Properties

Label 650.3.k.g
Level $650$
Weight $3$
Character orbit 650.k
Analytic conductor $17.711$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(151,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + (\beta_{3} - \beta_1 - 2) q^{3} + 2 \beta_{2} q^{4} + ( - 2 \beta_{2} - 2 \beta_1 - 2) q^{6} + (3 \beta_{3} - 3 \beta_{2} + 3) q^{7} + (2 \beta_{2} - 2) q^{8} + ( - 4 \beta_{3} + 4 \beta_1 + 1) q^{9}+ \cdots + ( - 17 \beta_{3} - 109 \beta_{2} + 109) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{3} - 8 q^{6} + 12 q^{7} - 8 q^{8} + 4 q^{9} + 4 q^{11} + 24 q^{14} - 16 q^{16} + 4 q^{18} + 24 q^{19} + 12 q^{21} + 8 q^{22} + 16 q^{24} - 52 q^{26} - 32 q^{27} + 24 q^{28} + 76 q^{29}+ \cdots + 436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
151.1
1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
1.00000 + 1.00000i −4.44949 2.00000i 0 −4.44949 4.44949i −0.674235 + 0.674235i −2.00000 + 2.00000i 10.7980 0
151.2 1.00000 + 1.00000i 0.449490 2.00000i 0 0.449490 + 0.449490i 6.67423 6.67423i −2.00000 + 2.00000i −8.79796 0
551.1 1.00000 1.00000i −4.44949 2.00000i 0 −4.44949 + 4.44949i −0.674235 0.674235i −2.00000 2.00000i 10.7980 0
551.2 1.00000 1.00000i 0.449490 2.00000i 0 0.449490 0.449490i 6.67423 + 6.67423i −2.00000 2.00000i −8.79796 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.3.k.g yes 4
5.b even 2 1 650.3.k.f 4
5.c odd 4 1 650.3.f.g 4
5.c odd 4 1 650.3.f.h 4
13.d odd 4 1 inner 650.3.k.g yes 4
65.f even 4 1 650.3.f.g 4
65.g odd 4 1 650.3.k.f 4
65.k even 4 1 650.3.f.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.3.f.g 4 5.c odd 4 1
650.3.f.g 4 65.f even 4 1
650.3.f.h 4 5.c odd 4 1
650.3.f.h 4 65.k even 4 1
650.3.k.f 4 5.b even 2 1
650.3.k.f 4 65.g odd 4 1
650.3.k.g yes 4 1.a even 1 1 trivial
650.3.k.g yes 4 13.d odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4T_{3} - 2 \) acting on \(S_{3}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 58081 \) Copy content Toggle raw display
$13$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 450 T^{2} + 42849 \) Copy content Toggle raw display
$19$ \( (T^{2} - 12 T + 72)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1460 T^{2} + 386884 \) Copy content Toggle raw display
$29$ \( (T^{2} - 38 T - 503)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 60 T^{3} + \cdots + 178929 \) Copy content Toggle raw display
$37$ \( T^{4} + 68 T^{3} + \cdots + 21316 \) Copy content Toggle raw display
$41$ \( T^{4} - 64 T^{3} + \cdots + 1478656 \) Copy content Toggle raw display
$43$ \( T^{4} + 3860 T^{2} + 917764 \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots + 60606225 \) Copy content Toggle raw display
$53$ \( (T^{2} + 130 T + 4009)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 52 T^{3} + \cdots + 8579041 \) Copy content Toggle raw display
$61$ \( (T^{2} + 50 T - 1319)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 44 T^{3} + \cdots + 18671041 \) Copy content Toggle raw display
$71$ \( T^{4} - 56 T^{3} + \cdots + 42510400 \) Copy content Toggle raw display
$73$ \( T^{4} + 36 T^{3} + \cdots + 45562500 \) Copy content Toggle raw display
$79$ \( (T^{2} + 32 T - 3200)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 140 T^{3} + \cdots + 667489 \) Copy content Toggle raw display
$89$ \( T^{4} - 84 T^{3} + \cdots + 202500 \) Copy content Toggle raw display
$97$ \( T^{4} - 128 T^{3} + \cdots + 102400 \) Copy content Toggle raw display
show more
show less