Properties

Label 650.4.b.h
Level 650650
Weight 44
Character orbit 650.b
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-32,0,0,44,0,44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,454)\Q(i, \sqrt{454})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+51529 x^{4} + 51529 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2β1q2+4β1q34q48q6+(β2+5β1)q78β1q8+11q9+(β3+11)q1116β1q12+13β1q13+(2β310)q14++(11β3+121)q99+O(q100) q + 2 \beta_1 q^{2} + 4 \beta_1 q^{3} - 4 q^{4} - 8 q^{6} + (\beta_{2} + 5 \beta_1) q^{7} - 8 \beta_1 q^{8} + 11 q^{9} + (\beta_{3} + 11) q^{11} - 16 \beta_1 q^{12} + 13 \beta_1 q^{13} + ( - 2 \beta_{3} - 10) q^{14}+ \cdots + (11 \beta_{3} + 121) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q432q6+44q9+44q1140q14+64q16104q1980q21+128q24104q2668q29148q31424q34176q36208q39672q41176q44++484q99+O(q100) 4 q - 16 q^{4} - 32 q^{6} + 44 q^{9} + 44 q^{11} - 40 q^{14} + 64 q^{16} - 104 q^{19} - 80 q^{21} + 128 q^{24} - 104 q^{26} - 68 q^{29} - 148 q^{31} - 424 q^{34} - 176 q^{36} - 208 q^{39} - 672 q^{41} - 176 q^{44}+ \cdots + 484 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+51529 x^{4} + 51529 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/227 ( \nu^{2} ) / 227 Copy content Toggle raw display
β2\beta_{2}== (ν3+227ν)/227 ( \nu^{3} + 227\nu ) / 227 Copy content Toggle raw display
β3\beta_{3}== (ν3+227ν)/227 ( -\nu^{3} + 227\nu ) / 227 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 227β1 227\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (227β3+227β2)/2 ( -227\beta_{3} + 227\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
10.6536 10.6536i
−10.6536 + 10.6536i
−10.6536 10.6536i
10.6536 + 10.6536i
2.00000i 4.00000i −4.00000 0 −8.00000 26.3073i 8.00000i 11.0000 0
599.2 2.00000i 4.00000i −4.00000 0 −8.00000 16.3073i 8.00000i 11.0000 0
599.3 2.00000i 4.00000i −4.00000 0 −8.00000 16.3073i 8.00000i 11.0000 0
599.4 2.00000i 4.00000i −4.00000 0 −8.00000 26.3073i 8.00000i 11.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.h 4
5.b even 2 1 inner 650.4.b.h 4
5.c odd 4 1 650.4.a.n 2
5.c odd 4 1 650.4.a.o yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.n 2 5.c odd 4 1
650.4.a.o yes 2 5.c odd 4 1
650.4.b.h 4 1.a even 1 1 trivial
650.4.b.h 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T32+16 T_{3}^{2} + 16 Copy content Toggle raw display
T74+958T72+184041 T_{7}^{4} + 958T_{7}^{2} + 184041 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
33 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+958T2+184041 T^{4} + 958 T^{2} + 184041 Copy content Toggle raw display
1111 (T222T333)2 (T^{2} - 22 T - 333)^{2} Copy content Toggle raw display
1313 (T2+169)2 (T^{2} + 169)^{2} Copy content Toggle raw display
1717 T4+9250T2+986049 T^{4} + 9250 T^{2} + 986049 Copy content Toggle raw display
1919 (T2+52T6588)2 (T^{2} + 52 T - 6588)^{2} Copy content Toggle raw display
2323 T4+42488T2+130965136 T^{4} + 42488 T^{2} + 130965136 Copy content Toggle raw display
2929 (T2+34T65087)2 (T^{2} + 34 T - 65087)^{2} Copy content Toggle raw display
3131 (T2+74T75357)2 (T^{2} + 74 T - 75357)^{2} Copy content Toggle raw display
3737 (T2+133956)2 (T^{2} + 133956)^{2} Copy content Toggle raw display
4141 (T2+336T88000)2 (T^{2} + 336 T - 88000)^{2} Copy content Toggle raw display
4343 T4++1576090000 T^{4} + \cdots + 1576090000 Copy content Toggle raw display
4747 T4+62622T2+535413321 T^{4} + 62622 T^{2} + 535413321 Copy content Toggle raw display
5353 T4++6262664769 T^{4} + \cdots + 6262664769 Copy content Toggle raw display
5959 (T2+774T50445)2 (T^{2} + 774 T - 50445)^{2} Copy content Toggle raw display
6161 (T2+686T+72249)2 (T^{2} + 686 T + 72249)^{2} Copy content Toggle raw display
6767 T4+57470T2+422836969 T^{4} + 57470 T^{2} + 422836969 Copy content Toggle raw display
7171 (T2724T+14820)2 (T^{2} - 724 T + 14820)^{2} Copy content Toggle raw display
7373 T4++3492810000 T^{4} + \cdots + 3492810000 Copy content Toggle raw display
7979 (T2+628T+53196)2 (T^{2} + 628 T + 53196)^{2} Copy content Toggle raw display
8383 T4++28654025625 T^{4} + \cdots + 28654025625 Copy content Toggle raw display
8989 (T2+1040T194496)2 (T^{2} + 1040 T - 194496)^{2} Copy content Toggle raw display
9797 T4++1388466302224 T^{4} + \cdots + 1388466302224 Copy content Toggle raw display
show more
show less