gp: [N,k,chi] = [650,4,Mod(599,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.599");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-16,0,-32,0,0,44,0,44]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 51529 x^{4} + 51529 x 4 + 5 1 5 2 9
x^4 + 51529
:
β 1 \beta_{1} β 1 = = =
( ν 2 ) / 227 ( \nu^{2} ) / 227 ( ν 2 ) / 2 2 7
(v^2) / 227
β 2 \beta_{2} β 2 = = =
( ν 3 + 227 ν ) / 227 ( \nu^{3} + 227\nu ) / 227 ( ν 3 + 2 2 7 ν ) / 2 2 7
(v^3 + 227*v) / 227
β 3 \beta_{3} β 3 = = =
( − ν 3 + 227 ν ) / 227 ( -\nu^{3} + 227\nu ) / 227 ( − ν 3 + 2 2 7 ν ) / 2 2 7
(-v^3 + 227*v) / 227
ν \nu ν = = =
( β 3 + β 2 ) / 2 ( \beta_{3} + \beta_{2} ) / 2 ( β 3 + β 2 ) / 2
(b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
227 β 1 227\beta_1 2 2 7 β 1
227*b1
ν 3 \nu^{3} ν 3 = = =
( − 227 β 3 + 227 β 2 ) / 2 ( -227\beta_{3} + 227\beta_{2} ) / 2 ( − 2 2 7 β 3 + 2 2 7 β 2 ) / 2
(-227*b3 + 227*b2) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 650 , [ χ ] ) S_{4}^{\mathrm{new}}(650, [\chi]) S 4 n e w ( 6 5 0 , [ χ ] ) :
T 3 2 + 16 T_{3}^{2} + 16 T 3 2 + 1 6
T3^2 + 16
T 7 4 + 958 T 7 2 + 184041 T_{7}^{4} + 958T_{7}^{2} + 184041 T 7 4 + 9 5 8 T 7 2 + 1 8 4 0 4 1
T7^4 + 958*T7^2 + 184041
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
3 3 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 958 T 2 + 184041 T^{4} + 958 T^{2} + 184041 T 4 + 9 5 8 T 2 + 1 8 4 0 4 1
T^4 + 958*T^2 + 184041
11 11 1 1
( T 2 − 22 T − 333 ) 2 (T^{2} - 22 T - 333)^{2} ( T 2 − 2 2 T − 3 3 3 ) 2
(T^2 - 22*T - 333)^2
13 13 1 3
( T 2 + 169 ) 2 (T^{2} + 169)^{2} ( T 2 + 1 6 9 ) 2
(T^2 + 169)^2
17 17 1 7
T 4 + 9250 T 2 + 986049 T^{4} + 9250 T^{2} + 986049 T 4 + 9 2 5 0 T 2 + 9 8 6 0 4 9
T^4 + 9250*T^2 + 986049
19 19 1 9
( T 2 + 52 T − 6588 ) 2 (T^{2} + 52 T - 6588)^{2} ( T 2 + 5 2 T − 6 5 8 8 ) 2
(T^2 + 52*T - 6588)^2
23 23 2 3
T 4 + 42488 T 2 + 130965136 T^{4} + 42488 T^{2} + 130965136 T 4 + 4 2 4 8 8 T 2 + 1 3 0 9 6 5 1 3 6
T^4 + 42488*T^2 + 130965136
29 29 2 9
( T 2 + 34 T − 65087 ) 2 (T^{2} + 34 T - 65087)^{2} ( T 2 + 3 4 T − 6 5 0 8 7 ) 2
(T^2 + 34*T - 65087)^2
31 31 3 1
( T 2 + 74 T − 75357 ) 2 (T^{2} + 74 T - 75357)^{2} ( T 2 + 7 4 T − 7 5 3 5 7 ) 2
(T^2 + 74*T - 75357)^2
37 37 3 7
( T 2 + 133956 ) 2 (T^{2} + 133956)^{2} ( T 2 + 1 3 3 9 5 6 ) 2
(T^2 + 133956)^2
41 41 4 1
( T 2 + 336 T − 88000 ) 2 (T^{2} + 336 T - 88000)^{2} ( T 2 + 3 3 6 T − 8 8 0 0 0 ) 2
(T^2 + 336*T - 88000)^2
43 43 4 3
T 4 + ⋯ + 1576090000 T^{4} + \cdots + 1576090000 T 4 + ⋯ + 1 5 7 6 0 9 0 0 0 0
T^4 + 276536*T^2 + 1576090000
47 47 4 7
T 4 + 62622 T 2 + 535413321 T^{4} + 62622 T^{2} + 535413321 T 4 + 6 2 6 2 2 T 2 + 5 3 5 4 1 3 3 2 1
T^4 + 62622*T^2 + 535413321
53 53 5 3
T 4 + ⋯ + 6262664769 T^{4} + \cdots + 6262664769 T 4 + ⋯ + 6 2 6 2 6 6 4 7 6 9
T^4 + 223650*T^2 + 6262664769
59 59 5 9
( T 2 + 774 T − 50445 ) 2 (T^{2} + 774 T - 50445)^{2} ( T 2 + 7 7 4 T − 5 0 4 4 5 ) 2
(T^2 + 774*T - 50445)^2
61 61 6 1
( T 2 + 686 T + 72249 ) 2 (T^{2} + 686 T + 72249)^{2} ( T 2 + 6 8 6 T + 7 2 2 4 9 ) 2
(T^2 + 686*T + 72249)^2
67 67 6 7
T 4 + 57470 T 2 + 422836969 T^{4} + 57470 T^{2} + 422836969 T 4 + 5 7 4 7 0 T 2 + 4 2 2 8 3 6 9 6 9
T^4 + 57470*T^2 + 422836969
71 71 7 1
( T 2 − 724 T + 14820 ) 2 (T^{2} - 724 T + 14820)^{2} ( T 2 − 7 2 4 T + 1 4 8 2 0 ) 2
(T^2 - 724*T + 14820)^2
73 73 7 3
T 4 + ⋯ + 3492810000 T^{4} + \cdots + 3492810000 T 4 + ⋯ + 3 4 9 2 8 1 0 0 0 0
T^4 + 608200*T^2 + 3492810000
79 79 7 9
( T 2 + 628 T + 53196 ) 2 (T^{2} + 628 T + 53196)^{2} ( T 2 + 6 2 8 T + 5 3 1 9 6 ) 2
(T^2 + 628*T + 53196)^2
83 83 8 3
T 4 + ⋯ + 28654025625 T^{4} + \cdots + 28654025625 T 4 + ⋯ + 2 8 6 5 4 0 2 5 6 2 5
T^4 + 383950*T^2 + 28654025625
89 89 8 9
( T 2 + 1040 T − 194496 ) 2 (T^{2} + 1040 T - 194496)^{2} ( T 2 + 1 0 4 0 T − 1 9 4 4 9 6 ) 2
(T^2 + 1040*T - 194496)^2
97 97 9 7
T 4 + ⋯ + 1388466302224 T^{4} + \cdots + 1388466302224 T 4 + ⋯ + 1 3 8 8 4 6 6 3 0 2 2 2 4
T^4 + 2553800*T^2 + 1388466302224
show more
show less