228
\(11\) 38.1803 1.04653 0.523264 0.852171i \(-0.324714\pi\)
0.523264 + 0.852171i \(0.324714\pi\)
\(12\) 30.8328 0.741722
\(13\) −13.0000 −0.277350
\(14\) −35.7771 −0.682988
\(15\) −38.5410 −0.663417
\(16\) 16.0000 0.250000
\(17\) 69.7771 0.995496 0.497748 0.867322i \(-0.334160\pi\)
0.497748 + 0.867322i \(0.334160\pi\)
\(18\) −64.8328 −0.848958
\(19\) −152.928 −1.84653 −0.923266 0.384162i \(-0.874490\pi\)
−0.923266 + 0.384162i \(0.874490\pi\)
\(20\) −20.0000 −0.223607
\(21\) 137.889 1.43285
\(22\) −76.3607 −0.740007
\(23\) 167.125 1.51513 0.757563 0.652762i \(-0.226390\pi\)
0.757563 + 0.652762i \(0.226390\pi\)
\(24\) −61.6656 −0.524477
\(25\) 25.0000 0.200000
\(26\) 26.0000 0.196116
\(27\) 41.7508 0.297590
\(28\) 71.5542 0.482945
\(29\) 187.305 1.19937 0.599684 0.800237i \(-0.295293\pi\)
0.599684 + 0.800237i \(0.295293\pi\)
\(30\) 77.0820 0.469106
\(31\) 91.7082 0.531332 0.265666 0.964065i \(-0.414408\pi\)
0.265666 + 0.964065i \(0.414408\pi\)
\(32\) −32.0000 −0.176777
\(33\) 294.302 1.55247
\(34\) −139.554 −0.703922
\(35\) −89.4427 −0.431959
\(36\) 129.666 0.600304
\(37\) −127.974 −0.568615 −0.284307 0.958733i \(-0.591764\pi\)
−0.284307 + 0.958733i \(0.591764\pi\)
\(38\) 305.856 1.30569
\(39\) −100.207 −0.411433
\(40\) 40.0000 0.158114
\(41\) 239.941 0.913964 0.456982 0.889476i \(-0.348930\pi\)
0.456982 + 0.889476i \(0.348930\pi\)
\(42\) −275.777 −1.01317
\(43\) −203.485 −0.721656 −0.360828 0.932632i \(-0.617506\pi\)
−0.360828 + 0.932632i \(0.617506\pi\)
\(44\) 152.721 0.523264
\(45\) −162.082 −0.536928
\(46\) −334.249 −1.07136
\(47\) −333.495 −1.03501 −0.517503 0.855681i \(-0.673138\pi\)
−0.517503 + 0.855681i \(0.673138\pi\)
\(48\) 123.331 0.370861
\(49\) −23.0000 −0.0670554
\(50\) −50.0000 −0.141421
\(51\) 537.856 1.47676
\(52\) −52.0000 −0.138675
\(53\) −585.712 −1.51800 −0.758998 0.651094i \(-0.774311\pi\)
−0.758998 + 0.651094i \(0.774311\pi\)
\(54\) −83.5016 −0.210428
\(55\) −190.902 −0.468021
\(56\) −143.108 −0.341494
\(57\) −1178.80 −2.73923
\(58\) −374.610 −0.848081
\(59\) −568.895 −1.25532 −0.627660 0.778488i \(-0.715987\pi\)
−0.627660 + 0.778488i \(0.715987\pi\)
\(60\) −154.164 −0.331708
\(61\) 278.912 0.585426 0.292713 0.956200i \(-0.405442\pi\)
0.292713 + 0.956200i \(0.405442\pi\)
\(62\) −183.416 −0.375708
\(63\) 579.882 1.15966
\(64\) 64.0000 0.125000
\(65\) 65.0000 0.124035
\(66\) −588.604 −1.09776
\(67\) −617.698 −1.12633 −0.563163 0.826346i \(-0.690416\pi\)
−0.563163 + 0.826346i \(0.690416\pi\)
\(68\) 279.108 0.497748
\(69\) 1288.23 2.24760
\(70\) 178.885 0.305441
\(71\) 319.656 0.534312 0.267156 0.963653i \(-0.413916\pi\)
0.267156 + 0.963653i \(0.413916\pi\)
\(72\) −259.331 −0.424479
\(73\) −241.574 −0.387317 −0.193658 0.981069i \(-0.562035\pi\)
−0.193658 + 0.981069i \(0.562035\pi\)
\(74\) 255.947 0.402071
\(75\) 192.705 0.296689
\(76\) −611.712 −0.923266
\(77\) 682.991 1.01083
\(78\) 200.413 0.290927
\(79\) −60.4659 −0.0861133 −0.0430566 0.999073i \(-0.513710\pi\)
−0.0430566 + 0.999073i \(0.513710\pi\)
\(80\) −80.0000 −0.111803
\(81\) −553.420 −0.759149
\(82\) −479.882 −0.646270
\(83\) −1204.87 −1.59339 −0.796695 0.604382i \(-0.793420\pi\)
−0.796695 + 0.604382i \(0.793420\pi\)
\(84\) 551.554 0.716423
\(85\) −348.885 −0.445199
\(86\) 406.971 0.510288
\(87\) 1443.78 1.77920
\(88\) −305.443 −0.370003
\(89\) 557.437 0.663912 0.331956 0.943295i \(-0.392291\pi\)
0.331956 + 0.943295i \(0.392291\pi\)
\(90\) 324.164 0.379665
\(91\) −232.551 −0.267890
\(92\) 668.498 0.757563
\(93\) 706.906 0.788201
\(94\) 666.991 0.731860
\(95\) 764.640 0.825794
\(96\) −246.663 −0.262238
\(97\) −241.895 −0.253203 −0.126602 0.991954i \(-0.540407\pi\)
−0.126602 + 0.991954i \(0.540407\pi\)
\(98\) 46.0000 0.0474153
\(99\) 1237.67 1.25647
\(100\) 100.000 0.100000
\(101\) −283.102 −0.278908 −0.139454 0.990229i \(-0.544535\pi\)
−0.139454 + 0.990229i \(0.544535\pi\)
\(102\) −1075.71 −1.04423
\(103\) 1932.07 1.84828 0.924138 0.382059i \(-0.124785\pi\)
0.924138 + 0.382059i \(0.124785\pi\)
\(104\) 104.000 0.0980581
\(105\) −689.443 −0.640788
\(106\) 1171.42 1.07338
\(107\) −468.547 −0.423329 −0.211664 0.977342i \(-0.567888\pi\)
−0.211664 + 0.977342i \(0.567888\pi\)
\(108\) 167.003 0.148795
\(109\) −1504.37 −1.32195 −0.660977 0.750406i \(-0.729858\pi\)
−0.660977 + 0.750406i \(0.729858\pi\)
\(110\) 381.803 0.330941
\(111\) −986.447 −0.843508
\(112\) 286.217 0.241473
\(113\) −1311.97 −1.09221 −0.546105 0.837717i \(-0.683890\pi\)
−0.546105 + 0.837717i \(0.683890\pi\)
\(114\) 2357.60 1.93693
\(115\) −835.623 −0.677585
\(116\) 749.220 0.599684
\(117\) −421.413 −0.332989
\(118\) 1137.79 0.887645
\(119\) 1248.21 0.961540
\(120\) 308.328 0.234553
\(121\) 126.738 0.0952204
\(122\) −557.823 −0.413959
\(123\) 1849.52 1.35581
\(124\) 366.833 0.265666
\(125\) −125.000 −0.0894427
\(126\) −1159.76 −0.820000
\(127\) −1857.03 −1.29752 −0.648758 0.760994i \(-0.724711\pi\)
−0.648758 + 0.760994i \(0.724711\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1568.51 −1.07054
\(130\) −130.000 −0.0877058
\(131\) 2023.27 1.34942 0.674708 0.738084i \(-0.264269\pi\)
0.674708 + 0.738084i \(0.264269\pi\)
\(132\) 1177.21 0.776233
\(133\) −2735.66 −1.78355
\(134\) 1235.40 0.796433
\(135\) −208.754 −0.133086
\(136\) −558.217 −0.351961
\(137\) −1447.75 −0.902842 −0.451421 0.892311i \(-0.649083\pi\)
−0.451421 + 0.892311i \(0.649083\pi\)
\(138\) −2576.46 −1.58930
\(139\) 1527.02 0.931802 0.465901 0.884837i \(-0.345730\pi\)
0.465901 + 0.884837i \(0.345730\pi\)
\(140\) −357.771 −0.215980
\(141\) −2570.65 −1.53537
\(142\) −639.311 −0.377816
\(143\) −496.344 −0.290255
\(144\) 518.663 0.300152
\(145\) −936.525 −0.536373
\(146\) 483.149 0.273874
\(147\) −177.289 −0.0994730
\(148\) −511.895 −0.284307
\(149\) 2307.18 1.26854 0.634268 0.773114i \(-0.281302\pi\)
0.634268 + 0.773114i \(0.281302\pi\)
\(150\) −385.410 −0.209791
\(151\) 1093.09 0.589104 0.294552 0.955635i \(-0.404830\pi\)
0.294552 + 0.955635i \(0.404830\pi\)
\(152\) 1223.42 0.652847
\(153\) 2261.92 1.19520
\(154\) −1365.98 −0.714766
\(155\) −458.541 −0.237619
\(156\) −400.827 −0.205717
\(157\) −348.046 −0.176924 −0.0884622 0.996080i \(-0.528195\pi\)
−0.0884622 + 0.996080i \(0.528195\pi\)
\(158\) 120.932 0.0608913
\(159\) −4514.79 −2.25186
\(160\) 160.000 0.0790569
\(161\) 2989.62 1.46345
\(162\) 1106.84 0.536799
\(163\) 2388.98 1.14797 0.573986 0.818865i \(-0.305396\pi\)
0.573986 + 0.818865i \(0.305396\pi\)
\(164\) 959.765 0.456982
\(165\) −1471.51 −0.694284
\(166\) 2409.73 1.12670
\(167\) 4264.95 1.97624 0.988118 0.153695i \(-0.0491173\pi\)
0.988118 + 0.153695i \(0.0491173\pi\)
\(168\) −1103.11 −0.506587
\(169\) 169.000 0.0769231
\(170\) 697.771 0.314803
\(171\) −4957.38 −2.21696
\(172\) −813.941 −0.360828
\(173\) 2871.68 1.26202 0.631011 0.775774i \(-0.282640\pi\)
0.631011 + 0.775774i \(0.282640\pi\)
\(174\) −2887.57 −1.25808
\(175\) 447.214 0.193178
\(176\) 610.885 0.261632
\(177\) −4385.16 −1.86220
\(178\) −1114.87 −0.469457
\(179\) 982.845 0.410398 0.205199 0.978720i \(-0.434216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(180\) −648.328 −0.268464
\(181\) 3342.85 1.37277 0.686386 0.727237i \(-0.259196\pi\)
0.686386 + 0.727237i \(0.259196\pi\)
\(182\) 465.102 0.189427
\(183\) 2149.91 0.868447
\(184\) −1337.00 −0.535678
\(185\) 639.868 0.254292
\(186\) −1413.81 −0.557342
\(187\) 2664.11 1.04181
\(188\) −1333.98 −0.517503
\(189\) 746.861 0.287440
\(190\) −1529.28 −0.583924
\(191\) 16.1052 0.00610123 0.00305061 0.999995i \(-0.499029\pi\)
0.00305061 + 0.999995i \(0.499029\pi\)
\(192\) 493.325 0.185431
\(193\) −529.003 −0.197298 −0.0986489 0.995122i \(-0.531452\pi\)
−0.0986489 + 0.995122i \(0.531452\pi\)
\(194\) 483.790 0.179042
\(195\) 501.033 0.183999
\(196\) −92.0000 −0.0335277
\(197\) −4716.72 −1.70585 −0.852924 0.522034i \(-0.825173\pi\)
−0.852924 + 0.522034i \(0.825173\pi\)
\(198\) −2475.34 −0.888458
\(199\) −4072.65 −1.45077 −0.725383 0.688346i \(-0.758337\pi\)
−0.725383 + 0.688346i \(0.758337\pi\)
\(200\) −200.000 −0.0707107
\(201\) −4761.34 −1.67084
\(202\) 566.204 0.197218
\(203\) 3350.61 1.15846
\(204\) 2151.42 0.738381
\(205\) −1199.71 −0.408737
\(206\) −3864.14 −1.30693
\(207\) 5417.58 1.81907
\(208\) −208.000 −0.0693375
\(209\) −5838.84 −1.93245
\(210\) 1378.89 0.453105
\(211\) −4689.58 −1.53006 −0.765032 0.643992i \(-0.777277\pi\)
−0.765032 + 0.643992i \(0.777277\pi\)
\(212\) −2342.85 −0.758998
\(213\) 2463.97 0.792622
\(214\) 937.094 0.299339
\(215\) 1017.43 0.322734
\(216\) −334.006 −0.105214
\(217\) 1640.53 0.513208
\(218\) 3008.75 0.934762
\(219\) −1862.10 −0.574563
\(220\) −763.607 −0.234011
\(221\) −907.102 −0.276101
\(222\) 1972.89 0.596451
\(223\) 2158.45 0.648164 0.324082 0.946029i \(-0.394945\pi\)
0.324082 + 0.946029i \(0.394945\pi\)
\(224\) −572.433 −0.170747
\(225\) 810.410 0.240122
\(226\) 2623.94 0.772309
\(227\) 4362.74 1.27562 0.637808 0.770195i \(-0.279841\pi\)
0.637808 + 0.770195i \(0.279841\pi\)
\(228\) −4715.20 −1.36961
\(229\) −1071.83 −0.309296 −0.154648 0.987970i \(-0.549424\pi\)
−0.154648 + 0.987970i \(0.549424\pi\)
\(230\) 1671.25 0.479125
\(231\) 5264.63 1.49951
\(232\) −1498.44 −0.424040
\(233\) 1472.88 0.414128 0.207064 0.978327i \(-0.433609\pi\)
0.207064 + 0.978327i \(0.433609\pi\)
\(234\) 842.827 0.235459
\(235\) 1667.48 0.462869
\(236\) −2275.58 −0.627660
\(237\) −466.084 −0.127744
\(238\) −2496.42 −0.679912
\(239\) −2380.83 −0.644363 −0.322182 0.946678i \(-0.604416\pi\)
−0.322182 + 0.946678i \(0.604416\pi\)
\(240\) −616.656 −0.165854
\(241\) 4376.77 1.16984 0.584922 0.811090i \(-0.301125\pi\)
0.584922 + 0.811090i \(0.301125\pi\)
\(242\) −253.477 −0.0673310
\(243\) −5393.14 −1.42375
\(244\) 1115.65 0.292713
\(245\) 115.000 0.0299881
\(246\) −3699.03 −0.958706
\(247\) 1988.06 0.512136
\(248\) −733.666 −0.187854
\(249\) −9287.36 −2.36370
\(250\) 250.000 0.0632456
\(251\) 1087.80 0.273551 0.136776 0.990602i \(-0.456326\pi\)
0.136776 + 0.990602i \(0.456326\pi\)
\(252\) 2319.53 0.579828
\(253\) 6380.87 1.58562
\(254\) 3714.06 0.917483
\(255\) −2689.28 −0.660428
\(256\) 256.000 0.0625000
\(257\) −5112.49 −1.24089 −0.620444 0.784251i \(-0.713047\pi\)
−0.620444 + 0.784251i \(0.713047\pi\)
\(258\) 3137.01 0.756984
\(259\) −2289.26 −0.549220
\(260\) 260.000 0.0620174
\(261\) 6071.75 1.43997
\(262\) −4046.53 −0.954182
\(263\) −3790.88 −0.888805 −0.444402 0.895827i \(-0.646584\pi\)
−0.444402 + 0.895827i \(0.646584\pi\)
\(264\) −2354.41 −0.548880
\(265\) 2928.56 0.678868
\(266\) 5471.32 1.26116
\(267\) 4296.83 0.984876
\(268\) −2470.79 −0.563163
\(269\) 3523.30 0.798585 0.399293 0.916824i \(-0.369256\pi\)
0.399293 + 0.916824i \(0.369256\pi\)
\(270\) 417.508 0.0941063
\(271\) 4254.59 0.953682 0.476841 0.878990i \(-0.341782\pi\)
0.476841 + 0.878990i \(0.341782\pi\)
\(272\) 1116.43 0.248874
\(273\) −1792.55 −0.397400
\(274\) 2895.49 0.638405
\(275\) 954.508 0.209306
\(276\) 5152.92 1.12380
\(277\) −1312.77 −0.284754 −0.142377 0.989813i \(-0.545474\pi\)
−0.142377 + 0.989813i \(0.545474\pi\)
\(278\) −3054.05 −0.658883
\(279\) 2972.85 0.637921
\(280\) 715.542 0.152721
\(281\) 3112.38 0.660743 0.330372 0.943851i \(-0.392826\pi\)
0.330372 + 0.943851i \(0.392826\pi\)
\(282\) 5141.30 1.08567
\(283\) −3983.53 −0.836736 −0.418368 0.908278i \(-0.637398\pi\)
−0.418368 + 0.908278i \(0.637398\pi\)
\(284\) 1278.62 0.267156
\(285\) 5894.00 1.22502
\(286\) 992.689 0.205241
\(287\) 4292.20 0.882789
\(288\) −1037.33 −0.212239
\(289\) −44.1580 −0.00898800
\(290\) 1873.05 0.379273
\(291\) −1864.57 −0.375613
\(292\) −966.297 −0.193658
\(293\) 6710.42 1.33798 0.668988 0.743273i \(-0.266728\pi\)
0.668988 + 0.743273i \(0.266728\pi\)
\(294\) 354.577 0.0703380
\(295\) 2844.48 0.561396
\(296\) 1023.79 0.201036
\(297\) 1594.06 0.311437
\(298\) −4614.37 −0.896990
\(299\) −2172.62 −0.420220
\(300\) 770.820 0.148344
\(301\) −3640.06 −0.697041
\(302\) −2186.19 −0.416559
\(303\) −2182.21 −0.413745
\(304\) −2446.85 −0.461633
\(305\) −1394.56 −0.261810
\(306\) −4523.85 −0.845134
\(307\) 3883.81 0.722023 0.361011 0.932561i \(-0.382432\pi\)
0.361011 + 0.932561i \(0.382432\pi\)
\(308\) 2731.96 0.505416
\(309\) 14892.8 2.74181
\(310\) 917.082 0.168022
\(311\) −9188.01 −1.67525 −0.837627 0.546242i \(-0.816058\pi\)
−0.837627 + 0.546242i \(0.816058\pi\)
\(312\) 801.653 0.145464
\(313\) −7475.45 −1.34996 −0.674980 0.737836i \(-0.735848\pi\)
−0.674980 + 0.737836i \(0.735848\pi\)
\(314\) 696.093 0.125104
\(315\) −2899.41 −0.518614
\(316\) −241.864 −0.0430566
\(317\) 4668.43 0.827145 0.413572 0.910471i \(-0.364281\pi\)
0.413572 + 0.910471i \(0.364281\pi\)
\(318\) 9029.58 1.59231
\(319\) 7151.37 1.25517
\(320\) −320.000 −0.0559017
\(321\) −3611.66 −0.627985
\(322\) −5979.23 −1.03481
\(323\) −10670.9 −1.83821
\(324\) −2213.68 −0.379574
\(325\) −325.000 −0.0554700
\(326\) −4777.96 −0.811738
\(327\) −11596.0 −1.96104
\(328\) −1919.53 −0.323135
\(329\) −5965.75 −0.999703
\(330\) 2943.02 0.490933
\(331\) 1544.67 0.256503 0.128252 0.991742i \(-0.459063\pi\)
0.128252 + 0.991742i \(0.459063\pi\)
\(332\) −4819.47 −0.796695
\(333\) −4148.45 −0.682683
\(334\) −8529.89 −1.39741
\(335\) 3088.49 0.503708
\(336\) 2206.22 0.358211
\(337\) 3788.99 0.612461 0.306231 0.951957i \(-0.400932\pi\)
0.306231 + 0.951957i \(0.400932\pi\)
\(338\) −338.000 −0.0543928
\(339\) −10112.9 −1.62023
\(340\) −1395.54 −0.222600
\(341\) 3501.45 0.556053
\(342\) 9914.75 1.56763
\(343\) −6547.21 −1.03066
\(344\) 1627.88 0.255144
\(345\) −6441.15 −1.00516
\(346\) −5743.36 −0.892385
\(347\) 4545.59 0.703227 0.351614 0.936145i \(-0.385633\pi\)
0.351614 + 0.936145i \(0.385633\pi\)
\(348\) 5775.14 0.889598
\(349\) 1545.04 0.236975 0.118487 0.992956i \(-0.462195\pi\)
0.118487 + 0.992956i \(0.462195\pi\)
\(350\) −894.427 −0.136598
\(351\) −542.760 −0.0825367
\(352\) −1221.77 −0.185002
\(353\) −4271.28 −0.644015 −0.322008 0.946737i \(-0.604358\pi\)
−0.322008 + 0.946737i \(0.604358\pi\)
\(354\) 8770.32 1.31677
\(355\) −1598.28 −0.238952
\(356\) 2229.75 0.331956
\(357\) 9621.46 1.42639
\(358\) −1965.69 −0.290195
\(359\) 1106.68 0.162697 0.0813484 0.996686i \(-0.474077\pi\)
0.0813484 + 0.996686i \(0.474077\pi\)
\(360\) 1296.66 0.189833
\(361\) 16528.0 2.40968
\(362\) −6685.69 −0.970697
\(363\) 976.925 0.141254
\(364\) −930.204 −0.133945
\(365\) 1207.87 0.173213
\(366\) −4299.82 −0.614085
\(367\) 83.1275 0.0118235 0.00591175 0.999983i \(-0.498118\pi\)
0.00591175 + 0.999983i \(0.498118\pi\)
\(368\) 2673.99 0.378781
\(369\) 7778.03 1.09731
\(370\) −1279.74 −0.179812
\(371\) −10477.5 −1.46622
\(372\) 2827.62 0.394100
\(373\) 2509.17 0.348310 0.174155 0.984718i \(-0.444281\pi\)
0.174155 + 0.984718i \(0.444281\pi\)
\(374\) −5328.23 −0.736674
\(375\) −963.525 −0.132683
\(376\) 2667.96 0.365930
\(377\) −2434.96 −0.332645
\(378\) −1493.72 −0.203251
\(379\) 5959.76 0.807738 0.403869 0.914817i \(-0.367665\pi\)
0.403869 + 0.914817i \(0.367665\pi\)
\(380\) 3058.56 0.412897
\(381\) −14314.4 −1.92479
\(382\) −32.2105 −0.00431422
\(383\) −2191.58 −0.292388 −0.146194 0.989256i \(-0.546702\pi\)
−0.146194 + 0.989256i \(0.546702\pi\)
\(384\) −986.650 −0.131119
\(385\) −3414.95 −0.452058
\(386\) 1058.01 0.139511
\(387\) −6596.26 −0.866426
\(388\) −967.579 −0.126602
\(389\) −4157.52 −0.541889 −0.270944 0.962595i \(-0.587336\pi\)
−0.270944 + 0.962595i \(0.587336\pi\)
\(390\) −1002.07 −0.130107
\(391\) 11661.5 1.50830
\(392\) 184.000 0.0237077
\(393\) 15595.7 2.00178
\(394\) 9433.44 1.20622
\(395\) 302.330 0.0385110
\(396\) 4950.68 0.628235
\(397\) −13622.1 −1.72210 −0.861048 0.508524i \(-0.830191\pi\)
−0.861048 + 0.508524i \(0.830191\pi\)
\(398\) 8145.29 1.02585
\(399\) −21087.0 −2.64579
\(400\) 400.000 0.0500000
\(401\) −1679.41 −0.209142 −0.104571 0.994517i \(-0.533347\pi\)
−0.104571 + 0.994517i \(0.533347\pi\)
\(402\) 9522.69 1.18146
\(403\) −1192.21 −0.147365
\(404\) −1132.41 −0.139454
\(405\) 2767.10 0.339502
\(406\) −6701.23 −0.819153
\(407\) −4886.08 −0.595071
\(408\) −4302.85 −0.522115
\(409\) −15460.6 −1.86914 −0.934569 0.355781i \(-0.884215\pi\)
−0.934569 + 0.355781i \(0.884215\pi\)
\(410\) 2399.41 0.289021
\(411\) −11159.5 −1.33932
\(412\) 7728.28 0.924138
\(413\) −10176.7 −1.21250
\(414\) −10835.2 −1.28628
\(415\) 6024.33 0.712585
\(416\) 416.000 0.0490290
\(417\) 11770.6 1.38228
\(418\) 11677.7 1.36645
\(419\) −13864.6 −1.61654 −0.808271 0.588811i \(-0.799596\pi\)
−0.808271 + 0.588811i \(0.799596\pi\)
\(420\) −2757.77 −0.320394
\(421\) −3626.36 −0.419806 −0.209903 0.977722i \(-0.567315\pi\)
−0.209903 + 0.977722i \(0.567315\pi\)
\(422\) 9379.15 1.08192
\(423\) −10810.7 −1.24264
\(424\) 4685.70 0.536692
\(425\) 1744.43 0.199099
\(426\) −4927.94 −0.560468
\(427\) 4989.33 0.565458
\(428\) −1874.19 −0.211664
\(429\) −3825.92 −0.430577
\(430\) −2034.85 −0.228208
\(431\) 13189.5 1.47405 0.737023 0.675868i \(-0.236231\pi\)
0.737023 + 0.675868i \(0.236231\pi\)
\(432\) 668.012 0.0743976
\(433\) −3061.68 −0.339804 −0.169902 0.985461i \(-0.554345\pi\)
−0.169902 + 0.985461i \(0.554345\pi\)
\(434\) −3281.05 −0.362893
\(435\) −7218.92 −0.795680
\(436\) −6017.50 −0.660977
\(437\) −25558.0 −2.79773
\(438\) 3724.21 0.406277
\(439\) 12751.4 1.38632 0.693158 0.720786i \(-0.256219\pi\)
0.693158 + 0.720786i \(0.256219\pi\)
\(440\) 1527.21 0.165471
\(441\) −745.577 −0.0805072
\(442\) 1814.20 0.195233
\(443\) −6375.24 −0.683740 −0.341870 0.939747i \(-0.611060\pi\)
−0.341870 + 0.939747i \(0.611060\pi\)
\(444\) −3945.79 −0.421754
\(445\) −2787.18 −0.296910
\(446\) −4316.90 −0.458321
\(447\) 17784.2 1.88180
\(448\) 1144.87 0.120736
\(449\) 14821.9 1.55789 0.778943 0.627095i \(-0.215756\pi\)
0.778943 + 0.627095i \(0.215756\pi\)
\(450\) −1620.82 −0.169792
\(451\) 9161.04 0.956488
\(452\) −5247.88 −0.546105
\(453\) 8425.79 0.873903
\(454\) −8725.47 −0.901997
\(455\) 1162.76 0.119804
\(456\) 9430.40 0.968463
\(457\) 9791.53 1.00225 0.501125 0.865375i \(-0.332920\pi\)
0.501125 + 0.865375i \(0.332920\pi\)
\(458\) 2143.67 0.218705
\(459\) 2913.25 0.296250
\(460\) −3342.49 −0.338792
\(461\) 7532.58 0.761013 0.380507 0.924778i \(-0.375750\pi\)
0.380507 + 0.924778i \(0.375750\pi\)
\(462\) −10529.3 −1.06032
\(463\) 2045.90 0.205359 0.102679 0.994715i \(-0.467258\pi\)
0.102679 + 0.994715i \(0.467258\pi\)
\(464\) 2996.88 0.299842
\(465\) −3534.53 −0.352494
\(466\) −2945.77 −0.292832
\(467\) 17289.0 1.71315 0.856574 0.516023i \(-0.172588\pi\)
0.856574 + 0.516023i \(0.172588\pi\)
\(468\) −1685.65 −0.166494
\(469\) −11049.7 −1.08791
\(470\) −3334.95 −0.327298
\(471\) −2682.81 −0.262458
\(472\) 4551.16 0.443823
\(473\) −7769.14 −0.755233
\(474\) 932.167 0.0903288
\(475\) −3823.20 −0.369306
\(476\) 4992.84 0.480770
\(477\) −18986.7 −1.82252
\(478\) 4761.65 0.455634
\(479\) 14488.7 1.38206 0.691028 0.722828i \(-0.257158\pi\)
0.691028 + 0.722828i \(0.257158\pi\)
\(480\) 1233.31 0.117277
\(481\) 1663.66 0.157705
\(482\) −8753.54 −0.827205
\(483\) 23044.6 2.17094
\(484\) 506.953 0.0476102
\(485\) 1209.47 0.113236
\(486\) 10786.3 1.00674
\(487\) −3451.25 −0.321132 −0.160566 0.987025i \(-0.551332\pi\)
−0.160566 + 0.987025i \(0.551332\pi\)
\(488\) −2231.29 −0.206979
\(489\) 18414.7 1.70295
\(490\) −230.000 −0.0212048
\(491\) −20328.9 −1.86849 −0.934246 0.356630i \(-0.883926\pi\)
−0.934246 + 0.356630i \(0.883926\pi\)
\(492\) 7398.06 0.677907
\(493\) 13069.6 1.19397
\(494\) −3976.13 −0.362135
\(495\) −6188.35 −0.561910
\(496\) 1467.33 0.132833
\(497\) 5718.17 0.516087
\(498\) 18574.7 1.67139
\(499\) −4756.36 −0.426701 −0.213351 0.976976i \(-0.568438\pi\)
−0.213351 + 0.976976i \(0.568438\pi\)
\(500\) −500.000 −0.0447214
\(501\) 32875.1 2.93164
\(502\) −2175.60 −0.193430
\(503\) 18875.2 1.67317 0.836583 0.547840i \(-0.184550\pi\)
0.836583 + 0.547840i \(0.184550\pi\)
\(504\) −4639.06 −0.410000
\(505\) 1415.51 0.124731
\(506\) −12761.7 −1.12120
\(507\) 1302.69 0.114111
\(508\) −7428.11 −0.648758
\(509\) 13108.3 1.14148 0.570740 0.821131i \(-0.306657\pi\)
0.570740 + 0.821131i \(0.306657\pi\)
\(510\) 5378.56 0.466993
\(511\) −4321.41 −0.374106
\(512\) −512.000 −0.0441942
\(513\) −6384.86 −0.549510
\(514\) 10225.0 0.877440
\(515\) −9660.34 −0.826574
\(516\) −6274.02 −0.535268
\(517\) −12733.0 −1.08316
\(518\) 4578.53 0.388357
\(519\) 22135.5 1.87214
\(520\) −520.000 −0.0438529
\(521\) −1065.58 −0.0896047 −0.0448023 0.998996i \(-0.514266\pi\)
−0.0448023 + 0.998996i \(0.514266\pi\)
\(522\) −12143.5 −1.01821
\(523\) 11752.4 0.982591 0.491296 0.870993i \(-0.336524\pi\)
0.491296 + 0.870993i \(0.336524\pi\)
\(524\) 8093.06 0.674708
\(525\) 3447.21 0.286569
\(526\) 7581.76 0.628480
\(527\) 6399.13 0.528938
\(528\) 4708.83 0.388116
\(529\) 15763.6 1.29561
\(530\) −5857.12 −0.480032
\(531\) −18441.5 −1.50715
\(532\) −10942.6 −0.891774
\(533\) −3119.24 −0.253488
\(534\) −8593.67 −0.696413
\(535\) 2342.74 0.189318
\(536\) 4941.59 0.398216
\(537\) 7575.97 0.608803
\(538\) −7046.60 −0.564685
\(539\) −878.148 −0.0701753
\(540\) −835.016 −0.0665432
\(541\) −11910.5 −0.946532 −0.473266 0.880920i \(-0.656925\pi\)
−0.473266 + 0.880920i \(0.656925\pi\)
\(542\) −8509.17 −0.674355
\(543\) 25767.3 2.03643
\(544\) −2232.87 −0.175980
\(545\) 7521.87 0.591196
\(546\) 3585.10 0.281004
\(547\) −22283.2 −1.74180 −0.870898 0.491464i \(-0.836462\pi\)
−0.870898 + 0.491464i \(0.836462\pi\)
\(548\) −5790.98 −0.451421
\(549\) 9041.32 0.702867
\(550\) −1909.02 −0.148001
\(551\) −28644.2 −2.21467
\(552\) −10305.8 −0.794648
\(553\) −1081.65 −0.0831760
\(554\) 2625.54 0.201351
\(555\) 4932.24 0.377228
\(556\) 6108.09 0.465901
\(557\) 8012.19 0.609493 0.304746 0.952434i \(-0.401428\pi\)
0.304746 + 0.952434i \(0.401428\pi\)
\(558\) −5945.70 −0.451078
\(559\) 2645.31 0.200151
\(560\) −1431.08 −0.107990
\(561\) 20535.5 1.54547
\(562\) −6224.76 −0.467216
\(563\) −1086.28 −0.0813167 −0.0406583 0.999173i \(-0.512946\pi\)
−0.0406583 + 0.999173i \(0.512946\pi\)
\(564\) −10282.6 −0.767687
\(565\) 6559.84 0.488451
\(566\) 7967.06 0.591661
\(567\) −9899.87 −0.733255
\(568\) −2557.24 −0.188908
\(569\) 1084.26 0.0798850 0.0399425 0.999202i \(-0.487283\pi\)
0.0399425 + 0.999202i \(0.487283\pi\)
\(570\) −11788.0 −0.866219
\(571\) 14671.2 1.07525 0.537627 0.843183i \(-0.319321\pi\)
0.537627 + 0.843183i \(0.319321\pi\)
\(572\) −1985.38 −0.145127
\(573\) 124.143 0.00905083
\(574\) −8584.40 −0.624226
\(575\) 4178.12 0.303025
\(576\) 2074.65 0.150076
\(577\) 25311.7 1.82624 0.913118 0.407696i \(-0.133668\pi\)
0.913118 + 0.407696i \(0.133668\pi\)
\(578\) 88.3161 0.00635548
\(579\) −4077.66 −0.292680
\(580\) −3746.10 −0.268187
\(581\) −21553.3 −1.53904
\(582\) 3729.15 0.265598
\(583\) −22362.7 −1.58862
\(584\) 1932.59 0.136937
\(585\) 2107.07 0.148917
\(586\) −13420.8 −0.946092
\(587\) −11336.2 −0.797093 −0.398546 0.917148i \(-0.630485\pi\)
−0.398546 + 0.917148i \(0.630485\pi\)
\(588\) −709.155 −0.0497365
\(589\) −14024.8 −0.981120
\(590\) −5688.95 −0.396967
\(591\) −36357.4 −2.53053
\(592\) −2047.58 −0.142154
\(593\) −9575.02 −0.663067 −0.331534 0.943443i \(-0.607566\pi\)
−0.331534 + 0.943443i \(0.607566\pi\)
\(594\) −3188.12 −0.220219
\(595\) −6241.05 −0.430014
\(596\) 9228.73 0.634268
\(597\) −31392.8 −2.15213
\(598\) 4345.24 0.297141
\(599\) 15495.6 1.05698 0.528491 0.848939i \(-0.322758\pi\)
0.528491 + 0.848939i \(0.322758\pi\)
\(600\) −1541.64 −0.104895
\(601\) 11100.9 0.753433 0.376717 0.926329i \(-0.377053\pi\)
0.376717 + 0.926329i \(0.377053\pi\)
\(602\) 7280.11 0.492882
\(603\) −20023.6 −1.35228
\(604\) 4372.37 0.294552
\(605\) −633.692 −0.0425839
\(606\) 4364.42 0.292562
\(607\) 25928.7 1.73379 0.866897 0.498487i \(-0.166111\pi\)
0.866897 + 0.498487i \(0.166111\pi\)
\(608\) 4893.70 0.326424
\(609\) 25827.2 1.71851
\(610\) 2789.12 0.185128
\(611\) 4335.44 0.287059
\(612\) 9047.69 0.597600
\(613\) −14208.7 −0.936188 −0.468094 0.883679i \(-0.655059\pi\)
−0.468094 + 0.883679i \(0.655059\pi\)
\(614\) −7767.63 −0.510547
\(615\) −9247.58 −0.606339
\(616\) −5463.93 −0.357383
\(617\) −21425.7 −1.39800 −0.699000 0.715121i \(-0.746371\pi\)
−0.699000 + 0.715121i \(0.746371\pi\)
\(618\) −29785.6 −1.93876
\(619\) 22816.0 1.48151 0.740755 0.671776i \(-0.234468\pi\)
0.740755 + 0.671776i \(0.234468\pi\)
\(620\) −1834.16 −0.118809
\(621\) 6977.58 0.450887
\(622\) 18376.0 1.18458
\(623\) 9971.73 0.641266
\(624\) −1603.31 −0.102858
\(625\) 625.000 0.0400000
\(626\) 14950.9 0.954565
\(627\) −45007.0 −2.86668
\(628\) −1392.19 −0.0884622
\(629\) −8929.63 −0.566054
\(630\) 5798.82 0.366715
\(631\) 27919.5 1.76142 0.880710 0.473656i \(-0.157066\pi\)
0.880710 + 0.473656i \(0.157066\pi\)
\(632\) 483.727 0.0304456
\(633\) −36148.2 −2.26977
\(634\) −9336.85 −0.584880
\(635\) 9285.14 0.580267
\(636\) −18059.2 −1.12593
\(637\) 299.000 0.0185978
\(638\) −14302.7 −0.887540
\(639\) 10362.1 0.641499
\(640\) 640.000 0.0395285
\(641\) −27914.7 −1.72007 −0.860033 0.510238i \(-0.829557\pi\)
−0.860033 + 0.510238i \(0.829557\pi\)
\(642\) 7223.32 0.444052
\(643\) −25491.8 −1.56345 −0.781726 0.623622i \(-0.785661\pi\)
−0.781726 + 0.623622i \(0.785661\pi\)
\(644\) 11958.5 0.731723
\(645\) 7842.53 0.478759
\(646\) 21341.7 1.29981
\(647\) −30447.3 −1.85009 −0.925045 0.379857i \(-0.875973\pi\)
−0.925045 + 0.379857i \(0.875973\pi\)
\(648\) 4427.36 0.268400
\(649\) −21720.6 −1.31373
\(650\) 650.000 0.0392232
\(651\) 12645.5 0.761316
\(652\) 9555.92 0.573986
\(653\) 14357.5 0.860418 0.430209 0.902729i \(-0.358440\pi\)
0.430209 + 0.902729i \(0.358440\pi\)
\(654\) 23192.1 1.38667
\(655\) −10116.3 −0.603478
\(656\) 3839.06 0.228491
\(657\) −7830.97 −0.465016
\(658\) 11931.5 0.706897
\(659\) −7815.23 −0.461970 −0.230985 0.972957i \(-0.574195\pi\)
−0.230985 + 0.972957i \(0.574195\pi\)
\(660\) −5886.04 −0.347142
\(661\) −16755.3 −0.985938 −0.492969 0.870047i \(-0.664088\pi\)
−0.492969 + 0.870047i \(0.664088\pi\)
\(662\) −3089.34 −0.181375
\(663\) −6992.13 −0.409580
\(664\) 9638.93 0.563348
\(665\) 13678.3 0.797626
\(666\) 8296.89 0.482730
\(667\) 31303.3 1.81719
\(668\) 17059.8 0.988118
\(669\) 16637.8 0.961516
\(670\) −6176.98 −0.356176
\(671\) 10648.9 0.612665
\(672\) −4412.43 −0.253294
\(673\) −15704.8 −0.899517 −0.449758 0.893150i \(-0.648490\pi\)
−0.449758 + 0.893150i \(0.648490\pi\)
\(674\) −7577.98 −0.433076
\(675\) 1043.77 0.0595181
\(676\) 676.000 0.0384615
\(677\) 12623.1 0.716608 0.358304 0.933605i \(-0.383355\pi\)
0.358304 + 0.933605i \(0.383355\pi\)
\(678\) 20225.8 1.14568
\(679\) −4327.14 −0.244566
\(680\) 2791.08 0.157402
\(681\) 33628.9 1.89231
\(682\) −7002.90 −0.393189
\(683\) 6822.45 0.382216 0.191108 0.981569i \(-0.438792\pi\)
0.191108 + 0.981569i \(0.438792\pi\)
\(684\) −19829.5 −1.10848
\(685\) 7238.73 0.403763
\(686\) 13094.4 0.728786
\(687\) −8261.91 −0.458823
\(688\) −3255.76 −0.180414
\(689\) 7614.26 0.421016
\(690\) 12882.3 0.710755
\(691\) −26024.5 −1.43273 −0.716365 0.697725i \(-0.754196\pi\)
−0.716365 + 0.697725i \(0.754196\pi\)
\(692\) 11486.7 0.631011
\(693\) 22140.1 1.21361
\(694\) −9091.17 −0.497257
\(695\) −7635.12 −0.416714
\(696\) −11550.3 −0.629040
\(697\) 16742.4 0.909847
\(698\) −3090.09 −0.167567
\(699\) 11353.3 0.614335
\(700\) 1788.85 0.0965891
\(701\) −3921.15 −0.211269 −0.105635 0.994405i \(-0.533687\pi\)
−0.105635 + 0.994405i \(0.533687\pi\)
\(702\) 1085.52 0.0583623
\(703\) 19570.8 1.04996
\(704\) 2443.54 0.130816
\(705\) 12853.3 0.686640
\(706\) 8542.56 0.455387
\(707\) −5064.29 −0.269395
\(708\) −17540.6 −0.931099
\(709\) −28145.7 −1.49088 −0.745440 0.666572i \(-0.767761\pi\)
−0.745440 + 0.666572i \(0.767761\pi\)
\(710\) 3196.56 0.168964
\(711\) −1960.09 −0.103388
\(712\) −4459.49 −0.234728
\(713\) 15326.7 0.805034
\(714\) −19242.9 −1.00861
\(715\) 2481.72 0.129806
\(716\) 3931.38 0.205199
\(717\) −18351.9 −0.955877
\(718\) −2213.35 −0.115044
\(719\) 24216.6 1.25609 0.628043 0.778179i \(-0.283856\pi\)
0.628043 + 0.778179i \(0.283856\pi\)
\(720\) −2593.31 −0.134232
\(721\) 34561.9 1.78523
\(722\) −33056.0 −1.70390
\(723\) 33737.0 1.73540
\(724\) 13371.4 0.686386
\(725\) 4682.62 0.239873
\(726\) −1953.85 −0.0998818
\(727\) −12683.1 −0.647027 −0.323513 0.946224i \(-0.604864\pi\)
−0.323513 + 0.946224i \(0.604864\pi\)
\(728\) 1860.41 0.0947134
\(729\) −26629.1 −1.35290
\(730\) −2415.74 −0.122480
\(731\) −14198.6 −0.718406
\(732\) 8599.63 0.434224
\(733\) −19816.4 −0.998546 −0.499273 0.866445i \(-0.666400\pi\)
−0.499273 + 0.866445i \(0.666400\pi\)
\(734\) −166.255 −0.00836047
\(735\) 886.443 0.0444857
\(736\) −5347.99 −0.267839
\(737\) −23583.9 −1.17873
\(738\) −15556.1 −0.775917
\(739\) 19586.7 0.974976 0.487488 0.873130i \(-0.337913\pi\)
0.487488 + 0.873130i \(0.337913\pi\)
\(740\) 2559.47 0.127146
\(741\) 15324.4 0.759725
\(742\) 20955.1 1.03677
\(743\) 12246.4 0.604680 0.302340 0.953200i \(-0.402232\pi\)
0.302340 + 0.953200i \(0.402232\pi\)
\(744\) −5655.24 −0.278671
\(745\) −11535.9 −0.567306
\(746\) −5018.33 −0.246293
\(747\) −39057.5 −1.91304
\(748\) 10656.5 0.520907
\(749\) −8381.63 −0.408889
\(750\) 1927.05 0.0938213
\(751\) −6566.74 −0.319073 −0.159537 0.987192i \(-0.551000\pi\)
−0.159537 + 0.987192i \(0.551000\pi\)
\(752\) −5335.93 −0.258752
\(753\) 8384.99 0.405798
\(754\) 4869.93 0.235215
\(755\) −5465.47 −0.263455
\(756\) 2987.44 0.143720
\(757\) 7608.85 0.365321 0.182661 0.983176i \(-0.441529\pi\)
0.182661 + 0.983176i \(0.441529\pi\)
\(758\) −11919.5 −0.571157
\(759\) 49185.1 2.35218
\(760\) −6117.12 −0.291962
\(761\) 5763.27 0.274532 0.137266 0.990534i \(-0.456169\pi\)
0.137266 + 0.990534i \(0.456169\pi\)
\(762\) 28628.7 1.36104
\(763\) −26911.1 −1.27686
\(764\) 64.4210 0.00305061
\(765\) −11309.6 −0.534510
\(766\) 4383.16 0.206749
\(767\) 7395.64 0.348163
\(768\) 1973.30 0.0927153
\(769\) −11841.4 −0.555282 −0.277641 0.960685i \(-0.589553\pi\)
−0.277641 + 0.960685i \(0.589553\pi\)
\(770\) 6829.91 0.319653
\(771\) −39408.1 −1.84079
\(772\) −2116.01 −0.0986489
\(773\) −5247.85 −0.244181 −0.122091 0.992519i \(-0.538960\pi\)
−0.122091 + 0.992519i \(0.538960\pi\)
\(774\) 13192.5 0.612656
\(775\) 2292.71 0.106266
\(776\) 1935.16 0.0895208
\(777\) −17646.1 −0.814737
\(778\) 8315.05 0.383173
\(779\) −36693.7 −1.68766
\(780\) 2004.13 0.0919993
\(781\) 12204.6 0.559172
\(782\) −23322.9 −1.06653
\(783\) 7820.13 0.356920
\(784\) −368.000 −0.0167638
\(785\) 1740.23 0.0791230
\(786\) −31191.5 −1.41548
\(787\) 33333.8 1.50981 0.754905 0.655835i \(-0.227683\pi\)
0.754905 + 0.655835i \(0.227683\pi\)
\(788\) −18866.9 −0.852924
\(789\) −29220.9 −1.31849
\(790\) −604.659 −0.0272314
\(791\) −23469.2 −1.05495
\(792\) −9901.36 −0.444229
\(793\) −3625.85 −0.162368
\(794\) 27244.1 1.21771
\(795\) 22573.9 1.00706
\(796\) −16290.6 −0.725383
\(797\) 6999.18 0.311071 0.155535 0.987830i \(-0.450290\pi\)
0.155535 + 0.987830i \(0.450290\pi\)
\(798\) 42174.0 1.87086
\(799\) −23270.3 −1.03034
\(800\) −800.000 −0.0353553
\(801\) 18070.1 0.797098
\(802\) 3358.82 0.147886
\(803\) −9223.39 −0.405338
\(804\) −19045.4 −0.835421
\(805\) −14948.1 −0.654473
\(806\) 2384.41 0.104203
\(807\) 27158.3 1.18466
\(808\) 2264.82 0.0986089
\(809\) 10977.3 0.477058 0.238529 0.971135i \(-0.423335\pi\)
0.238529 + 0.971135i \(0.423335\pi\)
\(810\) −5534.20 −0.240064
\(811\) 31470.2 1.36260 0.681299 0.732005i \(-0.261415\pi\)
0.681299 + 0.732005i \(0.261415\pi\)
\(812\) 13402.5 0.579229
\(813\) 32795.2 1.41473
\(814\) 9772.16 0.420779
\(815\) −11944.9 −0.513388
\(816\) 8605.70 0.369191
\(817\) 31118.6 1.33256
\(818\) 30921.2 1.32168
\(819\) −7538.47 −0.321631
\(820\) −4798.82 −0.204369
\(821\) 970.042 0.0412359 0.0206180 0.999787i \(-0.493437\pi\)
0.0206180 + 0.999787i \(0.493437\pi\)
\(822\) 22319.0 0.947039
\(823\) −2108.31 −0.0892964 −0.0446482 0.999003i \(-0.514217\pi\)
−0.0446482 + 0.999003i \(0.514217\pi\)
\(824\) −15456.6 −0.653464
\(825\) 7357.55 0.310493
\(826\) 20353.4 0.857368
\(827\) 35137.2 1.47744 0.738719 0.674013i \(-0.235431\pi\)
0.738719 + 0.674013i \(0.235431\pi\)
\(828\) 21670.3 0.909536
\(829\) −20626.9 −0.864175 −0.432088 0.901832i \(-0.642223\pi\)
−0.432088 + 0.901832i \(0.642223\pi\)
\(830\) −12048.7 −0.503874
\(831\) −10119.1 −0.422416
\(832\) −832.000 −0.0346688
\(833\) −1604.87 −0.0667534
\(834\) −23541.2 −0.977417
\(835\) −21324.7 −0.883800
\(836\) −23355.4 −0.966223
\(837\) 3828.89 0.158119
\(838\) 27729.2 1.14307
\(839\) −36738.4 −1.51174 −0.755870 0.654722i \(-0.772786\pi\)
−0.755870 + 0.654722i \(0.772786\pi\)
\(840\) 5515.54 0.226553
\(841\) 10694.1 0.438482
\(842\) 7252.73 0.296847
\(843\) 23990.8 0.980176
\(844\) −18758.3 −0.765032
\(845\) −845.000 −0.0344010
\(846\) 21621.4 0.878677
\(847\) 2267.16 0.0919725
\(848\) −9371.39 −0.379499
\(849\) −30705.8 −1.24125
\(850\) −3488.85 −0.140784
\(851\) −21387.6 −0.861523
\(852\) 9855.88 0.396311
\(853\) −14073.1 −0.564893 −0.282446 0.959283i \(-0.591146\pi\)
−0.282446 + 0.959283i \(0.591146\pi\)
\(854\) −9978.65 −0.399839
\(855\) 24786.9 0.991454
\(856\) 3748.38 0.149669
\(857\) 48358.8 1.92754 0.963772 0.266726i \(-0.0859420\pi\)
0.963772 + 0.266726i \(0.0859420\pi\)
\(858\) 7651.85 0.304464
\(859\) 25856.3 1.02702 0.513508 0.858085i \(-0.328346\pi\)
0.513508 + 0.858085i \(0.328346\pi\)
\(860\) 4069.71 0.161367
\(861\) 33085.1 1.30957
\(862\) −26378.9 −1.04231
\(863\) −15097.4 −0.595507 −0.297754 0.954643i \(-0.596237\pi\)
−0.297754 + 0.954643i \(0.596237\pi\)
\(864\) −1336.02 −0.0526070
\(865\) −14358.4 −0.564394
\(866\) 6123.36 0.240277
\(867\) −340.379 −0.0133332
\(868\) 6562.10 0.256604
\(869\) −2308.61 −0.0901199
\(870\) 14437.8 0.562631
\(871\) 8030.08 0.312387
\(872\) 12035.0 0.467381
\(873\) −7841.36 −0.303997
\(874\) 51116.1 1.97829
\(875\) −2236.07 −0.0863919
\(876\) −7448.42 −0.287282
\(877\) 8455.97 0.325585 0.162792 0.986660i \(-0.447950\pi\)
0.162792 + 0.986660i \(0.447950\pi\)
\(878\) −25502.9 −0.980273
\(879\) 51725.3 1.98481
\(880\) −3054.43 −0.117005
\(881\) −5047.67 −0.193031 −0.0965154 0.995331i \(-0.530770\pi\)
−0.0965154 + 0.995331i \(0.530770\pi\)
\(882\) 1491.15 0.0569272
\(883\) −25885.9 −0.986558 −0.493279 0.869871i \(-0.664202\pi\)
−0.493279 + 0.869871i \(0.664202\pi\)
\(884\) −3628.41 −0.138050
\(885\) 21925.8 0.832800
\(886\) 12750.5 0.483477
\(887\) 12787.6 0.484065 0.242032 0.970268i \(-0.422186\pi\)
0.242032 + 0.970268i \(0.422186\pi\)
\(888\) 7891.58 0.298225
\(889\) −33219.5 −1.25326
\(890\) 5574.37 0.209947
\(891\) −21129.7 −0.794470
\(892\) 8633.81 0.324082
\(893\) 51000.8 1.91117
\(894\) −35568.5 −1.33063
\(895\) −4914.23 −0.183536
\(896\) −2289.73 −0.0853735
\(897\) −16747.0 −0.623373
\(898\) −29643.9 −1.10159
\(899\) 17177.4 0.637262
\(900\) 3241.64 0.120061
\(901\) −40869.3 −1.51116
\(902\) −18322.1 −0.676339
\(903\) −28058.3 −1.03402
\(904\) 10495.8 0.386154
\(905\) −16714.2 −0.613923
\(906\) −16851.6 −0.617943
\(907\) −4778.50 −0.174937 −0.0874683 0.996167i \(-0.527878\pi\)
−0.0874683 + 0.996167i \(0.527878\pi\)
\(908\) 17450.9 0.637808
\(909\) −9177.15 −0.334859
\(910\) −2325.51 −0.0847142
\(911\) −581.524 −0.0211490 −0.0105745 0.999944i \(-0.503366\pi\)
−0.0105745 + 0.999944i \(0.503366\pi\)
\(912\) −18860.8 −0.684807
\(913\) −46002.2 −1.66753
\(914\) −19583.1 −0.708698
\(915\) −10749.5 −0.388381
\(916\) −4287.33 −0.154648
\(917\) 36193.3 1.30339
\(918\) −5826.50 −0.209480
\(919\) 11885.1 0.426610 0.213305 0.976986i \(-0.431577\pi\)
0.213305 + 0.976986i \(0.431577\pi\)
\(920\) 6684.98 0.239562
\(921\) 29937.2 1.07108
\(922\) −15065.2 −0.538117
\(923\) −4155.52 −0.148191
\(924\) 21058.5 0.749756
\(925\) −3199.34 −0.113723
\(926\) −4091.80 −0.145210
\(927\) 62630.7 2.21905
\(928\) −5993.76 −0.212020
\(929\) 15219.6 0.537502 0.268751 0.963210i \(-0.413389\pi\)
0.268751 + 0.963210i \(0.413389\pi\)
\(930\) 7069.06 0.249251
\(931\) 3517.34 0.123820
\(932\) 5891.53 0.207064
\(933\) −70823.1 −2.48515
\(934\) −34578.0 −1.21138
\(935\) −13320.6 −0.465913
\(936\) 3371.31 0.117729
\(937\) −48722.0 −1.69870 −0.849349 0.527832i \(-0.823005\pi\)
−0.849349 + 0.527832i \(0.823005\pi\)
\(938\) 22099.4 0.769267
\(939\) −57622.3 −2.00259
\(940\) 6669.91 0.231434
\(941\) −27151.1 −0.940597 −0.470299 0.882507i \(-0.655854\pi\)
−0.470299 + 0.882507i \(0.655854\pi\)
\(942\) 5365.63 0.185585
\(943\) 40100.1 1.38477
\(944\) −9102.33 −0.313830
\(945\) −3734.30 −0.128547
\(946\) 15538.3 0.534031
\(947\) 26266.5 0.901317 0.450659 0.892696i \(-0.351189\pi\)
0.450659 + 0.892696i \(0.351189\pi\)
\(948\) −1864.33 −0.0638721
\(949\) 3140.47 0.107422
\(950\) 7646.40 0.261139
\(951\) 35985.2 1.22702
\(952\) −9985.68 −0.339956
\(953\) −27675.9 −0.940725 −0.470363 0.882473i \(-0.655877\pi\)
−0.470363 + 0.882473i \(0.655877\pi\)
\(954\) 37973.4 1.28871
\(955\) −80.5262 −0.00272855
\(956\) −9523.30 −0.322182
\(957\) 55124.2 1.86198
\(958\) −28977.4 −0.977261
\(959\) −25898.1 −0.872046
\(960\) −2466.63 −0.0829271
\(961\) −21380.6 −0.717687
\(962\) −3327.32 −0.111515
\(963\) −15188.6 −0.508252
\(964\) 17507.1 0.584922
\(965\) 2645.02 0.0882343
\(966\) −46089.1 −1.53509
\(967\) −1676.34 −0.0557471 −0.0278736 0.999611i \(-0.508874\pi\)
−0.0278736 + 0.999611i \(0.508874\pi\)
\(968\) −1013.91 −0.0336655
\(969\) −82253.3 −2.72689
\(970\) −2418.95 −0.0800698
\(971\) 12176.4 0.402431 0.201215 0.979547i \(-0.435511\pi\)
0.201215 + 0.979547i \(0.435511\pi\)
\(972\) −21572.6 −0.711873
\(973\) 27316.2 0.900018
\(974\) 6902.51 0.227075
\(975\) −2505.17 −0.0822867
\(976\) 4462.59 0.146357
\(977\) −4710.79 −0.154259 −0.0771297 0.997021i \(-0.524576\pi\)
−0.0771297 + 0.997021i \(0.524576\pi\)
\(978\) −36829.5 −1.20417
\(979\) 21283.1 0.694802
\(980\) 460.000 0.0149940
\(981\) −48766.4 −1.58715
\(982\) 40657.8 1.32122
\(983\) 4834.94 0.156878 0.0784388 0.996919i \(-0.475006\pi\)
0.0784388 + 0.996919i \(0.475006\pi\)
\(984\) −14796.1 −0.479353
\(985\) 23583.6 0.762879
\(986\) −26139.2 −0.844261
\(987\) −45985.2 −1.48300
\(988\) 7952.26 0.256068
\(989\) −34007.4 −1.09340
\(990\) 12376.7 0.397330
\(991\) 28637.9 0.917973 0.458987 0.888443i \(-0.348213\pi\)
0.458987 + 0.888443i \(0.348213\pi\)
\(992\) −2934.66 −0.0939270
\(993\) 11906.6 0.380509
\(994\) −11436.3 −0.364928
\(995\) 20363.2 0.648802
\(996\) −37149.4 −1.18185
\(997\) −27133.9 −0.861924 −0.430962 0.902370i \(-0.641826\pi\)
−0.430962 + 0.902370i \(0.641826\pi\)
\(998\) 9512.72 0.301723
\(999\) −5343.00 −0.169214
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.4.a.e.1.2 2
3.2 odd 2 1170.4.a.z.1.2 2
4.3 odd 2 1040.4.a.j.1.1 2
5.2 odd 4 650.4.b.k.599.1 4
5.3 odd 4 650.4.b.k.599.4 4
5.4 even 2 650.4.a.s.1.1 2
13.12 even 2 1690.4.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.e.1.2 2 1.1 even 1 trivial
650.4.a.s.1.1 2 5.4 even 2
650.4.b.k.599.1 4 5.2 odd 4
650.4.b.k.599.4 4 5.3 odd 4
1040.4.a.j.1.1 2 4.3 odd 2
1170.4.a.z.1.2 2 3.2 odd 2
1690.4.a.t.1.2 2 13.12 even 2