Properties

Label 650.4.b.h.599.3
Level $650$
Weight $4$
Character 650.599
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-32,0,0,44,0,44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{454})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 51529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.3
Root \(-10.6536 - 10.6536i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.4.b.h.599.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +4.00000i q^{3} -4.00000 q^{4} -8.00000 q^{6} -16.3073i q^{7} -8.00000i q^{8} +11.0000 q^{9} -10.3073 q^{11} -16.0000i q^{12} +13.0000i q^{13} +32.6146 q^{14} +16.0000 q^{16} +95.6146i q^{17} +22.0000i q^{18} +59.2291 q^{19} +65.2291 q^{21} -20.6146i q^{22} -57.8437i q^{23} +32.0000 q^{24} -26.0000 q^{26} +152.000i q^{27} +65.2291i q^{28} -272.687 q^{29} -313.995 q^{31} +32.0000i q^{32} -41.2291i q^{33} -191.229 q^{34} -44.0000 q^{36} +366.000i q^{37} +118.458i q^{38} -52.0000 q^{39} +172.916 q^{41} +130.458i q^{42} +76.3019i q^{43} +41.2291 q^{44} +115.687 q^{46} +101.078i q^{47} +64.0000i q^{48} +77.0728 q^{49} -382.458 q^{51} -52.0000i q^{52} -181.156i q^{53} -304.000 q^{54} -130.458 q^{56} +236.916i q^{57} -545.375i q^{58} -834.453 q^{59} -556.073 q^{61} -627.989i q^{62} -179.380i q^{63} -64.0000 q^{64} +82.4582 q^{66} +220.922i q^{67} -382.458i q^{68} +231.375 q^{69} +702.916 q^{71} -88.0000i q^{72} +76.1455i q^{73} -732.000 q^{74} -236.916 q^{76} +168.084i q^{77} -104.000i q^{78} -100.927 q^{79} -311.000 q^{81} +345.833i q^{82} -318.464i q^{83} -260.916 q^{84} -152.604 q^{86} -1090.75i q^{87} +82.4582i q^{88} +161.833 q^{89} +211.995 q^{91} +231.375i q^{92} -1255.98i q^{93} -202.156 q^{94} -128.000 q^{96} +1329.98i q^{97} +154.146i q^{98} -113.380 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 32 q^{6} + 44 q^{9} + 44 q^{11} - 40 q^{14} + 64 q^{16} - 104 q^{19} - 80 q^{21} + 128 q^{24} - 104 q^{26} - 68 q^{29} - 148 q^{31} - 424 q^{34} - 176 q^{36} - 208 q^{39} - 672 q^{41} - 176 q^{44}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 4.00000i 0.769800i 0.922958 + 0.384900i \(0.125764\pi\)
−0.922958 + 0.384900i \(0.874236\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −8.00000 −0.544331
\(7\) − 16.3073i − 0.880510i −0.897873 0.440255i \(-0.854888\pi\)
0.897873 0.440255i \(-0.145112\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) −10.3073 −0.282524 −0.141262 0.989972i \(-0.545116\pi\)
−0.141262 + 0.989972i \(0.545116\pi\)
\(12\) − 16.0000i − 0.384900i
\(13\) 13.0000i 0.277350i
\(14\) 32.6146 0.622615
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 95.6146i 1.36411i 0.731299 + 0.682057i \(0.238914\pi\)
−0.731299 + 0.682057i \(0.761086\pi\)
\(18\) 22.0000i 0.288081i
\(19\) 59.2291 0.715163 0.357581 0.933882i \(-0.383602\pi\)
0.357581 + 0.933882i \(0.383602\pi\)
\(20\) 0 0
\(21\) 65.2291 0.677817
\(22\) − 20.6146i − 0.199774i
\(23\) − 57.8437i − 0.524402i −0.965013 0.262201i \(-0.915552\pi\)
0.965013 0.262201i \(-0.0844483\pi\)
\(24\) 32.0000 0.272166
\(25\) 0 0
\(26\) −26.0000 −0.196116
\(27\) 152.000i 1.08342i
\(28\) 65.2291i 0.440255i
\(29\) −272.687 −1.74610 −0.873048 0.487635i \(-0.837860\pi\)
−0.873048 + 0.487635i \(0.837860\pi\)
\(30\) 0 0
\(31\) −313.995 −1.81920 −0.909598 0.415489i \(-0.863611\pi\)
−0.909598 + 0.415489i \(0.863611\pi\)
\(32\) 32.0000i 0.176777i
\(33\) − 41.2291i − 0.217487i
\(34\) −191.229 −0.964574
\(35\) 0 0
\(36\) −44.0000 −0.203704
\(37\) 366.000i 1.62622i 0.582112 + 0.813109i \(0.302226\pi\)
−0.582112 + 0.813109i \(0.697774\pi\)
\(38\) 118.458i 0.505696i
\(39\) −52.0000 −0.213504
\(40\) 0 0
\(41\) 172.916 0.658659 0.329329 0.944215i \(-0.393177\pi\)
0.329329 + 0.944215i \(0.393177\pi\)
\(42\) 130.458i 0.479289i
\(43\) 76.3019i 0.270603i 0.990804 + 0.135301i \(0.0432003\pi\)
−0.990804 + 0.135301i \(0.956800\pi\)
\(44\) 41.2291 0.141262
\(45\) 0 0
\(46\) 115.687 0.370808
\(47\) 101.078i 0.313697i 0.987623 + 0.156849i \(0.0501335\pi\)
−0.987623 + 0.156849i \(0.949867\pi\)
\(48\) 64.0000i 0.192450i
\(49\) 77.0728 0.224702
\(50\) 0 0
\(51\) −382.458 −1.05010
\(52\) − 52.0000i − 0.138675i
\(53\) − 181.156i − 0.469504i −0.972055 0.234752i \(-0.924572\pi\)
0.972055 0.234752i \(-0.0754279\pi\)
\(54\) −304.000 −0.766096
\(55\) 0 0
\(56\) −130.458 −0.311307
\(57\) 236.916i 0.550532i
\(58\) − 545.375i − 1.23468i
\(59\) −834.453 −1.84130 −0.920648 0.390393i \(-0.872339\pi\)
−0.920648 + 0.390393i \(0.872339\pi\)
\(60\) 0 0
\(61\) −556.073 −1.16718 −0.583589 0.812049i \(-0.698352\pi\)
−0.583589 + 0.812049i \(0.698352\pi\)
\(62\) − 627.989i − 1.28637i
\(63\) − 179.380i − 0.358726i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 82.4582 0.153786
\(67\) 220.922i 0.402834i 0.979506 + 0.201417i \(0.0645547\pi\)
−0.979506 + 0.201417i \(0.935445\pi\)
\(68\) − 382.458i − 0.682057i
\(69\) 231.375 0.403685
\(70\) 0 0
\(71\) 702.916 1.17494 0.587471 0.809245i \(-0.300124\pi\)
0.587471 + 0.809245i \(0.300124\pi\)
\(72\) − 88.0000i − 0.144040i
\(73\) 76.1455i 0.122084i 0.998135 + 0.0610422i \(0.0194424\pi\)
−0.998135 + 0.0610422i \(0.980558\pi\)
\(74\) −732.000 −1.14991
\(75\) 0 0
\(76\) −236.916 −0.357581
\(77\) 168.084i 0.248765i
\(78\) − 104.000i − 0.150970i
\(79\) −100.927 −0.143737 −0.0718684 0.997414i \(-0.522896\pi\)
−0.0718684 + 0.997414i \(0.522896\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 345.833i 0.465742i
\(83\) − 318.464i − 0.421156i −0.977577 0.210578i \(-0.932465\pi\)
0.977577 0.210578i \(-0.0675345\pi\)
\(84\) −260.916 −0.338909
\(85\) 0 0
\(86\) −152.604 −0.191345
\(87\) − 1090.75i − 1.34414i
\(88\) 82.4582i 0.0998872i
\(89\) 161.833 0.192744 0.0963722 0.995345i \(-0.469276\pi\)
0.0963722 + 0.995345i \(0.469276\pi\)
\(90\) 0 0
\(91\) 211.995 0.244210
\(92\) 231.375i 0.262201i
\(93\) − 1255.98i − 1.40042i
\(94\) −202.156 −0.221817
\(95\) 0 0
\(96\) −128.000 −0.136083
\(97\) 1329.98i 1.39215i 0.717968 + 0.696076i \(0.245073\pi\)
−0.717968 + 0.696076i \(0.754927\pi\)
\(98\) 154.146i 0.158888i
\(99\) −113.380 −0.115102
\(100\) 0 0
\(101\) −107.615 −0.106020 −0.0530101 0.998594i \(-0.516882\pi\)
−0.0530101 + 0.998594i \(0.516882\pi\)
\(102\) − 764.916i − 0.742530i
\(103\) − 882.771i − 0.844485i −0.906483 0.422243i \(-0.861243\pi\)
0.906483 0.422243i \(-0.138757\pi\)
\(104\) 104.000 0.0980581
\(105\) 0 0
\(106\) 362.313 0.331990
\(107\) − 583.051i − 0.526782i −0.964689 0.263391i \(-0.915159\pi\)
0.964689 0.263391i \(-0.0848409\pi\)
\(108\) − 608.000i − 0.541711i
\(109\) −495.062 −0.435031 −0.217515 0.976057i \(-0.569795\pi\)
−0.217515 + 0.976057i \(0.569795\pi\)
\(110\) 0 0
\(111\) −1464.00 −1.25186
\(112\) − 260.916i − 0.220128i
\(113\) − 392.458i − 0.326720i −0.986567 0.163360i \(-0.947767\pi\)
0.986567 0.163360i \(-0.0522332\pi\)
\(114\) −473.833 −0.389285
\(115\) 0 0
\(116\) 1090.75 0.873048
\(117\) 143.000i 0.112994i
\(118\) − 1668.91i − 1.30199i
\(119\) 1559.21 1.20112
\(120\) 0 0
\(121\) −1224.76 −0.920180
\(122\) − 1112.15i − 0.825319i
\(123\) 691.666i 0.507036i
\(124\) 1255.98 0.909598
\(125\) 0 0
\(126\) 358.760 0.253658
\(127\) 954.135i 0.666660i 0.942810 + 0.333330i \(0.108172\pi\)
−0.942810 + 0.333330i \(0.891828\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −305.207 −0.208310
\(130\) 0 0
\(131\) 56.9164 0.0379604 0.0189802 0.999820i \(-0.493958\pi\)
0.0189802 + 0.999820i \(0.493958\pi\)
\(132\) 164.916i 0.108743i
\(133\) − 965.865i − 0.629708i
\(134\) −441.844 −0.284847
\(135\) 0 0
\(136\) 764.916 0.482287
\(137\) 2568.27i 1.60162i 0.598918 + 0.800810i \(0.295598\pi\)
−0.598918 + 0.800810i \(0.704402\pi\)
\(138\) 462.749i 0.285448i
\(139\) −1603.05 −0.978194 −0.489097 0.872229i \(-0.662674\pi\)
−0.489097 + 0.872229i \(0.662674\pi\)
\(140\) 0 0
\(141\) −404.313 −0.241484
\(142\) 1405.83i 0.830809i
\(143\) − 133.995i − 0.0783580i
\(144\) 176.000 0.101852
\(145\) 0 0
\(146\) −152.291 −0.0863267
\(147\) 308.291i 0.172976i
\(148\) − 1464.00i − 0.813109i
\(149\) −1585.08 −0.871511 −0.435755 0.900065i \(-0.643519\pi\)
−0.435755 + 0.900065i \(0.643519\pi\)
\(150\) 0 0
\(151\) −2077.20 −1.11947 −0.559736 0.828671i \(-0.689097\pi\)
−0.559736 + 0.828671i \(0.689097\pi\)
\(152\) − 473.833i − 0.252848i
\(153\) 1051.76i 0.555750i
\(154\) −336.167 −0.175903
\(155\) 0 0
\(156\) 208.000 0.106752
\(157\) − 1605.73i − 0.816248i −0.912926 0.408124i \(-0.866183\pi\)
0.912926 0.408124i \(-0.133817\pi\)
\(158\) − 201.854i − 0.101637i
\(159\) 724.625 0.361425
\(160\) 0 0
\(161\) −943.272 −0.461741
\(162\) − 622.000i − 0.301660i
\(163\) 497.105i 0.238873i 0.992842 + 0.119436i \(0.0381088\pi\)
−0.992842 + 0.119436i \(0.961891\pi\)
\(164\) −691.666 −0.329329
\(165\) 0 0
\(166\) 636.927 0.297802
\(167\) 1889.06i 0.875329i 0.899138 + 0.437665i \(0.144194\pi\)
−0.899138 + 0.437665i \(0.855806\pi\)
\(168\) − 521.833i − 0.239645i
\(169\) −169.000 −0.0769231
\(170\) 0 0
\(171\) 651.520 0.291363
\(172\) − 305.207i − 0.135301i
\(173\) − 3257.86i − 1.43174i −0.698235 0.715869i \(-0.746031\pi\)
0.698235 0.715869i \(-0.253969\pi\)
\(174\) 2181.50 0.950454
\(175\) 0 0
\(176\) −164.916 −0.0706309
\(177\) − 3337.81i − 1.41743i
\(178\) 323.666i 0.136291i
\(179\) 4249.23 1.77431 0.887157 0.461467i \(-0.152677\pi\)
0.887157 + 0.461467i \(0.152677\pi\)
\(180\) 0 0
\(181\) −3803.12 −1.56179 −0.780895 0.624662i \(-0.785237\pi\)
−0.780895 + 0.624662i \(0.785237\pi\)
\(182\) 423.989i 0.172682i
\(183\) − 2224.29i − 0.898494i
\(184\) −462.749 −0.185404
\(185\) 0 0
\(186\) 2511.96 0.990245
\(187\) − 985.526i − 0.385394i
\(188\) − 404.313i − 0.156849i
\(189\) 2478.71 0.953965
\(190\) 0 0
\(191\) −3338.38 −1.26470 −0.632348 0.774685i \(-0.717909\pi\)
−0.632348 + 0.774685i \(0.717909\pi\)
\(192\) − 256.000i − 0.0962250i
\(193\) 2879.98i 1.07412i 0.843544 + 0.537061i \(0.180465\pi\)
−0.843544 + 0.537061i \(0.819535\pi\)
\(194\) −2659.96 −0.984401
\(195\) 0 0
\(196\) −308.291 −0.112351
\(197\) 1038.73i 0.375666i 0.982201 + 0.187833i \(0.0601464\pi\)
−0.982201 + 0.187833i \(0.939854\pi\)
\(198\) − 226.760i − 0.0813896i
\(199\) 3322.13 1.18342 0.591708 0.806152i \(-0.298454\pi\)
0.591708 + 0.806152i \(0.298454\pi\)
\(200\) 0 0
\(201\) −883.687 −0.310102
\(202\) − 215.229i − 0.0749677i
\(203\) 4446.79i 1.53745i
\(204\) 1529.83 0.525048
\(205\) 0 0
\(206\) 1765.54 0.597141
\(207\) − 636.280i − 0.213645i
\(208\) 208.000i 0.0693375i
\(209\) −610.491 −0.202050
\(210\) 0 0
\(211\) −649.240 −0.211827 −0.105914 0.994375i \(-0.533777\pi\)
−0.105914 + 0.994375i \(0.533777\pi\)
\(212\) 724.625i 0.234752i
\(213\) 2811.67i 0.904470i
\(214\) 1166.10 0.372491
\(215\) 0 0
\(216\) 1216.00 0.383048
\(217\) 5120.40i 1.60182i
\(218\) − 990.124i − 0.307613i
\(219\) −304.582 −0.0939806
\(220\) 0 0
\(221\) −1242.99 −0.378337
\(222\) − 2928.00i − 0.885200i
\(223\) 4168.41i 1.25174i 0.779928 + 0.625869i \(0.215256\pi\)
−0.779928 + 0.625869i \(0.784744\pi\)
\(224\) 521.833 0.155654
\(225\) 0 0
\(226\) 784.916 0.231026
\(227\) − 3076.15i − 0.899433i −0.893171 0.449717i \(-0.851525\pi\)
0.893171 0.449717i \(-0.148475\pi\)
\(228\) − 947.666i − 0.275266i
\(229\) −2960.10 −0.854188 −0.427094 0.904207i \(-0.640463\pi\)
−0.427094 + 0.904207i \(0.640463\pi\)
\(230\) 0 0
\(231\) −672.334 −0.191499
\(232\) 2181.50i 0.617338i
\(233\) 1049.67i 0.295133i 0.989052 + 0.147566i \(0.0471440\pi\)
−0.989052 + 0.147566i \(0.952856\pi\)
\(234\) −286.000 −0.0798992
\(235\) 0 0
\(236\) 3337.81 0.920648
\(237\) − 403.709i − 0.110649i
\(238\) 3118.43i 0.849317i
\(239\) −3746.54 −1.01399 −0.506995 0.861949i \(-0.669244\pi\)
−0.506995 + 0.861949i \(0.669244\pi\)
\(240\) 0 0
\(241\) 5009.14 1.33887 0.669434 0.742871i \(-0.266537\pi\)
0.669434 + 0.742871i \(0.266537\pi\)
\(242\) − 2449.52i − 0.650666i
\(243\) 2860.00i 0.755017i
\(244\) 2224.29 0.583589
\(245\) 0 0
\(246\) −1383.33 −0.358528
\(247\) 769.978i 0.198350i
\(248\) 2511.96i 0.643183i
\(249\) 1273.85 0.324206
\(250\) 0 0
\(251\) 4368.23 1.09849 0.549243 0.835663i \(-0.314916\pi\)
0.549243 + 0.835663i \(0.314916\pi\)
\(252\) 717.520i 0.179363i
\(253\) 596.210i 0.148156i
\(254\) −1908.27 −0.471399
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 5543.85i − 1.34559i −0.739830 0.672794i \(-0.765094\pi\)
0.739830 0.672794i \(-0.234906\pi\)
\(258\) − 610.415i − 0.147298i
\(259\) 5968.46 1.43190
\(260\) 0 0
\(261\) −2999.56 −0.711372
\(262\) 113.833i 0.0268420i
\(263\) 4154.73i 0.974112i 0.873371 + 0.487056i \(0.161929\pi\)
−0.873371 + 0.487056i \(0.838071\pi\)
\(264\) −329.833 −0.0768932
\(265\) 0 0
\(266\) 1931.73 0.445271
\(267\) 647.331i 0.148375i
\(268\) − 883.687i − 0.201417i
\(269\) −669.625 −0.151776 −0.0758881 0.997116i \(-0.524179\pi\)
−0.0758881 + 0.997116i \(0.524179\pi\)
\(270\) 0 0
\(271\) 2284.27 0.512029 0.256014 0.966673i \(-0.417591\pi\)
0.256014 + 0.966673i \(0.417591\pi\)
\(272\) 1529.83i 0.341028i
\(273\) 847.978i 0.187993i
\(274\) −5136.54 −1.13252
\(275\) 0 0
\(276\) −925.498 −0.201842
\(277\) 7405.67i 1.60637i 0.595733 + 0.803183i \(0.296862\pi\)
−0.595733 + 0.803183i \(0.703138\pi\)
\(278\) − 3206.10i − 0.691688i
\(279\) −3453.94 −0.741154
\(280\) 0 0
\(281\) 7166.92 1.52150 0.760752 0.649043i \(-0.224831\pi\)
0.760752 + 0.649043i \(0.224831\pi\)
\(282\) − 808.625i − 0.170755i
\(283\) 4612.32i 0.968813i 0.874843 + 0.484407i \(0.160964\pi\)
−0.874843 + 0.484407i \(0.839036\pi\)
\(284\) −2811.67 −0.587471
\(285\) 0 0
\(286\) 267.989 0.0554075
\(287\) − 2819.80i − 0.579956i
\(288\) 352.000i 0.0720201i
\(289\) −4229.14 −0.860807
\(290\) 0 0
\(291\) −5319.91 −1.07168
\(292\) − 304.582i − 0.0610422i
\(293\) 6504.41i 1.29690i 0.761257 + 0.648450i \(0.224583\pi\)
−0.761257 + 0.648450i \(0.775417\pi\)
\(294\) −616.582 −0.122312
\(295\) 0 0
\(296\) 2928.00 0.574955
\(297\) − 1566.71i − 0.306093i
\(298\) − 3170.17i − 0.616251i
\(299\) 751.968 0.145443
\(300\) 0 0
\(301\) 1244.28 0.238269
\(302\) − 4154.40i − 0.791586i
\(303\) − 430.458i − 0.0816144i
\(304\) 947.666 0.178791
\(305\) 0 0
\(306\) −2103.52 −0.392975
\(307\) − 4407.10i − 0.819304i −0.912242 0.409652i \(-0.865650\pi\)
0.912242 0.409652i \(-0.134350\pi\)
\(308\) − 672.334i − 0.124382i
\(309\) 3531.08 0.650085
\(310\) 0 0
\(311\) 6594.09 1.20230 0.601152 0.799135i \(-0.294709\pi\)
0.601152 + 0.799135i \(0.294709\pi\)
\(312\) 416.000i 0.0754851i
\(313\) − 907.782i − 0.163932i −0.996635 0.0819662i \(-0.973880\pi\)
0.996635 0.0819662i \(-0.0261200\pi\)
\(314\) 3211.46 0.577175
\(315\) 0 0
\(316\) 403.709 0.0718684
\(317\) 1802.54i 0.319371i 0.987168 + 0.159686i \(0.0510480\pi\)
−0.987168 + 0.159686i \(0.948952\pi\)
\(318\) 1449.25i 0.255566i
\(319\) 2810.66 0.493313
\(320\) 0 0
\(321\) 2332.20 0.405517
\(322\) − 1886.54i − 0.326500i
\(323\) 5663.16i 0.975563i
\(324\) 1244.00 0.213306
\(325\) 0 0
\(326\) −994.210 −0.168909
\(327\) − 1980.25i − 0.334887i
\(328\) − 1383.33i − 0.232871i
\(329\) 1648.31 0.276214
\(330\) 0 0
\(331\) 9001.00 1.49468 0.747341 0.664441i \(-0.231330\pi\)
0.747341 + 0.664441i \(0.231330\pi\)
\(332\) 1273.85i 0.210578i
\(333\) 4026.00i 0.662533i
\(334\) −3778.12 −0.618951
\(335\) 0 0
\(336\) 1043.67 0.169454
\(337\) 4012.30i 0.648558i 0.945961 + 0.324279i \(0.105122\pi\)
−0.945961 + 0.324279i \(0.894878\pi\)
\(338\) − 338.000i − 0.0543928i
\(339\) 1569.83 0.251509
\(340\) 0 0
\(341\) 3236.43 0.513966
\(342\) 1303.04i 0.206024i
\(343\) − 6850.24i − 1.07836i
\(344\) 610.415 0.0956726
\(345\) 0 0
\(346\) 6515.72 1.01239
\(347\) 1447.68i 0.223964i 0.993710 + 0.111982i \(0.0357198\pi\)
−0.993710 + 0.111982i \(0.964280\pi\)
\(348\) 4363.00i 0.672072i
\(349\) −6963.83 −1.06810 −0.534048 0.845454i \(-0.679330\pi\)
−0.534048 + 0.845454i \(0.679330\pi\)
\(350\) 0 0
\(351\) −1976.00 −0.300487
\(352\) − 329.833i − 0.0499436i
\(353\) − 10576.5i − 1.59470i −0.603518 0.797350i \(-0.706235\pi\)
0.603518 0.797350i \(-0.293765\pi\)
\(354\) 6675.62 1.00227
\(355\) 0 0
\(356\) −647.331 −0.0963722
\(357\) 6236.85i 0.924620i
\(358\) 8498.46i 1.25463i
\(359\) 8925.48 1.31217 0.656084 0.754688i \(-0.272212\pi\)
0.656084 + 0.754688i \(0.272212\pi\)
\(360\) 0 0
\(361\) −3350.91 −0.488543
\(362\) − 7606.25i − 1.10435i
\(363\) − 4899.04i − 0.708355i
\(364\) −847.978 −0.122105
\(365\) 0 0
\(366\) 4448.58 0.635331
\(367\) 9449.06i 1.34397i 0.740565 + 0.671985i \(0.234558\pi\)
−0.740565 + 0.671985i \(0.765442\pi\)
\(368\) − 925.498i − 0.131100i
\(369\) 1902.08 0.268342
\(370\) 0 0
\(371\) −2954.17 −0.413403
\(372\) 5023.91i 0.700209i
\(373\) − 1298.21i − 0.180211i −0.995932 0.0901054i \(-0.971280\pi\)
0.995932 0.0901054i \(-0.0287204\pi\)
\(374\) 1971.05 0.272515
\(375\) 0 0
\(376\) 808.625 0.110909
\(377\) − 3544.94i − 0.484280i
\(378\) 4957.41i 0.674555i
\(379\) 13044.6 1.76796 0.883980 0.467524i \(-0.154854\pi\)
0.883980 + 0.467524i \(0.154854\pi\)
\(380\) 0 0
\(381\) −3816.54 −0.513195
\(382\) − 6676.76i − 0.894275i
\(383\) − 1304.12i − 0.173989i −0.996209 0.0869943i \(-0.972274\pi\)
0.996209 0.0869943i \(-0.0277262\pi\)
\(384\) 512.000 0.0680414
\(385\) 0 0
\(386\) −5759.96 −0.759518
\(387\) 839.320i 0.110246i
\(388\) − 5319.91i − 0.696076i
\(389\) −12390.4 −1.61496 −0.807479 0.589896i \(-0.799169\pi\)
−0.807479 + 0.589896i \(0.799169\pi\)
\(390\) 0 0
\(391\) 5530.70 0.715343
\(392\) − 616.582i − 0.0794441i
\(393\) 227.666i 0.0292219i
\(394\) −2077.46 −0.265636
\(395\) 0 0
\(396\) 453.520 0.0575511
\(397\) − 12332.6i − 1.55909i −0.626348 0.779543i \(-0.715451\pi\)
0.626348 0.779543i \(-0.284549\pi\)
\(398\) 6644.27i 0.836802i
\(399\) 3863.46 0.484749
\(400\) 0 0
\(401\) 2213.06 0.275599 0.137799 0.990460i \(-0.455997\pi\)
0.137799 + 0.990460i \(0.455997\pi\)
\(402\) − 1767.37i − 0.219275i
\(403\) − 4081.93i − 0.504554i
\(404\) 430.458 0.0530101
\(405\) 0 0
\(406\) −8893.57 −1.08714
\(407\) − 3772.46i − 0.459445i
\(408\) 3059.67i 0.371265i
\(409\) −2838.39 −0.343153 −0.171576 0.985171i \(-0.554886\pi\)
−0.171576 + 0.985171i \(0.554886\pi\)
\(410\) 0 0
\(411\) −10273.1 −1.23293
\(412\) 3531.08i 0.422243i
\(413\) 13607.7i 1.62128i
\(414\) 1272.56 0.151070
\(415\) 0 0
\(416\) −416.000 −0.0490290
\(417\) − 6412.20i − 0.753014i
\(418\) − 1220.98i − 0.142871i
\(419\) 9560.58 1.11471 0.557357 0.830273i \(-0.311816\pi\)
0.557357 + 0.830273i \(0.311816\pi\)
\(420\) 0 0
\(421\) −2405.00 −0.278415 −0.139207 0.990263i \(-0.544455\pi\)
−0.139207 + 0.990263i \(0.544455\pi\)
\(422\) − 1298.48i − 0.149784i
\(423\) 1111.86i 0.127803i
\(424\) −1449.25 −0.165995
\(425\) 0 0
\(426\) −5623.33 −0.639557
\(427\) 9068.03i 1.02771i
\(428\) 2332.20i 0.263391i
\(429\) 535.978 0.0603200
\(430\) 0 0
\(431\) 5319.46 0.594499 0.297250 0.954800i \(-0.403931\pi\)
0.297250 + 0.954800i \(0.403931\pi\)
\(432\) 2432.00i 0.270856i
\(433\) 15949.8i 1.77021i 0.465394 + 0.885104i \(0.345913\pi\)
−0.465394 + 0.885104i \(0.654087\pi\)
\(434\) −10240.8 −1.13266
\(435\) 0 0
\(436\) 1980.25 0.217515
\(437\) − 3426.03i − 0.375032i
\(438\) − 609.164i − 0.0664543i
\(439\) 9047.43 0.983622 0.491811 0.870702i \(-0.336335\pi\)
0.491811 + 0.870702i \(0.336335\pi\)
\(440\) 0 0
\(441\) 847.800 0.0915452
\(442\) − 2485.98i − 0.267525i
\(443\) − 16553.2i − 1.77531i −0.460505 0.887657i \(-0.652332\pi\)
0.460505 0.887657i \(-0.347668\pi\)
\(444\) 5856.00 0.625931
\(445\) 0 0
\(446\) −8336.83 −0.885113
\(447\) − 6340.33i − 0.670889i
\(448\) 1043.67i 0.110064i
\(449\) −8102.66 −0.851644 −0.425822 0.904807i \(-0.640015\pi\)
−0.425822 + 0.904807i \(0.640015\pi\)
\(450\) 0 0
\(451\) −1782.30 −0.186087
\(452\) 1569.83i 0.163360i
\(453\) − 8308.81i − 0.861770i
\(454\) 6152.30 0.635995
\(455\) 0 0
\(456\) 1895.33 0.194643
\(457\) 18327.3i 1.87596i 0.346687 + 0.937981i \(0.387306\pi\)
−0.346687 + 0.937981i \(0.612694\pi\)
\(458\) − 5920.20i − 0.604002i
\(459\) −14533.4 −1.47791
\(460\) 0 0
\(461\) −5131.83 −0.518467 −0.259233 0.965815i \(-0.583470\pi\)
−0.259233 + 0.965815i \(0.583470\pi\)
\(462\) − 1344.67i − 0.135410i
\(463\) 6659.01i 0.668403i 0.942502 + 0.334201i \(0.108467\pi\)
−0.942502 + 0.334201i \(0.891533\pi\)
\(464\) −4363.00 −0.436524
\(465\) 0 0
\(466\) −2099.33 −0.208690
\(467\) 7754.58i 0.768392i 0.923252 + 0.384196i \(0.125521\pi\)
−0.923252 + 0.384196i \(0.874479\pi\)
\(468\) − 572.000i − 0.0564972i
\(469\) 3602.63 0.354700
\(470\) 0 0
\(471\) 6422.91 0.628348
\(472\) 6675.62i 0.650997i
\(473\) − 786.464i − 0.0764517i
\(474\) 807.418 0.0782404
\(475\) 0 0
\(476\) −6236.85 −0.600558
\(477\) − 1992.72i − 0.191280i
\(478\) − 7493.09i − 0.717000i
\(479\) −4029.17 −0.384337 −0.192169 0.981362i \(-0.561552\pi\)
−0.192169 + 0.981362i \(0.561552\pi\)
\(480\) 0 0
\(481\) −4758.00 −0.451031
\(482\) 10018.3i 0.946723i
\(483\) − 3773.09i − 0.355448i
\(484\) 4899.04 0.460090
\(485\) 0 0
\(486\) −5720.00 −0.533878
\(487\) − 9544.26i − 0.888073i −0.896009 0.444037i \(-0.853546\pi\)
0.896009 0.444037i \(-0.146454\pi\)
\(488\) 4448.58i 0.412660i
\(489\) −1988.42 −0.183884
\(490\) 0 0
\(491\) 528.593 0.0485847 0.0242923 0.999705i \(-0.492267\pi\)
0.0242923 + 0.999705i \(0.492267\pi\)
\(492\) − 2766.66i − 0.253518i
\(493\) − 26072.9i − 2.38187i
\(494\) −1539.96 −0.140255
\(495\) 0 0
\(496\) −5023.91 −0.454799
\(497\) − 11462.7i − 1.03455i
\(498\) 2547.71i 0.229248i
\(499\) −10891.2 −0.977072 −0.488536 0.872544i \(-0.662469\pi\)
−0.488536 + 0.872544i \(0.662469\pi\)
\(500\) 0 0
\(501\) −7556.25 −0.673829
\(502\) 8736.45i 0.776747i
\(503\) − 12648.0i − 1.12117i −0.828098 0.560583i \(-0.810577\pi\)
0.828098 0.560583i \(-0.189423\pi\)
\(504\) −1435.04 −0.126829
\(505\) 0 0
\(506\) −1192.42 −0.104762
\(507\) − 676.000i − 0.0592154i
\(508\) − 3816.54i − 0.333330i
\(509\) −5593.39 −0.487078 −0.243539 0.969891i \(-0.578308\pi\)
−0.243539 + 0.969891i \(0.578308\pi\)
\(510\) 0 0
\(511\) 1241.73 0.107497
\(512\) 512.000i 0.0441942i
\(513\) 9002.82i 0.774823i
\(514\) 11087.7 0.951474
\(515\) 0 0
\(516\) 1220.83 0.104155
\(517\) − 1041.84i − 0.0886269i
\(518\) 11936.9i 1.01251i
\(519\) 13031.4 1.10215
\(520\) 0 0
\(521\) −3285.58 −0.276284 −0.138142 0.990412i \(-0.544113\pi\)
−0.138142 + 0.990412i \(0.544113\pi\)
\(522\) − 5999.12i − 0.503016i
\(523\) − 8833.62i − 0.738560i −0.929318 0.369280i \(-0.879604\pi\)
0.929318 0.369280i \(-0.120396\pi\)
\(524\) −227.666 −0.0189802
\(525\) 0 0
\(526\) −8309.46 −0.688801
\(527\) − 30022.5i − 2.48159i
\(528\) − 659.666i − 0.0543717i
\(529\) 8821.11 0.725003
\(530\) 0 0
\(531\) −9178.98 −0.750158
\(532\) 3863.46i 0.314854i
\(533\) 2247.91i 0.182679i
\(534\) −1294.66 −0.104917
\(535\) 0 0
\(536\) 1767.37 0.142423
\(537\) 16996.9i 1.36587i
\(538\) − 1339.25i − 0.107322i
\(539\) −794.410 −0.0634836
\(540\) 0 0
\(541\) 22151.3 1.76036 0.880182 0.474636i \(-0.157420\pi\)
0.880182 + 0.474636i \(0.157420\pi\)
\(542\) 4568.55i 0.362059i
\(543\) − 15212.5i − 1.20227i
\(544\) −3059.67 −0.241144
\(545\) 0 0
\(546\) −1695.96 −0.132931
\(547\) − 16355.9i − 1.27848i −0.769008 0.639239i \(-0.779249\pi\)
0.769008 0.639239i \(-0.220751\pi\)
\(548\) − 10273.1i − 0.800810i
\(549\) −6116.80 −0.475517
\(550\) 0 0
\(551\) −16151.0 −1.24874
\(552\) − 1851.00i − 0.142724i
\(553\) 1645.85i 0.126562i
\(554\) −14811.3 −1.13587
\(555\) 0 0
\(556\) 6412.20 0.489097
\(557\) 17659.8i 1.34340i 0.740825 + 0.671698i \(0.234435\pi\)
−0.740825 + 0.671698i \(0.765565\pi\)
\(558\) − 6907.88i − 0.524075i
\(559\) −991.924 −0.0750517
\(560\) 0 0
\(561\) 3942.10 0.296677
\(562\) 14333.8i 1.07587i
\(563\) − 10559.9i − 0.790493i −0.918575 0.395247i \(-0.870659\pi\)
0.918575 0.395247i \(-0.129341\pi\)
\(564\) 1617.25 0.120742
\(565\) 0 0
\(566\) −9224.65 −0.685054
\(567\) 5071.56i 0.375636i
\(568\) − 5623.33i − 0.415404i
\(569\) 10050.9 0.740519 0.370259 0.928928i \(-0.379269\pi\)
0.370259 + 0.928928i \(0.379269\pi\)
\(570\) 0 0
\(571\) −4946.83 −0.362554 −0.181277 0.983432i \(-0.558023\pi\)
−0.181277 + 0.983432i \(0.558023\pi\)
\(572\) 535.978i 0.0391790i
\(573\) − 13353.5i − 0.973563i
\(574\) 5639.59 0.410091
\(575\) 0 0
\(576\) −704.000 −0.0509259
\(577\) 7370.89i 0.531810i 0.963999 + 0.265905i \(0.0856707\pi\)
−0.963999 + 0.265905i \(0.914329\pi\)
\(578\) − 8458.28i − 0.608682i
\(579\) −11519.9 −0.826859
\(580\) 0 0
\(581\) −5193.27 −0.370832
\(582\) − 10639.8i − 0.757792i
\(583\) 1867.23i 0.132646i
\(584\) 609.164 0.0431633
\(585\) 0 0
\(586\) −13008.8 −0.917047
\(587\) − 12477.5i − 0.877343i −0.898647 0.438672i \(-0.855449\pi\)
0.898647 0.438672i \(-0.144551\pi\)
\(588\) − 1233.16i − 0.0864878i
\(589\) −18597.6 −1.30102
\(590\) 0 0
\(591\) −4154.91 −0.289188
\(592\) 5856.00i 0.406554i
\(593\) − 1045.45i − 0.0723970i −0.999345 0.0361985i \(-0.988475\pi\)
0.999345 0.0361985i \(-0.0115249\pi\)
\(594\) 3133.41 0.216440
\(595\) 0 0
\(596\) 6340.33 0.435755
\(597\) 13288.5i 0.910994i
\(598\) 1503.94i 0.102844i
\(599\) −7835.13 −0.534448 −0.267224 0.963634i \(-0.586106\pi\)
−0.267224 + 0.963634i \(0.586106\pi\)
\(600\) 0 0
\(601\) 18645.8 1.26552 0.632760 0.774348i \(-0.281922\pi\)
0.632760 + 0.774348i \(0.281922\pi\)
\(602\) 2488.55i 0.168481i
\(603\) 2430.14i 0.164118i
\(604\) 8308.81 0.559736
\(605\) 0 0
\(606\) 860.916 0.0577101
\(607\) 8342.46i 0.557842i 0.960314 + 0.278921i \(0.0899767\pi\)
−0.960314 + 0.278921i \(0.910023\pi\)
\(608\) 1895.33i 0.126424i
\(609\) −17787.1 −1.18353
\(610\) 0 0
\(611\) −1314.02 −0.0870039
\(612\) − 4207.04i − 0.277875i
\(613\) 3323.14i 0.218957i 0.993989 + 0.109478i \(0.0349180\pi\)
−0.993989 + 0.109478i \(0.965082\pi\)
\(614\) 8814.20 0.579336
\(615\) 0 0
\(616\) 1344.67 0.0879517
\(617\) 2447.10i 0.159670i 0.996808 + 0.0798351i \(0.0254394\pi\)
−0.996808 + 0.0798351i \(0.974561\pi\)
\(618\) 7062.17i 0.459680i
\(619\) −7493.38 −0.486566 −0.243283 0.969955i \(-0.578224\pi\)
−0.243283 + 0.969955i \(0.578224\pi\)
\(620\) 0 0
\(621\) 8792.24 0.568149
\(622\) 13188.2i 0.850157i
\(623\) − 2639.05i − 0.169713i
\(624\) −832.000 −0.0533761
\(625\) 0 0
\(626\) 1815.56 0.115918
\(627\) − 2441.96i − 0.155538i
\(628\) 6422.91i 0.408124i
\(629\) −34994.9 −2.21835
\(630\) 0 0
\(631\) 15601.8 0.984306 0.492153 0.870509i \(-0.336210\pi\)
0.492153 + 0.870509i \(0.336210\pi\)
\(632\) 807.418i 0.0508186i
\(633\) − 2596.96i − 0.163065i
\(634\) −3605.08 −0.225830
\(635\) 0 0
\(636\) −2898.50 −0.180712
\(637\) 1001.95i 0.0623211i
\(638\) 5621.33i 0.348825i
\(639\) 7732.08 0.478680
\(640\) 0 0
\(641\) 20944.9 1.29060 0.645300 0.763929i \(-0.276732\pi\)
0.645300 + 0.763929i \(0.276732\pi\)
\(642\) 4664.41i 0.286744i
\(643\) − 10633.1i − 0.652147i −0.945344 0.326073i \(-0.894274\pi\)
0.945344 0.326073i \(-0.105726\pi\)
\(644\) 3773.09 0.230870
\(645\) 0 0
\(646\) −11326.3 −0.689827
\(647\) − 21552.9i − 1.30963i −0.755789 0.654815i \(-0.772746\pi\)
0.755789 0.654815i \(-0.227254\pi\)
\(648\) 2488.00i 0.150830i
\(649\) 8600.94 0.520210
\(650\) 0 0
\(651\) −20481.6 −1.23308
\(652\) − 1988.42i − 0.119436i
\(653\) − 6840.02i − 0.409909i −0.978771 0.204955i \(-0.934295\pi\)
0.978771 0.204955i \(-0.0657047\pi\)
\(654\) 3960.50 0.236801
\(655\) 0 0
\(656\) 2766.66 0.164665
\(657\) 837.601i 0.0497381i
\(658\) 3296.62i 0.195312i
\(659\) 1443.68 0.0853379 0.0426689 0.999089i \(-0.486414\pi\)
0.0426689 + 0.999089i \(0.486414\pi\)
\(660\) 0 0
\(661\) 1676.98 0.0986793 0.0493396 0.998782i \(-0.484288\pi\)
0.0493396 + 0.998782i \(0.484288\pi\)
\(662\) 18002.0i 1.05690i
\(663\) − 4971.96i − 0.291244i
\(664\) −2547.71 −0.148901
\(665\) 0 0
\(666\) −8052.00 −0.468481
\(667\) 15773.2i 0.915655i
\(668\) − 7556.25i − 0.437665i
\(669\) −16673.7 −0.963589
\(670\) 0 0
\(671\) 5731.60 0.329755
\(672\) 2087.33i 0.119822i
\(673\) − 10856.9i − 0.621845i −0.950435 0.310923i \(-0.899362\pi\)
0.950435 0.310923i \(-0.100638\pi\)
\(674\) −8024.61 −0.458600
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) − 32301.0i − 1.83372i −0.399212 0.916859i \(-0.630716\pi\)
0.399212 0.916859i \(-0.369284\pi\)
\(678\) 3139.67i 0.177844i
\(679\) 21688.3 1.22580
\(680\) 0 0
\(681\) 12304.6 0.692384
\(682\) 6472.86i 0.363429i
\(683\) − 24244.8i − 1.35827i −0.734012 0.679137i \(-0.762354\pi\)
0.734012 0.679137i \(-0.237646\pi\)
\(684\) −2606.08 −0.145681
\(685\) 0 0
\(686\) 13700.5 0.762517
\(687\) − 11840.4i − 0.657554i
\(688\) 1220.83i 0.0676507i
\(689\) 2355.03 0.130217
\(690\) 0 0
\(691\) 436.970 0.0240566 0.0120283 0.999928i \(-0.496171\pi\)
0.0120283 + 0.999928i \(0.496171\pi\)
\(692\) 13031.4i 0.715869i
\(693\) 1848.92i 0.101349i
\(694\) −2895.35 −0.158366
\(695\) 0 0
\(696\) −8725.99 −0.475227
\(697\) 16533.3i 0.898485i
\(698\) − 13927.7i − 0.755258i
\(699\) −4198.66 −0.227193
\(700\) 0 0
\(701\) 26635.7 1.43512 0.717558 0.696499i \(-0.245260\pi\)
0.717558 + 0.696499i \(0.245260\pi\)
\(702\) − 3952.00i − 0.212477i
\(703\) 21677.9i 1.16301i
\(704\) 659.666 0.0353155
\(705\) 0 0
\(706\) 21152.9 1.12762
\(707\) 1754.90i 0.0933519i
\(708\) 13351.2i 0.708715i
\(709\) 964.139 0.0510705 0.0255353 0.999674i \(-0.491871\pi\)
0.0255353 + 0.999674i \(0.491871\pi\)
\(710\) 0 0
\(711\) −1110.20 −0.0585594
\(712\) − 1294.66i − 0.0681454i
\(713\) 18162.6i 0.953989i
\(714\) −12473.7 −0.653805
\(715\) 0 0
\(716\) −16996.9 −0.887157
\(717\) − 14986.2i − 0.780570i
\(718\) 17851.0i 0.927843i
\(719\) −28916.1 −1.49984 −0.749921 0.661527i \(-0.769909\pi\)
−0.749921 + 0.661527i \(0.769909\pi\)
\(720\) 0 0
\(721\) −14395.6 −0.743578
\(722\) − 6701.83i − 0.345452i
\(723\) 20036.6i 1.03066i
\(724\) 15212.5 0.780895
\(725\) 0 0
\(726\) 9798.08 0.500883
\(727\) 13826.5i 0.705359i 0.935744 + 0.352679i \(0.114729\pi\)
−0.935744 + 0.352679i \(0.885271\pi\)
\(728\) − 1695.96i − 0.0863411i
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) −7295.57 −0.369133
\(732\) 8897.16i 0.449247i
\(733\) 14930.0i 0.752325i 0.926554 + 0.376162i \(0.122756\pi\)
−0.926554 + 0.376162i \(0.877244\pi\)
\(734\) −18898.1 −0.950330
\(735\) 0 0
\(736\) 1851.00 0.0927020
\(737\) − 2277.10i − 0.113810i
\(738\) 3804.16i 0.189747i
\(739\) 438.798 0.0218423 0.0109211 0.999940i \(-0.496524\pi\)
0.0109211 + 0.999940i \(0.496524\pi\)
\(740\) 0 0
\(741\) −3079.91 −0.152690
\(742\) − 5908.33i − 0.292320i
\(743\) − 25656.0i − 1.26679i −0.773828 0.633395i \(-0.781661\pi\)
0.773828 0.633395i \(-0.218339\pi\)
\(744\) −10047.8 −0.495123
\(745\) 0 0
\(746\) 2596.41 0.127428
\(747\) − 3503.10i − 0.171582i
\(748\) 3942.10i 0.192697i
\(749\) −9507.98 −0.463837
\(750\) 0 0
\(751\) −19032.2 −0.924759 −0.462380 0.886682i \(-0.653004\pi\)
−0.462380 + 0.886682i \(0.653004\pi\)
\(752\) 1617.25i 0.0784243i
\(753\) 17472.9i 0.845615i
\(754\) 7089.87 0.342437
\(755\) 0 0
\(756\) −9914.82 −0.476982
\(757\) 5549.07i 0.266426i 0.991087 + 0.133213i \(0.0425294\pi\)
−0.991087 + 0.133213i \(0.957471\pi\)
\(758\) 26089.2i 1.25014i
\(759\) −2384.84 −0.114050
\(760\) 0 0
\(761\) 395.056 0.0188183 0.00940917 0.999956i \(-0.497005\pi\)
0.00940917 + 0.999956i \(0.497005\pi\)
\(762\) − 7633.08i − 0.362883i
\(763\) 8073.11i 0.383049i
\(764\) 13353.5 0.632348
\(765\) 0 0
\(766\) 2608.25 0.123028
\(767\) − 10847.9i − 0.510684i
\(768\) 1024.00i 0.0481125i
\(769\) 34896.6 1.63641 0.818207 0.574924i \(-0.194968\pi\)
0.818207 + 0.574924i \(0.194968\pi\)
\(770\) 0 0
\(771\) 22175.4 1.03583
\(772\) − 11519.9i − 0.537061i
\(773\) 10103.9i 0.470131i 0.971980 + 0.235065i \(0.0755304\pi\)
−0.971980 + 0.235065i \(0.924470\pi\)
\(774\) −1678.64 −0.0779554
\(775\) 0 0
\(776\) 10639.8 0.492200
\(777\) 23873.9i 1.10228i
\(778\) − 24780.8i − 1.14195i
\(779\) 10241.7 0.471048
\(780\) 0 0
\(781\) −7245.15 −0.331949
\(782\) 11061.4i 0.505824i
\(783\) − 41448.5i − 1.89176i
\(784\) 1233.16 0.0561755
\(785\) 0 0
\(786\) −455.331 −0.0206630
\(787\) 17858.8i 0.808894i 0.914562 + 0.404447i \(0.132536\pi\)
−0.914562 + 0.404447i \(0.867464\pi\)
\(788\) − 4154.91i − 0.187833i
\(789\) −16618.9 −0.749872
\(790\) 0 0
\(791\) −6399.92 −0.287680
\(792\) 907.040i 0.0406948i
\(793\) − 7228.95i − 0.323717i
\(794\) 24665.3 1.10244
\(795\) 0 0
\(796\) −13288.5 −0.591708
\(797\) 29321.3i 1.30315i 0.758583 + 0.651577i \(0.225892\pi\)
−0.758583 + 0.651577i \(0.774108\pi\)
\(798\) 7726.92i 0.342770i
\(799\) −9664.54 −0.427919
\(800\) 0 0
\(801\) 1780.16 0.0785255
\(802\) 4426.12i 0.194878i
\(803\) − 784.853i − 0.0344917i
\(804\) 3534.75 0.155051
\(805\) 0 0
\(806\) 8163.86 0.356774
\(807\) − 2678.50i − 0.116837i
\(808\) 860.916i 0.0374838i
\(809\) 17552.7 0.762817 0.381408 0.924407i \(-0.375439\pi\)
0.381408 + 0.924407i \(0.375439\pi\)
\(810\) 0 0
\(811\) −8239.17 −0.356740 −0.178370 0.983963i \(-0.557082\pi\)
−0.178370 + 0.983963i \(0.557082\pi\)
\(812\) − 17787.1i − 0.768727i
\(813\) 9137.10i 0.394160i
\(814\) 7544.93 0.324877
\(815\) 0 0
\(816\) −6119.33 −0.262524
\(817\) 4519.29i 0.193525i
\(818\) − 5676.79i − 0.242646i
\(819\) 2331.94 0.0994928
\(820\) 0 0
\(821\) −41252.6 −1.75362 −0.876812 0.480833i \(-0.840334\pi\)
−0.876812 + 0.480833i \(0.840334\pi\)
\(822\) − 20546.2i − 0.871812i
\(823\) − 20332.6i − 0.861179i −0.902548 0.430590i \(-0.858306\pi\)
0.902548 0.430590i \(-0.141694\pi\)
\(824\) −7062.17 −0.298571
\(825\) 0 0
\(826\) −27215.3 −1.14642
\(827\) − 19919.9i − 0.837583i −0.908082 0.418792i \(-0.862454\pi\)
0.908082 0.418792i \(-0.137546\pi\)
\(828\) 2545.12i 0.106823i
\(829\) 38514.9 1.61360 0.806801 0.590823i \(-0.201197\pi\)
0.806801 + 0.590823i \(0.201197\pi\)
\(830\) 0 0
\(831\) −29622.7 −1.23658
\(832\) − 832.000i − 0.0346688i
\(833\) 7369.28i 0.306519i
\(834\) 12824.4 0.532462
\(835\) 0 0
\(836\) 2441.96 0.101025
\(837\) − 47727.2i − 1.97096i
\(838\) 19121.2i 0.788222i
\(839\) 12174.7 0.500976 0.250488 0.968120i \(-0.419409\pi\)
0.250488 + 0.968120i \(0.419409\pi\)
\(840\) 0 0
\(841\) 49969.4 2.04885
\(842\) − 4810.01i − 0.196869i
\(843\) 28667.7i 1.17125i
\(844\) 2596.96 0.105914
\(845\) 0 0
\(846\) −2223.72 −0.0903700
\(847\) 19972.5i 0.810228i
\(848\) − 2898.50i − 0.117376i
\(849\) −18449.3 −0.745793
\(850\) 0 0
\(851\) 21170.8 0.852791
\(852\) − 11246.7i − 0.452235i
\(853\) 47252.5i 1.89671i 0.317211 + 0.948355i \(0.397254\pi\)
−0.317211 + 0.948355i \(0.602746\pi\)
\(854\) −18136.1 −0.726702
\(855\) 0 0
\(856\) −4664.41 −0.186246
\(857\) − 25523.4i − 1.01734i −0.860961 0.508671i \(-0.830137\pi\)
0.860961 0.508671i \(-0.169863\pi\)
\(858\) 1071.96i 0.0426527i
\(859\) 36484.2 1.44916 0.724578 0.689193i \(-0.242035\pi\)
0.724578 + 0.689193i \(0.242035\pi\)
\(860\) 0 0
\(861\) 11279.2 0.446450
\(862\) 10638.9i 0.420374i
\(863\) 13762.9i 0.542868i 0.962457 + 0.271434i \(0.0874979\pi\)
−0.962457 + 0.271434i \(0.912502\pi\)
\(864\) −4864.00 −0.191524
\(865\) 0 0
\(866\) −31899.7 −1.25173
\(867\) − 16916.6i − 0.662649i
\(868\) − 20481.6i − 0.800910i
\(869\) 1040.28 0.0406090
\(870\) 0 0
\(871\) −2871.98 −0.111726
\(872\) 3960.50i 0.153807i
\(873\) 14629.8i 0.567173i
\(874\) 6852.06 0.265188
\(875\) 0 0
\(876\) 1218.33 0.0469903
\(877\) 27068.8i 1.04224i 0.853482 + 0.521122i \(0.174486\pi\)
−0.853482 + 0.521122i \(0.825514\pi\)
\(878\) 18094.9i 0.695526i
\(879\) −26017.7 −0.998355
\(880\) 0 0
\(881\) −28471.1 −1.08878 −0.544390 0.838833i \(-0.683239\pi\)
−0.544390 + 0.838833i \(0.683239\pi\)
\(882\) 1695.60i 0.0647322i
\(883\) − 2832.32i − 0.107945i −0.998542 0.0539724i \(-0.982812\pi\)
0.998542 0.0539724i \(-0.0171883\pi\)
\(884\) 4971.96 0.189169
\(885\) 0 0
\(886\) 33106.3 1.25534
\(887\) − 22466.8i − 0.850463i −0.905085 0.425232i \(-0.860193\pi\)
0.905085 0.425232i \(-0.139807\pi\)
\(888\) 11712.0i 0.442600i
\(889\) 15559.3 0.587000
\(890\) 0 0
\(891\) 3205.56 0.120528
\(892\) − 16673.7i − 0.625869i
\(893\) 5986.77i 0.224344i
\(894\) 12680.7 0.474390
\(895\) 0 0
\(896\) −2087.33 −0.0778268
\(897\) 3007.87i 0.111962i
\(898\) − 16205.3i − 0.602203i
\(899\) 85622.3 3.17649
\(900\) 0 0
\(901\) 17321.2 0.640458
\(902\) − 3564.59i − 0.131583i
\(903\) 4977.10i 0.183419i
\(904\) −3139.67 −0.115513
\(905\) 0 0
\(906\) 16617.6 0.609363
\(907\) − 12037.4i − 0.440677i −0.975423 0.220339i \(-0.929284\pi\)
0.975423 0.220339i \(-0.0707162\pi\)
\(908\) 12304.6i 0.449717i
\(909\) −1183.76 −0.0431934
\(910\) 0 0
\(911\) 12445.6 0.452626 0.226313 0.974055i \(-0.427333\pi\)
0.226313 + 0.974055i \(0.427333\pi\)
\(912\) 3790.66i 0.137633i
\(913\) 3282.49i 0.118986i
\(914\) −36654.6 −1.32651
\(915\) 0 0
\(916\) 11840.4 0.427094
\(917\) − 928.152i − 0.0334245i
\(918\) − 29066.8i − 1.04504i
\(919\) 39392.6 1.41397 0.706987 0.707227i \(-0.250054\pi\)
0.706987 + 0.707227i \(0.250054\pi\)
\(920\) 0 0
\(921\) 17628.4 0.630701
\(922\) − 10263.7i − 0.366612i
\(923\) 9137.91i 0.325870i
\(924\) 2689.34 0.0957497
\(925\) 0 0
\(926\) −13318.0 −0.472632
\(927\) − 9710.48i − 0.344050i
\(928\) − 8725.99i − 0.308669i
\(929\) 9475.86 0.334653 0.167327 0.985902i \(-0.446487\pi\)
0.167327 + 0.985902i \(0.446487\pi\)
\(930\) 0 0
\(931\) 4564.95 0.160698
\(932\) − 4198.66i − 0.147566i
\(933\) 26376.4i 0.925534i
\(934\) −15509.2 −0.543335
\(935\) 0 0
\(936\) 1144.00 0.0399496
\(937\) 27681.1i 0.965103i 0.875868 + 0.482551i \(0.160290\pi\)
−0.875868 + 0.482551i \(0.839710\pi\)
\(938\) 7205.27i 0.250811i
\(939\) 3631.13 0.126195
\(940\) 0 0
\(941\) −21404.0 −0.741501 −0.370750 0.928733i \(-0.620899\pi\)
−0.370750 + 0.928733i \(0.620899\pi\)
\(942\) 12845.8i 0.444309i
\(943\) − 10002.1i − 0.345402i
\(944\) −13351.2 −0.460324
\(945\) 0 0
\(946\) 1572.93 0.0540595
\(947\) 14611.5i 0.501384i 0.968067 + 0.250692i \(0.0806582\pi\)
−0.968067 + 0.250692i \(0.919342\pi\)
\(948\) 1614.84i 0.0553243i
\(949\) −989.892 −0.0338601
\(950\) 0 0
\(951\) −7210.15 −0.245852
\(952\) − 12473.7i − 0.424659i
\(953\) 40724.9i 1.38427i 0.721768 + 0.692135i \(0.243330\pi\)
−0.721768 + 0.692135i \(0.756670\pi\)
\(954\) 3985.44 0.135255
\(955\) 0 0
\(956\) 14986.2 0.506995
\(957\) 11242.7i 0.379753i
\(958\) − 8058.34i − 0.271767i
\(959\) 41881.5 1.41024
\(960\) 0 0
\(961\) 68801.6 2.30948
\(962\) − 9516.00i − 0.318927i
\(963\) − 6413.56i − 0.214615i
\(964\) −20036.6 −0.669434
\(965\) 0 0
\(966\) 7546.18 0.251340
\(967\) 48565.2i 1.61505i 0.589836 + 0.807523i \(0.299193\pi\)
−0.589836 + 0.807523i \(0.700807\pi\)
\(968\) 9798.08i 0.325333i
\(969\) −22652.7 −0.750989
\(970\) 0 0
\(971\) −7681.71 −0.253880 −0.126940 0.991910i \(-0.540516\pi\)
−0.126940 + 0.991910i \(0.540516\pi\)
\(972\) − 11440.0i − 0.377508i
\(973\) 26141.4i 0.861310i
\(974\) 19088.5 0.627963
\(975\) 0 0
\(976\) −8897.16 −0.291794
\(977\) 19001.3i 0.622218i 0.950374 + 0.311109i \(0.100700\pi\)
−0.950374 + 0.311109i \(0.899300\pi\)
\(978\) − 3976.84i − 0.130026i
\(979\) −1668.06 −0.0544548
\(980\) 0 0
\(981\) −5445.68 −0.177235
\(982\) 1057.19i 0.0343545i
\(983\) 34310.5i 1.11326i 0.830761 + 0.556630i \(0.187906\pi\)
−0.830761 + 0.556630i \(0.812094\pi\)
\(984\) 5533.33 0.179264
\(985\) 0 0
\(986\) 52145.7 1.68424
\(987\) 6593.24i 0.212629i
\(988\) − 3079.91i − 0.0991752i
\(989\) 4413.58 0.141905
\(990\) 0 0
\(991\) 16266.7 0.521422 0.260711 0.965417i \(-0.416043\pi\)
0.260711 + 0.965417i \(0.416043\pi\)
\(992\) − 10047.8i − 0.321592i
\(993\) 36004.0i 1.15061i
\(994\) 22925.3 0.731536
\(995\) 0 0
\(996\) −5095.42 −0.162103
\(997\) − 56708.8i − 1.80139i −0.434453 0.900694i \(-0.643058\pi\)
0.434453 0.900694i \(-0.356942\pi\)
\(998\) − 21782.5i − 0.690894i
\(999\) −55632.0 −1.76188
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.b.h.599.3 4
5.2 odd 4 650.4.a.n.1.2 2
5.3 odd 4 650.4.a.o.1.1 yes 2
5.4 even 2 inner 650.4.b.h.599.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.4.a.n.1.2 2 5.2 odd 4
650.4.a.o.1.1 yes 2 5.3 odd 4
650.4.b.h.599.2 4 5.4 even 2 inner
650.4.b.h.599.3 4 1.1 even 1 trivial