Properties

Label 2-130-1.1-c3-0-3
Degree $2$
Conductor $130$
Sign $1$
Analytic cond. $7.67024$
Root an. cond. $2.76952$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 7.70·3-s + 4·4-s − 5·5-s − 15.4·6-s + 17.8·7-s − 8·8-s + 32.4·9-s + 10·10-s + 38.1·11-s + 30.8·12-s − 13·13-s − 35.7·14-s − 38.5·15-s + 16·16-s + 69.7·17-s − 64.8·18-s − 152.·19-s − 20·20-s + 137.·21-s − 76.3·22-s + 167.·23-s − 61.6·24-s + 25·25-s + 26·26-s + 41.7·27-s + 71.5·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.48·3-s + 0.5·4-s − 0.447·5-s − 1.04·6-s + 0.965·7-s − 0.353·8-s + 1.20·9-s + 0.316·10-s + 1.04·11-s + 0.741·12-s − 0.277·13-s − 0.682·14-s − 0.663·15-s + 0.250·16-s + 0.995·17-s − 0.848·18-s − 1.84·19-s − 0.223·20-s + 1.43·21-s − 0.740·22-s + 1.51·23-s − 0.524·24-s + 0.200·25-s + 0.196·26-s + 0.297·27-s + 0.482·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130\)    =    \(2 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(7.67024\)
Root analytic conductor: \(2.76952\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 130,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.014636067\)
\(L(\frac12)\) \(\approx\) \(2.014636067\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 + 5T \)
13 \( 1 + 13T \)
good3 \( 1 - 7.70T + 27T^{2} \)
7 \( 1 - 17.8T + 343T^{2} \)
11 \( 1 - 38.1T + 1.33e3T^{2} \)
17 \( 1 - 69.7T + 4.91e3T^{2} \)
19 \( 1 + 152.T + 6.85e3T^{2} \)
23 \( 1 - 167.T + 1.21e4T^{2} \)
29 \( 1 - 187.T + 2.43e4T^{2} \)
31 \( 1 - 91.7T + 2.97e4T^{2} \)
37 \( 1 + 127.T + 5.06e4T^{2} \)
41 \( 1 - 239.T + 6.89e4T^{2} \)
43 \( 1 + 203.T + 7.95e4T^{2} \)
47 \( 1 + 333.T + 1.03e5T^{2} \)
53 \( 1 + 585.T + 1.48e5T^{2} \)
59 \( 1 + 568.T + 2.05e5T^{2} \)
61 \( 1 - 278.T + 2.26e5T^{2} \)
67 \( 1 + 617.T + 3.00e5T^{2} \)
71 \( 1 - 319.T + 3.57e5T^{2} \)
73 \( 1 + 241.T + 3.89e5T^{2} \)
79 \( 1 + 60.4T + 4.93e5T^{2} \)
83 \( 1 + 1.20e3T + 5.71e5T^{2} \)
89 \( 1 - 557.T + 7.04e5T^{2} \)
97 \( 1 + 241.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83276631086313960662308754031, −11.71440749110991913760591008001, −10.60199092606174786114806412270, −9.354646774790104184859736613312, −8.507688877116311488866153316027, −7.911299962931347322462937407290, −6.70621648449117289917079969740, −4.49796171678336223183279309291, −3.05089722318831834150428472153, −1.53334450030353088230815352450, 1.53334450030353088230815352450, 3.05089722318831834150428472153, 4.49796171678336223183279309291, 6.70621648449117289917079969740, 7.911299962931347322462937407290, 8.507688877116311488866153316027, 9.354646774790104184859736613312, 10.60199092606174786114806412270, 11.71440749110991913760591008001, 12.83276631086313960662308754031

Graph of the $Z$-function along the critical line