Properties

Label 650.3.k.g.551.2
Level $650$
Weight $3$
Character 650.551
Analytic conductor $17.711$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(151,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.2
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 650.551
Dual form 650.3.k.g.151.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +0.449490 q^{3} -2.00000i q^{4} +(0.449490 - 0.449490i) q^{6} +(6.67423 + 6.67423i) q^{7} +(-2.00000 - 2.00000i) q^{8} -8.79796 q^{9} +(-10.0227 - 10.0227i) q^{11} -0.898979i q^{12} -13.0000i q^{13} +13.3485 q^{14} -4.00000 q^{16} -11.6969i q^{17} +(-8.79796 + 8.79796i) q^{18} +(6.00000 - 6.00000i) q^{19} +(3.00000 + 3.00000i) q^{21} -20.0454 q^{22} -33.3485i q^{23} +(-0.898979 - 0.898979i) q^{24} +(-13.0000 - 13.0000i) q^{26} -8.00000 q^{27} +(13.3485 - 13.3485i) q^{28} +48.3939 q^{29} +(11.3258 - 11.3258i) q^{31} +(-4.00000 + 4.00000i) q^{32} +(-4.50510 - 4.50510i) q^{33} +(-11.6969 - 11.6969i) q^{34} +17.5959i q^{36} +(-31.6969 - 31.6969i) q^{37} -12.0000i q^{38} -5.84337i q^{39} +(45.3939 - 45.3939i) q^{41} +6.00000 q^{42} -15.9546i q^{43} +(-20.0454 + 20.0454i) q^{44} +(-33.3485 - 33.3485i) q^{46} +(59.4620 + 59.4620i) q^{47} -1.79796 q^{48} +40.0908i q^{49} -5.25765i q^{51} -26.0000 q^{52} -79.6969 q^{53} +(-8.00000 + 8.00000i) q^{54} -26.6969i q^{56} +(2.69694 - 2.69694i) q^{57} +(48.3939 - 48.3939i) q^{58} +(53.4166 + 53.4166i) q^{59} -69.0908 q^{61} -22.6515i q^{62} +(-58.7196 - 58.7196i) q^{63} +8.00000i q^{64} -9.01021 q^{66} +(-58.7650 + 58.7650i) q^{67} -23.3939 q^{68} -14.9898i q^{69} +(-44.7878 + 44.7878i) q^{71} +(17.5959 + 17.5959i) q^{72} +(-67.7878 - 67.7878i) q^{73} -63.3939 q^{74} +(-12.0000 - 12.0000i) q^{76} -133.788i q^{77} +(-5.84337 - 5.84337i) q^{78} -74.7878 q^{79} +75.5857 q^{81} -90.7878i q^{82} +(5.41658 - 5.41658i) q^{83} +(6.00000 - 6.00000i) q^{84} +(-15.9546 - 15.9546i) q^{86} +21.7526 q^{87} +40.0908i q^{88} +(35.6969 + 35.6969i) q^{89} +(86.7650 - 86.7650i) q^{91} -66.6969 q^{92} +(5.09082 - 5.09082i) q^{93} +118.924 q^{94} +(-1.79796 + 1.79796i) q^{96} +(61.3939 - 61.3939i) q^{97} +(40.0908 + 40.0908i) q^{98} +(88.1793 + 88.1793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{3} - 8 q^{6} + 12 q^{7} - 8 q^{8} + 4 q^{9} + 4 q^{11} + 24 q^{14} - 16 q^{16} + 4 q^{18} + 24 q^{19} + 12 q^{21} + 8 q^{22} + 16 q^{24} - 52 q^{26} - 32 q^{27} + 24 q^{28} + 76 q^{29}+ \cdots + 436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0.449490 0.149830 0.0749150 0.997190i \(-0.476131\pi\)
0.0749150 + 0.997190i \(0.476131\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0.449490 0.449490i 0.0749150 0.0749150i
\(7\) 6.67423 + 6.67423i 0.953462 + 0.953462i 0.998964 0.0455022i \(-0.0144888\pi\)
−0.0455022 + 0.998964i \(0.514489\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −8.79796 −0.977551
\(10\) 0 0
\(11\) −10.0227 10.0227i −0.911155 0.911155i 0.0852083 0.996363i \(-0.472844\pi\)
−0.996363 + 0.0852083i \(0.972844\pi\)
\(12\) 0.898979i 0.0749150i
\(13\) 13.0000i 1.00000i
\(14\) 13.3485 0.953462
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 11.6969i 0.688055i −0.938960 0.344028i \(-0.888209\pi\)
0.938960 0.344028i \(-0.111791\pi\)
\(18\) −8.79796 + 8.79796i −0.488775 + 0.488775i
\(19\) 6.00000 6.00000i 0.315789 0.315789i −0.531358 0.847147i \(-0.678318\pi\)
0.847147 + 0.531358i \(0.178318\pi\)
\(20\) 0 0
\(21\) 3.00000 + 3.00000i 0.142857 + 0.142857i
\(22\) −20.0454 −0.911155
\(23\) 33.3485i 1.44993i −0.688784 0.724967i \(-0.741855\pi\)
0.688784 0.724967i \(-0.258145\pi\)
\(24\) −0.898979 0.898979i −0.0374575 0.0374575i
\(25\) 0 0
\(26\) −13.0000 13.0000i −0.500000 0.500000i
\(27\) −8.00000 −0.296296
\(28\) 13.3485 13.3485i 0.476731 0.476731i
\(29\) 48.3939 1.66875 0.834377 0.551194i \(-0.185828\pi\)
0.834377 + 0.551194i \(0.185828\pi\)
\(30\) 0 0
\(31\) 11.3258 11.3258i 0.365347 0.365347i −0.500430 0.865777i \(-0.666825\pi\)
0.865777 + 0.500430i \(0.166825\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) −4.50510 4.50510i −0.136518 0.136518i
\(34\) −11.6969 11.6969i −0.344028 0.344028i
\(35\) 0 0
\(36\) 17.5959i 0.488775i
\(37\) −31.6969 31.6969i −0.856674 0.856674i 0.134271 0.990945i \(-0.457131\pi\)
−0.990945 + 0.134271i \(0.957131\pi\)
\(38\) 12.0000i 0.315789i
\(39\) 5.84337i 0.149830i
\(40\) 0 0
\(41\) 45.3939 45.3939i 1.10717 1.10717i 0.113646 0.993521i \(-0.463747\pi\)
0.993521 0.113646i \(-0.0362531\pi\)
\(42\) 6.00000 0.142857
\(43\) 15.9546i 0.371037i −0.982641 0.185519i \(-0.940604\pi\)
0.982641 0.185519i \(-0.0593965\pi\)
\(44\) −20.0454 + 20.0454i −0.455577 + 0.455577i
\(45\) 0 0
\(46\) −33.3485 33.3485i −0.724967 0.724967i
\(47\) 59.4620 + 59.4620i 1.26515 + 1.26515i 0.948564 + 0.316584i \(0.102536\pi\)
0.316584 + 0.948564i \(0.397464\pi\)
\(48\) −1.79796 −0.0374575
\(49\) 40.0908i 0.818180i
\(50\) 0 0
\(51\) 5.25765i 0.103091i
\(52\) −26.0000 −0.500000
\(53\) −79.6969 −1.50372 −0.751858 0.659325i \(-0.770842\pi\)
−0.751858 + 0.659325i \(0.770842\pi\)
\(54\) −8.00000 + 8.00000i −0.148148 + 0.148148i
\(55\) 0 0
\(56\) 26.6969i 0.476731i
\(57\) 2.69694 2.69694i 0.0473147 0.0473147i
\(58\) 48.3939 48.3939i 0.834377 0.834377i
\(59\) 53.4166 + 53.4166i 0.905366 + 0.905366i 0.995894 0.0905281i \(-0.0288555\pi\)
−0.0905281 + 0.995894i \(0.528856\pi\)
\(60\) 0 0
\(61\) −69.0908 −1.13264 −0.566318 0.824187i \(-0.691633\pi\)
−0.566318 + 0.824187i \(0.691633\pi\)
\(62\) 22.6515i 0.365347i
\(63\) −58.7196 58.7196i −0.932058 0.932058i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −9.01021 −0.136518
\(67\) −58.7650 + 58.7650i −0.877090 + 0.877090i −0.993233 0.116142i \(-0.962947\pi\)
0.116142 + 0.993233i \(0.462947\pi\)
\(68\) −23.3939 −0.344028
\(69\) 14.9898i 0.217243i
\(70\) 0 0
\(71\) −44.7878 + 44.7878i −0.630813 + 0.630813i −0.948272 0.317459i \(-0.897171\pi\)
0.317459 + 0.948272i \(0.397171\pi\)
\(72\) 17.5959 + 17.5959i 0.244388 + 0.244388i
\(73\) −67.7878 67.7878i −0.928599 0.928599i 0.0690162 0.997616i \(-0.478014\pi\)
−0.997616 + 0.0690162i \(0.978014\pi\)
\(74\) −63.3939 −0.856674
\(75\) 0 0
\(76\) −12.0000 12.0000i −0.157895 0.157895i
\(77\) 133.788i 1.73750i
\(78\) −5.84337 5.84337i −0.0749150 0.0749150i
\(79\) −74.7878 −0.946680 −0.473340 0.880880i \(-0.656952\pi\)
−0.473340 + 0.880880i \(0.656952\pi\)
\(80\) 0 0
\(81\) 75.5857 0.933157
\(82\) 90.7878i 1.10717i
\(83\) 5.41658 5.41658i 0.0652600 0.0652600i −0.673724 0.738984i \(-0.735306\pi\)
0.738984 + 0.673724i \(0.235306\pi\)
\(84\) 6.00000 6.00000i 0.0714286 0.0714286i
\(85\) 0 0
\(86\) −15.9546 15.9546i −0.185519 0.185519i
\(87\) 21.7526 0.250029
\(88\) 40.0908i 0.455577i
\(89\) 35.6969 + 35.6969i 0.401089 + 0.401089i 0.878617 0.477528i \(-0.158467\pi\)
−0.477528 + 0.878617i \(0.658467\pi\)
\(90\) 0 0
\(91\) 86.7650 86.7650i 0.953462 0.953462i
\(92\) −66.6969 −0.724967
\(93\) 5.09082 5.09082i 0.0547400 0.0547400i
\(94\) 118.924 1.26515
\(95\) 0 0
\(96\) −1.79796 + 1.79796i −0.0187287 + 0.0187287i
\(97\) 61.3939 61.3939i 0.632927 0.632927i −0.315874 0.948801i \(-0.602298\pi\)
0.948801 + 0.315874i \(0.102298\pi\)
\(98\) 40.0908 + 40.0908i 0.409090 + 0.409090i
\(99\) 88.1793 + 88.1793i 0.890700 + 0.890700i
\(100\) 0 0
\(101\) 96.4847i 0.955294i 0.878552 + 0.477647i \(0.158510\pi\)
−0.878552 + 0.477647i \(0.841490\pi\)
\(102\) −5.25765 5.25765i −0.0515456 0.0515456i
\(103\) 49.5755i 0.481316i 0.970610 + 0.240658i \(0.0773632\pi\)
−0.970610 + 0.240658i \(0.922637\pi\)
\(104\) −26.0000 + 26.0000i −0.250000 + 0.250000i
\(105\) 0 0
\(106\) −79.6969 + 79.6969i −0.751858 + 0.751858i
\(107\) 85.2577 0.796801 0.398400 0.917212i \(-0.369566\pi\)
0.398400 + 0.917212i \(0.369566\pi\)
\(108\) 16.0000i 0.148148i
\(109\) −107.182 + 107.182i −0.983318 + 0.983318i −0.999863 0.0165454i \(-0.994733\pi\)
0.0165454 + 0.999863i \(0.494733\pi\)
\(110\) 0 0
\(111\) −14.2474 14.2474i −0.128355 0.128355i
\(112\) −26.6969 26.6969i −0.238366 0.238366i
\(113\) 45.3939 0.401716 0.200858 0.979620i \(-0.435627\pi\)
0.200858 + 0.979620i \(0.435627\pi\)
\(114\) 5.39388i 0.0473147i
\(115\) 0 0
\(116\) 96.7878i 0.834377i
\(117\) 114.373i 0.977551i
\(118\) 106.833 0.905366
\(119\) 78.0681 78.0681i 0.656035 0.656035i
\(120\) 0 0
\(121\) 79.9092i 0.660406i
\(122\) −69.0908 + 69.0908i −0.566318 + 0.566318i
\(123\) 20.4041 20.4041i 0.165887 0.165887i
\(124\) −22.6515 22.6515i −0.182674 0.182674i
\(125\) 0 0
\(126\) −117.439 −0.932058
\(127\) 170.788i 1.34479i −0.740195 0.672393i \(-0.765267\pi\)
0.740195 0.672393i \(-0.234733\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 7.17143i 0.0555924i
\(130\) 0 0
\(131\) 93.5301 0.713970 0.356985 0.934110i \(-0.383805\pi\)
0.356985 + 0.934110i \(0.383805\pi\)
\(132\) −9.01021 + 9.01021i −0.0682591 + 0.0682591i
\(133\) 80.0908 0.602187
\(134\) 117.530i 0.877090i
\(135\) 0 0
\(136\) −23.3939 + 23.3939i −0.172014 + 0.172014i
\(137\) 86.3031 + 86.3031i 0.629949 + 0.629949i 0.948055 0.318106i \(-0.103047\pi\)
−0.318106 + 0.948055i \(0.603047\pi\)
\(138\) −14.9898 14.9898i −0.108622 0.108622i
\(139\) 21.6209 0.155546 0.0777731 0.996971i \(-0.475219\pi\)
0.0777731 + 0.996971i \(0.475219\pi\)
\(140\) 0 0
\(141\) 26.7276 + 26.7276i 0.189557 + 0.189557i
\(142\) 89.5755i 0.630813i
\(143\) −130.295 + 130.295i −0.911155 + 0.911155i
\(144\) 35.1918 0.244388
\(145\) 0 0
\(146\) −135.576 −0.928599
\(147\) 18.0204i 0.122588i
\(148\) −63.3939 + 63.3939i −0.428337 + 0.428337i
\(149\) 55.9092 55.9092i 0.375229 0.375229i −0.494148 0.869378i \(-0.664520\pi\)
0.869378 + 0.494148i \(0.164520\pi\)
\(150\) 0 0
\(151\) 73.3258 + 73.3258i 0.485601 + 0.485601i 0.906915 0.421314i \(-0.138431\pi\)
−0.421314 + 0.906915i \(0.638431\pi\)
\(152\) −24.0000 −0.157895
\(153\) 102.909i 0.672609i
\(154\) −133.788 133.788i −0.868752 0.868752i
\(155\) 0 0
\(156\) −11.6867 −0.0749150
\(157\) 117.606 0.749084 0.374542 0.927210i \(-0.377800\pi\)
0.374542 + 0.927210i \(0.377800\pi\)
\(158\) −74.7878 + 74.7878i −0.473340 + 0.473340i
\(159\) −35.8230 −0.225302
\(160\) 0 0
\(161\) 222.576 222.576i 1.38246 1.38246i
\(162\) 75.5857 75.5857i 0.466578 0.466578i
\(163\) −123.258 123.258i −0.756182 0.756182i 0.219443 0.975625i \(-0.429576\pi\)
−0.975625 + 0.219443i \(0.929576\pi\)
\(164\) −90.7878 90.7878i −0.553584 0.553584i
\(165\) 0 0
\(166\) 10.8332i 0.0652600i
\(167\) −43.5755 43.5755i −0.260931 0.260931i 0.564501 0.825432i \(-0.309069\pi\)
−0.825432 + 0.564501i \(0.809069\pi\)
\(168\) 12.0000i 0.0714286i
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) −52.7878 + 52.7878i −0.308700 + 0.308700i
\(172\) −31.9092 −0.185519
\(173\) 52.7276i 0.304784i 0.988320 + 0.152392i \(0.0486975\pi\)
−0.988320 + 0.152392i \(0.951302\pi\)
\(174\) 21.7526 21.7526i 0.125015 0.125015i
\(175\) 0 0
\(176\) 40.0908 + 40.0908i 0.227789 + 0.227789i
\(177\) 24.0102 + 24.0102i 0.135651 + 0.135651i
\(178\) 71.3939 0.401089
\(179\) 140.000i 0.782123i −0.920365 0.391061i \(-0.872108\pi\)
0.920365 0.391061i \(-0.127892\pi\)
\(180\) 0 0
\(181\) 245.363i 1.35560i 0.735247 + 0.677799i \(0.237066\pi\)
−0.735247 + 0.677799i \(0.762934\pi\)
\(182\) 173.530i 0.953462i
\(183\) −31.0556 −0.169703
\(184\) −66.6969 + 66.6969i −0.362483 + 0.362483i
\(185\) 0 0
\(186\) 10.1816i 0.0547400i
\(187\) −117.235 + 117.235i −0.626925 + 0.626925i
\(188\) 118.924 118.924i 0.632574 0.632574i
\(189\) −53.3939 53.3939i −0.282507 0.282507i
\(190\) 0 0
\(191\) 42.7878 0.224020 0.112010 0.993707i \(-0.464271\pi\)
0.112010 + 0.993707i \(0.464271\pi\)
\(192\) 3.59592i 0.0187287i
\(193\) 53.1214 + 53.1214i 0.275241 + 0.275241i 0.831206 0.555965i \(-0.187651\pi\)
−0.555965 + 0.831206i \(0.687651\pi\)
\(194\) 122.788i 0.632927i
\(195\) 0 0
\(196\) 80.1816 0.409090
\(197\) −170.788 + 170.788i −0.866943 + 0.866943i −0.992133 0.125190i \(-0.960046\pi\)
0.125190 + 0.992133i \(0.460046\pi\)
\(198\) 176.359 0.890700
\(199\) 266.788i 1.34064i −0.742071 0.670321i \(-0.766156\pi\)
0.742071 0.670321i \(-0.233844\pi\)
\(200\) 0 0
\(201\) −26.4143 + 26.4143i −0.131414 + 0.131414i
\(202\) 96.4847 + 96.4847i 0.477647 + 0.477647i
\(203\) 322.992 + 322.992i 1.59109 + 1.59109i
\(204\) −10.5153 −0.0515456
\(205\) 0 0
\(206\) 49.5755 + 49.5755i 0.240658 + 0.240658i
\(207\) 293.398i 1.41738i
\(208\) 52.0000i 0.250000i
\(209\) −120.272 −0.575466
\(210\) 0 0
\(211\) 66.4699 0.315023 0.157512 0.987517i \(-0.449653\pi\)
0.157512 + 0.987517i \(0.449653\pi\)
\(212\) 159.394i 0.751858i
\(213\) −20.1316 + 20.1316i −0.0945147 + 0.0945147i
\(214\) 85.2577 85.2577i 0.398400 0.398400i
\(215\) 0 0
\(216\) 16.0000 + 16.0000i 0.0740741 + 0.0740741i
\(217\) 151.182 0.696690
\(218\) 214.363i 0.983318i
\(219\) −30.4699 30.4699i −0.139132 0.139132i
\(220\) 0 0
\(221\) −152.060 −0.688055
\(222\) −28.4949 −0.128355
\(223\) 211.439 211.439i 0.948158 0.948158i −0.0505627 0.998721i \(-0.516101\pi\)
0.998721 + 0.0505627i \(0.0161015\pi\)
\(224\) −53.3939 −0.238366
\(225\) 0 0
\(226\) 45.3939 45.3939i 0.200858 0.200858i
\(227\) −57.9773 + 57.9773i −0.255407 + 0.255407i −0.823183 0.567776i \(-0.807804\pi\)
0.567776 + 0.823183i \(0.307804\pi\)
\(228\) −5.39388 5.39388i −0.0236574 0.0236574i
\(229\) 259.151 + 259.151i 1.13166 + 1.13166i 0.989901 + 0.141763i \(0.0452772\pi\)
0.141763 + 0.989901i \(0.454723\pi\)
\(230\) 0 0
\(231\) 60.1362i 0.260330i
\(232\) −96.7878 96.7878i −0.417189 0.417189i
\(233\) 94.0000i 0.403433i 0.979444 + 0.201717i \(0.0646520\pi\)
−0.979444 + 0.201717i \(0.935348\pi\)
\(234\) 114.373 + 114.373i 0.488775 + 0.488775i
\(235\) 0 0
\(236\) 106.833 106.833i 0.452683 0.452683i
\(237\) −33.6163 −0.141841
\(238\) 156.136i 0.656035i
\(239\) 279.644 279.644i 1.17006 1.17006i 0.187861 0.982196i \(-0.439844\pi\)
0.982196 0.187861i \(-0.0601556\pi\)
\(240\) 0 0
\(241\) 259.060 + 259.060i 1.07494 + 1.07494i 0.996955 + 0.0779840i \(0.0248483\pi\)
0.0779840 + 0.996955i \(0.475152\pi\)
\(242\) 79.9092 + 79.9092i 0.330203 + 0.330203i
\(243\) 105.975 0.436111
\(244\) 138.182i 0.566318i
\(245\) 0 0
\(246\) 40.8082i 0.165887i
\(247\) −78.0000 78.0000i −0.315789 0.315789i
\(248\) −45.3031 −0.182674
\(249\) 2.43470 2.43470i 0.00977790 0.00977790i
\(250\) 0 0
\(251\) 67.1510i 0.267534i 0.991013 + 0.133767i \(0.0427074\pi\)
−0.991013 + 0.133767i \(0.957293\pi\)
\(252\) −117.439 + 117.439i −0.466029 + 0.466029i
\(253\) −334.242 + 334.242i −1.32111 + 1.32111i
\(254\) −170.788 170.788i −0.672393 0.672393i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 318.212i 1.23818i −0.785320 0.619090i \(-0.787502\pi\)
0.785320 0.619090i \(-0.212498\pi\)
\(258\) −7.17143 7.17143i −0.0277962 0.0277962i
\(259\) 423.106i 1.63361i
\(260\) 0 0
\(261\) −425.767 −1.63129
\(262\) 93.5301 93.5301i 0.356985 0.356985i
\(263\) −80.4995 −0.306082 −0.153041 0.988220i \(-0.548907\pi\)
−0.153041 + 0.988220i \(0.548907\pi\)
\(264\) 18.0204i 0.0682591i
\(265\) 0 0
\(266\) 80.0908 80.0908i 0.301093 0.301093i
\(267\) 16.0454 + 16.0454i 0.0600952 + 0.0600952i
\(268\) 117.530 + 117.530i 0.438545 + 0.438545i
\(269\) −45.2429 −0.168189 −0.0840945 0.996458i \(-0.526800\pi\)
−0.0840945 + 0.996458i \(0.526800\pi\)
\(270\) 0 0
\(271\) 233.326 + 233.326i 0.860981 + 0.860981i 0.991452 0.130471i \(-0.0416491\pi\)
−0.130471 + 0.991452i \(0.541649\pi\)
\(272\) 46.7878i 0.172014i
\(273\) 39.0000 39.0000i 0.142857 0.142857i
\(274\) 172.606 0.629949
\(275\) 0 0
\(276\) −29.9796 −0.108622
\(277\) 297.151i 1.07275i 0.843981 + 0.536374i \(0.180206\pi\)
−0.843981 + 0.536374i \(0.819794\pi\)
\(278\) 21.6209 21.6209i 0.0777731 0.0777731i
\(279\) −99.6436 + 99.6436i −0.357146 + 0.357146i
\(280\) 0 0
\(281\) −208.182 208.182i −0.740860 0.740860i 0.231884 0.972744i \(-0.425511\pi\)
−0.972744 + 0.231884i \(0.925511\pi\)
\(282\) 53.4551 0.189557
\(283\) 231.106i 0.816628i −0.912842 0.408314i \(-0.866117\pi\)
0.912842 0.408314i \(-0.133883\pi\)
\(284\) 89.5755 + 89.5755i 0.315407 + 0.315407i
\(285\) 0 0
\(286\) 260.590i 0.911155i
\(287\) 605.939 2.11128
\(288\) 35.1918 35.1918i 0.122194 0.122194i
\(289\) 152.182 0.526580
\(290\) 0 0
\(291\) 27.5959 27.5959i 0.0948313 0.0948313i
\(292\) −135.576 + 135.576i −0.464300 + 0.464300i
\(293\) −29.2122 29.2122i −0.0997005 0.0997005i 0.655497 0.755198i \(-0.272459\pi\)
−0.755198 + 0.655497i \(0.772459\pi\)
\(294\) 18.0204 + 18.0204i 0.0612939 + 0.0612939i
\(295\) 0 0
\(296\) 126.788i 0.428337i
\(297\) 80.1816 + 80.1816i 0.269972 + 0.269972i
\(298\) 111.818i 0.375229i
\(299\) −433.530 −1.44993
\(300\) 0 0
\(301\) 106.485 106.485i 0.353770 0.353770i
\(302\) 146.652 0.485601
\(303\) 43.3689i 0.143132i
\(304\) −24.0000 + 24.0000i −0.0789474 + 0.0789474i
\(305\) 0 0
\(306\) 102.909 + 102.909i 0.336305 + 0.336305i
\(307\) −144.788 144.788i −0.471621 0.471621i 0.430818 0.902439i \(-0.358225\pi\)
−0.902439 + 0.430818i \(0.858225\pi\)
\(308\) −267.576 −0.868752
\(309\) 22.2837i 0.0721155i
\(310\) 0 0
\(311\) 311.773i 1.00249i −0.865307 0.501243i \(-0.832876\pi\)
0.865307 0.501243i \(-0.167124\pi\)
\(312\) −11.6867 + 11.6867i −0.0374575 + 0.0374575i
\(313\) 330.605 1.05625 0.528123 0.849168i \(-0.322896\pi\)
0.528123 + 0.849168i \(0.322896\pi\)
\(314\) 117.606 117.606i 0.374542 0.374542i
\(315\) 0 0
\(316\) 149.576i 0.473340i
\(317\) 16.2724 16.2724i 0.0513326 0.0513326i −0.680974 0.732307i \(-0.738444\pi\)
0.732307 + 0.680974i \(0.238444\pi\)
\(318\) −35.8230 + 35.8230i −0.112651 + 0.112651i
\(319\) −485.037 485.037i −1.52049 1.52049i
\(320\) 0 0
\(321\) 38.3224 0.119385
\(322\) 445.151i 1.38246i
\(323\) −70.1816 70.1816i −0.217281 0.217281i
\(324\) 151.171i 0.466578i
\(325\) 0 0
\(326\) −246.515 −0.756182
\(327\) −48.1770 + 48.1770i −0.147330 + 0.147330i
\(328\) −181.576 −0.553584
\(329\) 793.727i 2.41254i
\(330\) 0 0
\(331\) 25.1510 25.1510i 0.0759849 0.0759849i −0.668093 0.744078i \(-0.732889\pi\)
0.744078 + 0.668093i \(0.232889\pi\)
\(332\) −10.8332 10.8332i −0.0326300 0.0326300i
\(333\) 278.868 + 278.868i 0.837443 + 0.837443i
\(334\) −87.1510 −0.260931
\(335\) 0 0
\(336\) −12.0000 12.0000i −0.0357143 0.0357143i
\(337\) 345.454i 1.02509i −0.858661 0.512543i \(-0.828703\pi\)
0.858661 0.512543i \(-0.171297\pi\)
\(338\) −169.000 + 169.000i −0.500000 + 0.500000i
\(339\) 20.4041 0.0601890
\(340\) 0 0
\(341\) −227.030 −0.665776
\(342\) 105.576i 0.308700i
\(343\) 59.4620 59.4620i 0.173359 0.173359i
\(344\) −31.9092 + 31.9092i −0.0927593 + 0.0927593i
\(345\) 0 0
\(346\) 52.7276 + 52.7276i 0.152392 + 0.152392i
\(347\) −237.621 −0.684786 −0.342393 0.939557i \(-0.611238\pi\)
−0.342393 + 0.939557i \(0.611238\pi\)
\(348\) 43.5051i 0.125015i
\(349\) 18.8786 + 18.8786i 0.0540933 + 0.0540933i 0.733636 0.679543i \(-0.237822\pi\)
−0.679543 + 0.733636i \(0.737822\pi\)
\(350\) 0 0
\(351\) 104.000i 0.296296i
\(352\) 80.1816 0.227789
\(353\) 196.485 196.485i 0.556614 0.556614i −0.371728 0.928342i \(-0.621235\pi\)
0.928342 + 0.371728i \(0.121235\pi\)
\(354\) 48.0204 0.135651
\(355\) 0 0
\(356\) 71.3939 71.3939i 0.200545 0.200545i
\(357\) 35.0908 35.0908i 0.0982936 0.0982936i
\(358\) −140.000 140.000i −0.391061 0.391061i
\(359\) 359.462 + 359.462i 1.00129 + 1.00129i 0.999999 + 0.00128770i \(0.000409889\pi\)
0.00128770 + 0.999999i \(0.499590\pi\)
\(360\) 0 0
\(361\) 289.000i 0.800554i
\(362\) 245.363 + 245.363i 0.677799 + 0.677799i
\(363\) 35.9184i 0.0989486i
\(364\) −173.530 173.530i −0.476731 0.476731i
\(365\) 0 0
\(366\) −31.0556 + 31.0556i −0.0848514 + 0.0848514i
\(367\) −491.287 −1.33866 −0.669329 0.742966i \(-0.733418\pi\)
−0.669329 + 0.742966i \(0.733418\pi\)
\(368\) 133.394i 0.362483i
\(369\) −399.373 + 399.373i −1.08231 + 1.08231i
\(370\) 0 0
\(371\) −531.916 531.916i −1.43374 1.43374i
\(372\) −10.1816 10.1816i −0.0273700 0.0273700i
\(373\) −528.939 −1.41807 −0.709033 0.705175i \(-0.750868\pi\)
−0.709033 + 0.705175i \(0.750868\pi\)
\(374\) 234.470i 0.626925i
\(375\) 0 0
\(376\) 237.848i 0.632574i
\(377\) 629.120i 1.66875i
\(378\) −106.788 −0.282507
\(379\) 246.765 246.765i 0.651095 0.651095i −0.302162 0.953257i \(-0.597708\pi\)
0.953257 + 0.302162i \(0.0977082\pi\)
\(380\) 0 0
\(381\) 76.7673i 0.201489i
\(382\) 42.7878 42.7878i 0.112010 0.112010i
\(383\) 414.954 414.954i 1.08343 1.08343i 0.0872426 0.996187i \(-0.472194\pi\)
0.996187 0.0872426i \(-0.0278055\pi\)
\(384\) 3.59592 + 3.59592i 0.00936437 + 0.00936437i
\(385\) 0 0
\(386\) 106.243 0.275241
\(387\) 140.368i 0.362708i
\(388\) −122.788 122.788i −0.316463 0.316463i
\(389\) 597.939i 1.53712i 0.639779 + 0.768559i \(0.279026\pi\)
−0.639779 + 0.768559i \(0.720974\pi\)
\(390\) 0 0
\(391\) −390.075 −0.997634
\(392\) 80.1816 80.1816i 0.204545 0.204545i
\(393\) 42.0408 0.106974
\(394\) 341.576i 0.866943i
\(395\) 0 0
\(396\) 176.359 176.359i 0.445350 0.445350i
\(397\) −396.909 396.909i −0.999771 0.999771i 0.000228728 1.00000i \(-0.499927\pi\)
−1.00000 0.000228728i \(0.999927\pi\)
\(398\) −266.788 266.788i −0.670321 0.670321i
\(399\) 36.0000 0.0902256
\(400\) 0 0
\(401\) −128.363 128.363i −0.320108 0.320108i 0.528701 0.848808i \(-0.322679\pi\)
−0.848808 + 0.528701i \(0.822679\pi\)
\(402\) 52.8286i 0.131414i
\(403\) −147.235 147.235i −0.365347 0.365347i
\(404\) 192.969 0.477647
\(405\) 0 0
\(406\) 645.984 1.59109
\(407\) 635.378i 1.56113i
\(408\) −10.5153 + 10.5153i −0.0257728 + 0.0257728i
\(409\) 241.727 241.727i 0.591018 0.591018i −0.346888 0.937907i \(-0.612762\pi\)
0.937907 + 0.346888i \(0.112762\pi\)
\(410\) 0 0
\(411\) 38.7923 + 38.7923i 0.0943853 + 0.0943853i
\(412\) 99.1510 0.240658
\(413\) 713.030i 1.72646i
\(414\) 293.398 + 293.398i 0.708692 + 0.708692i
\(415\) 0 0
\(416\) 52.0000 + 52.0000i 0.125000 + 0.125000i
\(417\) 9.71838 0.0233055
\(418\) −120.272 + 120.272i −0.287733 + 0.287733i
\(419\) 678.833 1.62013 0.810063 0.586342i \(-0.199433\pi\)
0.810063 + 0.586342i \(0.199433\pi\)
\(420\) 0 0
\(421\) −74.6969 + 74.6969i −0.177427 + 0.177427i −0.790233 0.612806i \(-0.790041\pi\)
0.612806 + 0.790233i \(0.290041\pi\)
\(422\) 66.4699 66.4699i 0.157512 0.157512i
\(423\) −523.144 523.144i −1.23675 1.23675i
\(424\) 159.394 + 159.394i 0.375929 + 0.375929i
\(425\) 0 0
\(426\) 40.2633i 0.0945147i
\(427\) −461.128 461.128i −1.07993 1.07993i
\(428\) 170.515i 0.398400i
\(429\) −58.5663 + 58.5663i −0.136518 + 0.136518i
\(430\) 0 0
\(431\) 280.652 280.652i 0.651164 0.651164i −0.302110 0.953273i \(-0.597691\pi\)
0.953273 + 0.302110i \(0.0976908\pi\)
\(432\) 32.0000 0.0740741
\(433\) 133.394i 0.308069i 0.988065 + 0.154034i \(0.0492267\pi\)
−0.988065 + 0.154034i \(0.950773\pi\)
\(434\) 151.182 151.182i 0.348345 0.348345i
\(435\) 0 0
\(436\) 214.363 + 214.363i 0.491659 + 0.491659i
\(437\) −200.091 200.091i −0.457874 0.457874i
\(438\) −60.9398 −0.139132
\(439\) 782.302i 1.78201i 0.453994 + 0.891005i \(0.349999\pi\)
−0.453994 + 0.891005i \(0.650001\pi\)
\(440\) 0 0
\(441\) 352.717i 0.799813i
\(442\) −152.060 + 152.060i −0.344028 + 0.344028i
\(443\) 354.742 0.800773 0.400386 0.916346i \(-0.368876\pi\)
0.400386 + 0.916346i \(0.368876\pi\)
\(444\) −28.4949 + 28.4949i −0.0641777 + 0.0641777i
\(445\) 0 0
\(446\) 422.879i 0.948158i
\(447\) 25.1306 25.1306i 0.0562206 0.0562206i
\(448\) −53.3939 + 53.3939i −0.119183 + 0.119183i
\(449\) −242.333 242.333i −0.539716 0.539716i 0.383729 0.923446i \(-0.374640\pi\)
−0.923446 + 0.383729i \(0.874640\pi\)
\(450\) 0 0
\(451\) −909.939 −2.01760
\(452\) 90.7878i 0.200858i
\(453\) 32.9592 + 32.9592i 0.0727576 + 0.0727576i
\(454\) 115.955i 0.255407i
\(455\) 0 0
\(456\) −10.7878 −0.0236574
\(457\) 83.4245 83.4245i 0.182548 0.182548i −0.609917 0.792465i \(-0.708797\pi\)
0.792465 + 0.609917i \(0.208797\pi\)
\(458\) 518.302 1.13166
\(459\) 93.5755i 0.203868i
\(460\) 0 0
\(461\) 224.454 224.454i 0.486885 0.486885i −0.420437 0.907322i \(-0.638123\pi\)
0.907322 + 0.420437i \(0.138123\pi\)
\(462\) −60.1362 60.1362i −0.130165 0.130165i
\(463\) −525.401 525.401i −1.13477 1.13477i −0.989373 0.145402i \(-0.953552\pi\)
−0.145402 0.989373i \(-0.546448\pi\)
\(464\) −193.576 −0.417189
\(465\) 0 0
\(466\) 94.0000 + 94.0000i 0.201717 + 0.201717i
\(467\) 621.893i 1.33168i 0.746096 + 0.665839i \(0.231926\pi\)
−0.746096 + 0.665839i \(0.768074\pi\)
\(468\) 228.747 0.488775
\(469\) −784.423 −1.67254
\(470\) 0 0
\(471\) 52.8627 0.112235
\(472\) 213.666i 0.452683i
\(473\) −159.908 + 159.908i −0.338072 + 0.338072i
\(474\) −33.6163 + 33.6163i −0.0709205 + 0.0709205i
\(475\) 0 0
\(476\) −156.136 156.136i −0.328017 0.328017i
\(477\) 701.170 1.46996
\(478\) 559.287i 1.17006i
\(479\) −358.007 358.007i −0.747405 0.747405i 0.226586 0.973991i \(-0.427243\pi\)
−0.973991 + 0.226586i \(0.927243\pi\)
\(480\) 0 0
\(481\) −412.060 + 412.060i −0.856674 + 0.856674i
\(482\) 518.120 1.07494
\(483\) 100.045 100.045i 0.207133 0.207133i
\(484\) 159.818 0.330203
\(485\) 0 0
\(486\) 105.975 105.975i 0.218056 0.218056i
\(487\) −97.7503 + 97.7503i −0.200719 + 0.200719i −0.800308 0.599589i \(-0.795331\pi\)
0.599589 + 0.800308i \(0.295331\pi\)
\(488\) 138.182 + 138.182i 0.283159 + 0.283159i
\(489\) −55.4031 55.4031i −0.113299 0.113299i
\(490\) 0 0
\(491\) 667.923i 1.36033i 0.733058 + 0.680166i \(0.238092\pi\)
−0.733058 + 0.680166i \(0.761908\pi\)
\(492\) −40.8082 40.8082i −0.0829434 0.0829434i
\(493\) 566.060i 1.14820i
\(494\) −156.000 −0.315789
\(495\) 0 0
\(496\) −45.3031 + 45.3031i −0.0913368 + 0.0913368i
\(497\) −597.848 −1.20291
\(498\) 4.86939i 0.00977790i
\(499\) 93.9773 93.9773i 0.188331 0.188331i −0.606643 0.794974i \(-0.707484\pi\)
0.794974 + 0.606643i \(0.207484\pi\)
\(500\) 0 0
\(501\) −19.5867 19.5867i −0.0390953 0.0390953i
\(502\) 67.1510 + 67.1510i 0.133767 + 0.133767i
\(503\) −68.7265 −0.136633 −0.0683166 0.997664i \(-0.521763\pi\)
−0.0683166 + 0.997664i \(0.521763\pi\)
\(504\) 234.879i 0.466029i
\(505\) 0 0
\(506\) 668.484i 1.32111i
\(507\) −75.9638 −0.149830
\(508\) −341.576 −0.672393
\(509\) 488.545 488.545i 0.959813 0.959813i −0.0394100 0.999223i \(-0.512548\pi\)
0.999223 + 0.0394100i \(0.0125478\pi\)
\(510\) 0 0
\(511\) 904.863i 1.77077i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −48.0000 + 48.0000i −0.0935673 + 0.0935673i
\(514\) −318.212 318.212i −0.619090 0.619090i
\(515\) 0 0
\(516\) −14.3429 −0.0277962
\(517\) 1191.94i 2.30549i
\(518\) −423.106 423.106i −0.816806 0.816806i
\(519\) 23.7005i 0.0456657i
\(520\) 0 0
\(521\) 120.908 0.232069 0.116035 0.993245i \(-0.462982\pi\)
0.116035 + 0.993245i \(0.462982\pi\)
\(522\) −425.767 + 425.767i −0.815646 + 0.815646i
\(523\) 160.000 0.305927 0.152964 0.988232i \(-0.451118\pi\)
0.152964 + 0.988232i \(0.451118\pi\)
\(524\) 187.060i 0.356985i
\(525\) 0 0
\(526\) −80.4995 + 80.4995i −0.153041 + 0.153041i
\(527\) −132.477 132.477i −0.251379 0.251379i
\(528\) 18.0204 + 18.0204i 0.0341296 + 0.0341296i
\(529\) −583.120 −1.10231
\(530\) 0 0
\(531\) −469.957 469.957i −0.885041 0.885041i
\(532\) 160.182i 0.301093i
\(533\) −590.120 590.120i −1.10717 1.10717i
\(534\) 32.0908 0.0600952
\(535\) 0 0
\(536\) 235.060 0.438545
\(537\) 62.9286i 0.117185i
\(538\) −45.2429 + 45.2429i −0.0840945 + 0.0840945i
\(539\) 401.818 401.818i 0.745489 0.745489i
\(540\) 0 0
\(541\) −95.9092 95.9092i −0.177281 0.177281i 0.612888 0.790170i \(-0.290008\pi\)
−0.790170 + 0.612888i \(0.790008\pi\)
\(542\) 466.652 0.860981
\(543\) 110.288i 0.203109i
\(544\) 46.7878 + 46.7878i 0.0860069 + 0.0860069i
\(545\) 0 0
\(546\) 78.0000i 0.142857i
\(547\) 842.983 1.54110 0.770551 0.637378i \(-0.219981\pi\)
0.770551 + 0.637378i \(0.219981\pi\)
\(548\) 172.606 172.606i 0.314975 0.314975i
\(549\) 607.858 1.10721
\(550\) 0 0
\(551\) 290.363 290.363i 0.526975 0.526975i
\(552\) −29.9796 + 29.9796i −0.0543109 + 0.0543109i
\(553\) −499.151 499.151i −0.902624 0.902624i
\(554\) 297.151 + 297.151i 0.536374 + 0.536374i
\(555\) 0 0
\(556\) 43.2418i 0.0777731i
\(557\) 157.666 + 157.666i 0.283063 + 0.283063i 0.834329 0.551266i \(-0.185855\pi\)
−0.551266 + 0.834329i \(0.685855\pi\)
\(558\) 199.287i 0.357146i
\(559\) −207.410 −0.371037
\(560\) 0 0
\(561\) −52.6959 + 52.6959i −0.0939321 + 0.0939321i
\(562\) −416.363 −0.740860
\(563\) 100.486i 0.178483i 0.996010 + 0.0892413i \(0.0284442\pi\)
−0.996010 + 0.0892413i \(0.971556\pi\)
\(564\) 53.4551 53.4551i 0.0947786 0.0947786i
\(565\) 0 0
\(566\) −231.106 231.106i −0.408314 0.408314i
\(567\) 504.477 + 504.477i 0.889730 + 0.889730i
\(568\) 179.151 0.315407
\(569\) 692.212i 1.21654i 0.793730 + 0.608271i \(0.208137\pi\)
−0.793730 + 0.608271i \(0.791863\pi\)
\(570\) 0 0
\(571\) 243.637i 0.426684i 0.976978 + 0.213342i \(0.0684349\pi\)
−0.976978 + 0.213342i \(0.931565\pi\)
\(572\) 260.590 + 260.590i 0.455577 + 0.455577i
\(573\) 19.2327 0.0335648
\(574\) 605.939 605.939i 1.05564 1.05564i
\(575\) 0 0
\(576\) 70.3837i 0.122194i
\(577\) −761.453 + 761.453i −1.31968 + 1.31968i −0.405646 + 0.914030i \(0.632953\pi\)
−0.914030 + 0.405646i \(0.867047\pi\)
\(578\) 152.182 152.182i 0.263290 0.263290i
\(579\) 23.8775 + 23.8775i 0.0412393 + 0.0412393i
\(580\) 0 0
\(581\) 72.3031 0.124446
\(582\) 55.1918i 0.0948313i
\(583\) 798.779 + 798.779i 1.37012 + 1.37012i
\(584\) 271.151i 0.464300i
\(585\) 0 0
\(586\) −58.4245 −0.0997005
\(587\) −367.235 + 367.235i −0.625613 + 0.625613i −0.946961 0.321348i \(-0.895864\pi\)
0.321348 + 0.946961i \(0.395864\pi\)
\(588\) 36.0408 0.0612939
\(589\) 135.909i 0.230746i
\(590\) 0 0
\(591\) −76.7673 + 76.7673i −0.129894 + 0.129894i
\(592\) 126.788 + 126.788i 0.214169 + 0.214169i
\(593\) 339.334 + 339.334i 0.572232 + 0.572232i 0.932752 0.360520i \(-0.117401\pi\)
−0.360520 + 0.932752i \(0.617401\pi\)
\(594\) 160.363 0.269972
\(595\) 0 0
\(596\) −111.818 111.818i −0.187615 0.187615i
\(597\) 119.918i 0.200868i
\(598\) −433.530 + 433.530i −0.724967 + 0.724967i
\(599\) 931.741 1.55549 0.777747 0.628577i \(-0.216362\pi\)
0.777747 + 0.628577i \(0.216362\pi\)
\(600\) 0 0
\(601\) −297.697 −0.495336 −0.247668 0.968845i \(-0.579664\pi\)
−0.247668 + 0.968845i \(0.579664\pi\)
\(602\) 212.969i 0.353770i
\(603\) 517.012 517.012i 0.857400 0.857400i
\(604\) 146.652 146.652i 0.242801 0.242801i
\(605\) 0 0
\(606\) 43.3689 + 43.3689i 0.0715658 + 0.0715658i
\(607\) −219.650 −0.361862 −0.180931 0.983496i \(-0.557911\pi\)
−0.180931 + 0.983496i \(0.557911\pi\)
\(608\) 48.0000i 0.0789474i
\(609\) 145.182 + 145.182i 0.238393 + 0.238393i
\(610\) 0 0
\(611\) 773.006 773.006i 1.26515 1.26515i
\(612\) 205.818 0.336305
\(613\) 392.363 392.363i 0.640071 0.640071i −0.310502 0.950573i \(-0.600497\pi\)
0.950573 + 0.310502i \(0.100497\pi\)
\(614\) −289.576 −0.471621
\(615\) 0 0
\(616\) −267.576 + 267.576i −0.434376 + 0.434376i
\(617\) −436.605 + 436.605i −0.707626 + 0.707626i −0.966035 0.258410i \(-0.916802\pi\)
0.258410 + 0.966035i \(0.416802\pi\)
\(618\) 22.2837 + 22.2837i 0.0360577 + 0.0360577i
\(619\) −282.363 282.363i −0.456160 0.456160i 0.441232 0.897393i \(-0.354541\pi\)
−0.897393 + 0.441232i \(0.854541\pi\)
\(620\) 0 0
\(621\) 266.788i 0.429610i
\(622\) −311.773 311.773i −0.501243 0.501243i
\(623\) 476.499i 0.764847i
\(624\) 23.3735i 0.0374575i
\(625\) 0 0
\(626\) 330.605 330.605i 0.528123 0.528123i
\(627\) −54.0612 −0.0862221
\(628\) 235.212i 0.374542i
\(629\) −370.757 + 370.757i −0.589439 + 0.589439i
\(630\) 0 0
\(631\) −131.803 131.803i −0.208879 0.208879i 0.594912 0.803791i \(-0.297187\pi\)
−0.803791 + 0.594912i \(0.797187\pi\)
\(632\) 149.576 + 149.576i 0.236670 + 0.236670i
\(633\) 29.8775 0.0471999
\(634\) 32.5449i 0.0513326i
\(635\) 0 0
\(636\) 71.6459i 0.112651i
\(637\) 521.181 0.818180
\(638\) −970.075 −1.52049
\(639\) 394.041 394.041i 0.616652 0.616652i
\(640\) 0 0
\(641\) 911.938i 1.42268i 0.702848 + 0.711340i \(0.251911\pi\)
−0.702848 + 0.711340i \(0.748089\pi\)
\(642\) 38.3224 38.3224i 0.0596923 0.0596923i
\(643\) 554.363 554.363i 0.862151 0.862151i −0.129436 0.991588i \(-0.541317\pi\)
0.991588 + 0.129436i \(0.0413168\pi\)
\(644\) −445.151 445.151i −0.691228 0.691228i
\(645\) 0 0
\(646\) −140.363 −0.217281
\(647\) 28.1362i 0.0434872i −0.999764 0.0217436i \(-0.993078\pi\)
0.999764 0.0217436i \(-0.00692175\pi\)
\(648\) −151.171 151.171i −0.233289 0.233289i
\(649\) 1070.76i 1.64986i
\(650\) 0 0
\(651\) 67.9546 0.104385
\(652\) −246.515 + 246.515i −0.378091 + 0.378091i
\(653\) 725.908 1.11165 0.555826 0.831299i \(-0.312402\pi\)
0.555826 + 0.831299i \(0.312402\pi\)
\(654\) 96.3541i 0.147330i
\(655\) 0 0
\(656\) −181.576 + 181.576i −0.276792 + 0.276792i
\(657\) 596.394 + 596.394i 0.907753 + 0.907753i
\(658\) 793.727 + 793.727i 1.20627 + 1.20627i
\(659\) −1237.82 −1.87833 −0.939163 0.343473i \(-0.888397\pi\)
−0.939163 + 0.343473i \(0.888397\pi\)
\(660\) 0 0
\(661\) 562.121 + 562.121i 0.850411 + 0.850411i 0.990184 0.139773i \(-0.0446373\pi\)
−0.139773 + 0.990184i \(0.544637\pi\)
\(662\) 50.3020i 0.0759849i
\(663\) −68.3495 −0.103091
\(664\) −21.6663 −0.0326300
\(665\) 0 0
\(666\) 557.737 0.837443
\(667\) 1613.86i 2.41958i
\(668\) −87.1510 + 87.1510i −0.130466 + 0.130466i
\(669\) 95.0398 95.0398i 0.142062 0.142062i
\(670\) 0 0
\(671\) 692.477 + 692.477i 1.03201 + 1.03201i
\(672\) −24.0000 −0.0357143
\(673\) 711.272i 1.05687i 0.848974 + 0.528434i \(0.177221\pi\)
−0.848974 + 0.528434i \(0.822779\pi\)
\(674\) −345.454 345.454i −0.512543 0.512543i
\(675\) 0 0
\(676\) 338.000i 0.500000i
\(677\) −425.151 −0.627993 −0.313996 0.949424i \(-0.601668\pi\)
−0.313996 + 0.949424i \(0.601668\pi\)
\(678\) 20.4041 20.4041i 0.0300945 0.0300945i
\(679\) 819.514 1.20694
\(680\) 0 0
\(681\) −26.0602 + 26.0602i −0.0382675 + 0.0382675i
\(682\) −227.030 + 227.030i −0.332888 + 0.332888i
\(683\) 69.9773 + 69.9773i 0.102456 + 0.102456i 0.756477 0.654021i \(-0.226919\pi\)
−0.654021 + 0.756477i \(0.726919\pi\)
\(684\) 105.576 + 105.576i 0.154350 + 0.154350i
\(685\) 0 0
\(686\) 118.924i 0.173359i
\(687\) 116.486 + 116.486i 0.169557 + 0.169557i
\(688\) 63.8184i 0.0927593i
\(689\) 1036.06i 1.50372i
\(690\) 0 0
\(691\) 297.614 297.614i 0.430700 0.430700i −0.458166 0.888867i \(-0.651494\pi\)
0.888867 + 0.458166i \(0.151494\pi\)
\(692\) 105.455 0.152392
\(693\) 1177.06i 1.69850i
\(694\) −237.621 + 237.621i −0.342393 + 0.342393i
\(695\) 0 0
\(696\) −43.5051 43.5051i −0.0625073 0.0625073i
\(697\) −530.969 530.969i −0.761793 0.761793i
\(698\) 37.7571 0.0540933
\(699\) 42.2520i 0.0604464i
\(700\) 0 0
\(701\) 129.910i 0.185321i 0.995698 + 0.0926606i \(0.0295372\pi\)
−0.995698 + 0.0926606i \(0.970463\pi\)
\(702\) 104.000 + 104.000i 0.148148 + 0.148148i
\(703\) −380.363 −0.541057
\(704\) 80.1816 80.1816i 0.113894 0.113894i
\(705\) 0 0
\(706\) 392.969i 0.556614i
\(707\) −643.961 + 643.961i −0.910837 + 0.910837i
\(708\) 48.0204 48.0204i 0.0678254 0.0678254i
\(709\) −602.969 602.969i −0.850450 0.850450i 0.139738 0.990189i \(-0.455374\pi\)
−0.990189 + 0.139738i \(0.955374\pi\)
\(710\) 0 0
\(711\) 657.980 0.925428
\(712\) 142.788i 0.200545i
\(713\) −377.697 377.697i −0.529729 0.529729i
\(714\) 70.1816i 0.0982936i
\(715\) 0 0
\(716\) −280.000 −0.391061
\(717\) 125.697 125.697i 0.175310 0.175310i
\(718\) 718.924 1.00129
\(719\) 749.589i 1.04254i −0.853391 0.521272i \(-0.825458\pi\)
0.853391 0.521272i \(-0.174542\pi\)
\(720\) 0 0
\(721\) −330.879 + 330.879i −0.458916 + 0.458916i
\(722\) 289.000 + 289.000i 0.400277 + 0.400277i
\(723\) 116.445 + 116.445i 0.161058 + 0.161058i
\(724\) 490.727 0.677799
\(725\) 0 0
\(726\) 35.9184 + 35.9184i 0.0494743 + 0.0494743i
\(727\) 885.090i 1.21745i 0.793379 + 0.608727i \(0.208320\pi\)
−0.793379 + 0.608727i \(0.791680\pi\)
\(728\) −347.060 −0.476731
\(729\) −632.637 −0.867814
\(730\) 0 0
\(731\) −186.620 −0.255294
\(732\) 62.1112i 0.0848514i
\(733\) −253.727 + 253.727i −0.346148 + 0.346148i −0.858673 0.512525i \(-0.828710\pi\)
0.512525 + 0.858673i \(0.328710\pi\)
\(734\) −491.287 + 491.287i −0.669329 + 0.669329i
\(735\) 0 0
\(736\) 133.394 + 133.394i 0.181242 + 0.181242i
\(737\) 1177.97 1.59833
\(738\) 798.747i 1.08231i
\(739\) −818.643 818.643i −1.10777 1.10777i −0.993443 0.114328i \(-0.963529\pi\)
−0.114328 0.993443i \(-0.536471\pi\)
\(740\) 0 0
\(741\) −35.0602 35.0602i −0.0473147 0.0473147i
\(742\) −1063.83 −1.43374
\(743\) 223.705 223.705i 0.301083 0.301083i −0.540354 0.841438i \(-0.681710\pi\)
0.841438 + 0.540354i \(0.181710\pi\)
\(744\) −20.3633 −0.0273700
\(745\) 0 0
\(746\) −528.939 + 528.939i −0.709033 + 0.709033i
\(747\) −47.6549 + 47.6549i −0.0637950 + 0.0637950i
\(748\) 234.470 + 234.470i 0.313462 + 0.313462i
\(749\) 569.030 + 569.030i 0.759719 + 0.759719i
\(750\) 0 0
\(751\) 739.501i 0.984688i 0.870401 + 0.492344i \(0.163860\pi\)
−0.870401 + 0.492344i \(0.836140\pi\)
\(752\) −237.848 237.848i −0.316287 0.316287i
\(753\) 30.1837i 0.0400846i
\(754\) −629.120 629.120i −0.834377 0.834377i
\(755\) 0 0
\(756\) −106.788 + 106.788i −0.141254 + 0.141254i
\(757\) 882.058 1.16520 0.582601 0.812758i \(-0.302035\pi\)
0.582601 + 0.812758i \(0.302035\pi\)
\(758\) 493.530i 0.651095i
\(759\) −150.238 + 150.238i −0.197942 + 0.197942i
\(760\) 0 0
\(761\) −638.393 638.393i −0.838887 0.838887i 0.149826 0.988712i \(-0.452129\pi\)
−0.988712 + 0.149826i \(0.952129\pi\)
\(762\) −76.7673 76.7673i −0.100745 0.100745i
\(763\) −1430.71 −1.87511
\(764\) 85.5755i 0.112010i
\(765\) 0 0
\(766\) 829.907i 1.08343i
\(767\) 694.416 694.416i 0.905366 0.905366i
\(768\) 7.19184 0.00936437
\(769\) −649.090 + 649.090i −0.844070 + 0.844070i −0.989385 0.145315i \(-0.953580\pi\)
0.145315 + 0.989385i \(0.453580\pi\)
\(770\) 0 0
\(771\) 143.033i 0.185516i
\(772\) 106.243 106.243i 0.137620 0.137620i
\(773\) −605.939 + 605.939i −0.783879 + 0.783879i −0.980483 0.196604i \(-0.937009\pi\)
0.196604 + 0.980483i \(0.437009\pi\)
\(774\) 140.368 + 140.368i 0.181354 + 0.181354i
\(775\) 0 0
\(776\) −245.576 −0.316463
\(777\) 190.182i 0.244764i
\(778\) 597.939 + 597.939i 0.768559 + 0.768559i
\(779\) 544.727i 0.699264i
\(780\) 0 0
\(781\) 897.789 1.14954
\(782\) −390.075 + 390.075i −0.498817 + 0.498817i
\(783\) −387.151 −0.494446
\(784\) 160.363i 0.204545i
\(785\) 0 0
\(786\) 42.0408 42.0408i 0.0534870 0.0534870i
\(787\) 946.461 + 946.461i 1.20262 + 1.20262i 0.973367 + 0.229252i \(0.0736278\pi\)
0.229252 + 0.973367i \(0.426372\pi\)
\(788\) 341.576 + 341.576i 0.433471 + 0.433471i
\(789\) −36.1837 −0.0458602
\(790\) 0 0
\(791\) 302.969 + 302.969i 0.383021 + 0.383021i
\(792\) 352.717i 0.445350i
\(793\) 898.181i 1.13264i
\(794\) −793.818 −0.999771
\(795\) 0 0
\(796\) −533.576 −0.670321
\(797\) 832.878i 1.04502i 0.852634 + 0.522508i \(0.175003\pi\)
−0.852634 + 0.522508i \(0.824997\pi\)
\(798\) 36.0000 36.0000i 0.0451128 0.0451128i
\(799\) 695.523 695.523i 0.870492 0.870492i
\(800\) 0 0
\(801\) −314.060 314.060i −0.392085 0.392085i
\(802\) −256.727 −0.320108
\(803\) 1358.83i 1.69220i
\(804\) 52.8286 + 52.8286i 0.0657072 + 0.0657072i
\(805\) 0 0
\(806\) −294.470 −0.365347
\(807\) −20.3362 −0.0251998
\(808\) 192.969 192.969i 0.238823 0.238823i
\(809\) 1194.00 1.47590 0.737948 0.674857i \(-0.235795\pi\)
0.737948 + 0.674857i \(0.235795\pi\)
\(810\) 0 0
\(811\) 52.2656 52.2656i 0.0644458 0.0644458i −0.674149 0.738595i \(-0.735490\pi\)
0.738595 + 0.674149i \(0.235490\pi\)
\(812\) 645.984 645.984i 0.795547 0.795547i
\(813\) 104.878 + 104.878i 0.129001 + 0.129001i
\(814\) 635.378 + 635.378i 0.780563 + 0.780563i
\(815\) 0 0
\(816\) 21.0306i 0.0257728i
\(817\) −95.7276 95.7276i −0.117170 0.117170i
\(818\) 483.453i 0.591018i
\(819\) −763.355 + 763.355i −0.932058 + 0.932058i
\(820\) 0 0
\(821\) −250.515 + 250.515i −0.305134 + 0.305134i −0.843019 0.537884i \(-0.819224\pi\)
0.537884 + 0.843019i \(0.319224\pi\)
\(822\) 77.5847 0.0943853
\(823\) 1065.94i 1.29519i 0.761986 + 0.647593i \(0.224224\pi\)
−0.761986 + 0.647593i \(0.775776\pi\)
\(824\) 99.1510 99.1510i 0.120329 0.120329i
\(825\) 0 0
\(826\) 713.030 + 713.030i 0.863232 + 0.863232i
\(827\) −118.690 118.690i −0.143519 0.143519i 0.631697 0.775216i \(-0.282359\pi\)
−0.775216 + 0.631697i \(0.782359\pi\)
\(828\) 586.797 0.708692
\(829\) 1422.06i 1.71539i 0.514157 + 0.857696i \(0.328105\pi\)
−0.514157 + 0.857696i \(0.671895\pi\)
\(830\) 0 0
\(831\) 133.566i 0.160730i
\(832\) 104.000 0.125000
\(833\) 468.940 0.562953
\(834\) 9.71838 9.71838i 0.0116527 0.0116527i
\(835\) 0 0
\(836\) 240.545i 0.287733i
\(837\) −90.6061 + 90.6061i −0.108251 + 0.108251i
\(838\) 678.833 678.833i 0.810063 0.810063i
\(839\) 7.93877 + 7.93877i 0.00946218 + 0.00946218i 0.711822 0.702360i \(-0.247870\pi\)
−0.702360 + 0.711822i \(0.747870\pi\)
\(840\) 0 0
\(841\) 1500.97 1.78474
\(842\) 149.394i 0.177427i
\(843\) −93.5755 93.5755i −0.111003 0.111003i
\(844\) 132.940i 0.157512i
\(845\) 0 0
\(846\) −1046.29 −1.23675
\(847\) −533.333 + 533.333i −0.629673 + 0.629673i
\(848\) 318.788 0.375929
\(849\) 103.880i 0.122355i
\(850\) 0 0
\(851\) −1057.04 + 1057.04i −1.24212 + 1.24212i
\(852\) 40.2633 + 40.2633i 0.0472574 + 0.0472574i
\(853\) 373.788 + 373.788i 0.438204 + 0.438204i 0.891407 0.453203i \(-0.149719\pi\)
−0.453203 + 0.891407i \(0.649719\pi\)
\(854\) −922.257 −1.07993
\(855\) 0 0
\(856\) −170.515 170.515i −0.199200 0.199200i
\(857\) 181.031i 0.211238i 0.994407 + 0.105619i \(0.0336823\pi\)
−0.994407 + 0.105619i \(0.966318\pi\)
\(858\) 117.133i 0.136518i
\(859\) −1050.47 −1.22290 −0.611449 0.791284i \(-0.709413\pi\)
−0.611449 + 0.791284i \(0.709413\pi\)
\(860\) 0 0
\(861\) 272.363 0.316334
\(862\) 561.303i 0.651164i
\(863\) 800.976 800.976i 0.928130 0.928130i −0.0694550 0.997585i \(-0.522126\pi\)
0.997585 + 0.0694550i \(0.0221260\pi\)
\(864\) 32.0000 32.0000i 0.0370370 0.0370370i
\(865\) 0 0
\(866\) 133.394 + 133.394i 0.154034 + 0.154034i
\(867\) 68.4041 0.0788974
\(868\) 302.363i 0.348345i
\(869\) 749.576 + 749.576i 0.862573 + 0.862573i
\(870\) 0 0
\(871\) 763.946 + 763.946i 0.877090 + 0.877090i
\(872\) 428.727 0.491659
\(873\) −540.141 + 540.141i −0.618718 + 0.618718i
\(874\) −400.182 −0.457874
\(875\) 0 0
\(876\) −60.9398 + 60.9398i −0.0695660 + 0.0695660i
\(877\) 693.817 693.817i 0.791126 0.791126i −0.190551 0.981677i \(-0.561028\pi\)
0.981677 + 0.190551i \(0.0610276\pi\)
\(878\) 782.302 + 782.302i 0.891005 + 0.891005i
\(879\) −13.1306 13.1306i −0.0149381 0.0149381i
\(880\) 0 0
\(881\) 1023.73i 1.16201i 0.813902 + 0.581003i \(0.197339\pi\)
−0.813902 + 0.581003i \(0.802661\pi\)
\(882\) −352.717 352.717i −0.399906 0.399906i
\(883\) 1010.54i 1.14444i −0.820099 0.572221i \(-0.806082\pi\)
0.820099 0.572221i \(-0.193918\pi\)
\(884\) 304.120i 0.344028i
\(885\) 0 0
\(886\) 354.742 354.742i 0.400386 0.400386i
\(887\) −338.424 −0.381538 −0.190769 0.981635i \(-0.561098\pi\)
−0.190769 + 0.981635i \(0.561098\pi\)
\(888\) 56.9898i 0.0641777i
\(889\) 1139.88 1139.88i 1.28220 1.28220i
\(890\) 0 0
\(891\) −757.573 757.573i −0.850251 0.850251i
\(892\) −422.879 422.879i −0.474079 0.474079i
\(893\) 713.544 0.799041
\(894\) 50.2612i 0.0562206i
\(895\) 0 0
\(896\) 106.788i 0.119183i
\(897\) −194.867 −0.217243
\(898\) −484.665 −0.539716
\(899\) 548.098 548.098i 0.609675 0.609675i
\(900\) 0 0
\(901\) 932.210i 1.03464i
\(902\) −909.939 + 909.939i −1.00880 + 1.00880i
\(903\) 47.8638 47.8638i 0.0530053 0.0530053i
\(904\) −90.7878 90.7878i −0.100429 0.100429i
\(905\) 0 0
\(906\) 65.9184 0.0727576
\(907\) 1255.39i 1.38411i −0.721843 0.692057i \(-0.756705\pi\)
0.721843 0.692057i \(-0.243295\pi\)
\(908\) 115.955 + 115.955i 0.127703 + 0.127703i
\(909\) 848.868i 0.933849i
\(910\) 0 0
\(911\) 1710.79 1.87792 0.938961 0.344022i \(-0.111790\pi\)
0.938961 + 0.344022i \(0.111790\pi\)
\(912\) −10.7878 + 10.7878i −0.0118287 + 0.0118287i
\(913\) −108.578 −0.118924
\(914\) 166.849i 0.182548i
\(915\) 0 0
\(916\) 518.302 518.302i 0.565832 0.565832i
\(917\) 624.242 + 624.242i 0.680744 + 0.680744i
\(918\) 93.5755 + 93.5755i 0.101934 + 0.101934i
\(919\) 535.029 0.582186 0.291093 0.956695i \(-0.405981\pi\)
0.291093 + 0.956695i \(0.405981\pi\)
\(920\) 0 0
\(921\) −65.0806 65.0806i −0.0706630 0.0706630i
\(922\) 448.908i 0.486885i
\(923\) 582.241 + 582.241i 0.630813 + 0.630813i
\(924\) −120.272 −0.130165
\(925\) 0 0
\(926\) −1050.80 −1.13477
\(927\) 436.163i 0.470511i
\(928\) −193.576 + 193.576i −0.208594 + 0.208594i
\(929\) 259.243 259.243i 0.279056 0.279056i −0.553676 0.832732i \(-0.686775\pi\)
0.832732 + 0.553676i \(0.186775\pi\)
\(930\) 0 0
\(931\) 240.545 + 240.545i 0.258373 + 0.258373i
\(932\) 188.000 0.201717
\(933\) 140.139i 0.150202i
\(934\) 621.893 + 621.893i 0.665839 + 0.665839i
\(935\) 0 0
\(936\) 228.747 228.747i 0.244388 0.244388i
\(937\) 74.3347 0.0793327 0.0396663 0.999213i \(-0.487371\pi\)
0.0396663 + 0.999213i \(0.487371\pi\)
\(938\) −784.423 + 784.423i −0.836272 + 0.836272i
\(939\) 148.604 0.158257
\(940\) 0 0
\(941\) 1033.57 1033.57i 1.09838 1.09838i 0.103778 0.994600i \(-0.466907\pi\)
0.994600 0.103778i \(-0.0330933\pi\)
\(942\) 52.8627 52.8627i 0.0561176 0.0561176i
\(943\) −1513.82 1513.82i −1.60532 1.60532i
\(944\) −213.666 213.666i −0.226341 0.226341i
\(945\) 0 0
\(946\) 319.816i 0.338072i
\(947\) 135.553 + 135.553i 0.143139 + 0.143139i 0.775045 0.631906i \(-0.217727\pi\)
−0.631906 + 0.775045i \(0.717727\pi\)
\(948\) 67.2327i 0.0709205i
\(949\) −881.241 + 881.241i −0.928599 + 0.928599i
\(950\) 0 0
\(951\) 7.31430 7.31430i 0.00769116 0.00769116i
\(952\) −312.272 −0.328017
\(953\) 316.757i 0.332379i −0.986094 0.166189i \(-0.946854\pi\)
0.986094 0.166189i \(-0.0531463\pi\)
\(954\) 701.170 701.170i 0.734979 0.734979i
\(955\) 0 0
\(956\) −559.287 559.287i −0.585028 0.585028i
\(957\) −218.019 218.019i −0.227815 0.227815i
\(958\) −716.014 −0.747405
\(959\) 1152.01i 1.20127i
\(960\) 0 0
\(961\) 704.454i 0.733043i
\(962\) 824.120i 0.856674i
\(963\) −750.093 −0.778913
\(964\) 518.120 518.120i 0.537469 0.537469i
\(965\) 0 0
\(966\) 200.091i 0.207133i
\(967\) 1341.08 1341.08i 1.38685 1.38685i 0.554996 0.831853i \(-0.312720\pi\)
0.831853 0.554996i \(-0.187280\pi\)
\(968\) 159.818 159.818i 0.165102 0.165102i
\(969\) −31.5459 31.5459i −0.0325551 0.0325551i
\(970\) 0 0
\(971\) −1180.05 −1.21529 −0.607644 0.794209i \(-0.707885\pi\)
−0.607644 + 0.794209i \(0.707885\pi\)
\(972\) 211.950i 0.218056i
\(973\) 144.303 + 144.303i 0.148307 + 0.148307i
\(974\) 195.501i 0.200719i
\(975\) 0 0
\(976\) 276.363 0.283159
\(977\) 311.817 311.817i 0.319158 0.319158i −0.529286 0.848444i \(-0.677540\pi\)
0.848444 + 0.529286i \(0.177540\pi\)
\(978\) −110.806 −0.113299
\(979\) 715.560i 0.730909i
\(980\) 0 0
\(981\) 942.980 942.980i 0.961243 0.961243i
\(982\) 667.923 + 667.923i 0.680166 + 0.680166i
\(983\) −73.7661 73.7661i −0.0750418 0.0750418i 0.668590 0.743631i \(-0.266898\pi\)
−0.743631 + 0.668590i \(0.766898\pi\)
\(984\) −81.6163 −0.0829434
\(985\) 0 0
\(986\) −566.060 566.060i −0.574098 0.574098i
\(987\) 356.772i 0.361471i
\(988\) −156.000 + 156.000i −0.157895 + 0.157895i
\(989\) −532.061 −0.537979
\(990\) 0 0
\(991\) 1075.65 1.08542 0.542710 0.839920i \(-0.317398\pi\)
0.542710 + 0.839920i \(0.317398\pi\)
\(992\) 90.6061i 0.0913368i
\(993\) 11.3051 11.3051i 0.0113848 0.0113848i
\(994\) −597.848 + 597.848i −0.601457 + 0.601457i
\(995\) 0 0
\(996\) −4.86939 4.86939i −0.00488895 0.00488895i
\(997\) −662.362 −0.664355 −0.332178 0.943217i \(-0.607783\pi\)
−0.332178 + 0.943217i \(0.607783\pi\)
\(998\) 187.955i 0.188331i
\(999\) 253.576 + 253.576i 0.253829 + 0.253829i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.k.g.551.2 yes 4
5.2 odd 4 650.3.f.h.499.1 4
5.3 odd 4 650.3.f.g.499.2 4
5.4 even 2 650.3.k.f.551.1 yes 4
13.8 odd 4 inner 650.3.k.g.151.2 yes 4
65.8 even 4 650.3.f.h.99.2 4
65.34 odd 4 650.3.k.f.151.1 4
65.47 even 4 650.3.f.g.99.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.3.f.g.99.1 4 65.47 even 4
650.3.f.g.499.2 4 5.3 odd 4
650.3.f.h.99.2 4 65.8 even 4
650.3.f.h.499.1 4 5.2 odd 4
650.3.k.f.151.1 4 65.34 odd 4
650.3.k.f.551.1 yes 4 5.4 even 2
650.3.k.g.151.2 yes 4 13.8 odd 4 inner
650.3.k.g.551.2 yes 4 1.1 even 1 trivial