gp: [N,k,chi] = [650,3,Mod(99,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.99");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,4,0,0,0,-8,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 9 x^{4} + 9 x 4 + 9
x^4 + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 3 ( \nu^{2} ) / 3 ( ν 2 ) / 3
(v^2) / 3
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 3 ( \nu^{3} ) / 3 ( ν 3 ) / 3
(v^3) / 3
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
3 β 2 3\beta_{2} 3 β 2
3*b2
ν 3 \nu^{3} ν 3 = = =
3 β 3 3\beta_{3} 3 β 3
3*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− β 2 -\beta_{2} − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 650 , [ χ ] ) S_{3}^{\mathrm{new}}(650, [\chi]) S 3 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 20 T 3 2 + 4 T_{3}^{4} + 20T_{3}^{2} + 4 T 3 4 + 2 0 T 3 2 + 4
T3^4 + 20*T3^2 + 4
T 7 4 + 12 T 7 3 + 72 T 7 2 − 108 T 7 + 81 T_{7}^{4} + 12T_{7}^{3} + 72T_{7}^{2} - 108T_{7} + 81 T 7 4 + 1 2 T 7 3 + 7 2 T 7 2 − 1 0 8 T 7 + 8 1
T7^4 + 12*T7^3 + 72*T7^2 - 108*T7 + 81
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − 2 T + 2 ) 2 (T^{2} - 2 T + 2)^{2} ( T 2 − 2 T + 2 ) 2
(T^2 - 2*T + 2)^2
3 3 3
T 4 + 20 T 2 + 4 T^{4} + 20T^{2} + 4 T 4 + 2 0 T 2 + 4
T^4 + 20*T^2 + 4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 12 T 3 + ⋯ + 81 T^{4} + 12 T^{3} + \cdots + 81 T 4 + 1 2 T 3 + ⋯ + 8 1
T^4 + 12*T^3 + 72*T^2 - 108*T + 81
11 11 1 1
T 4 − 4 T 3 + ⋯ + 58081 T^{4} - 4 T^{3} + \cdots + 58081 T 4 − 4 T 3 + ⋯ + 5 8 0 8 1
T^4 - 4*T^3 + 8*T^2 + 964*T + 58081
13 13 1 3
( T + 13 ) 4 (T + 13)^{4} ( T + 1 3 ) 4
(T + 13)^4
17 17 1 7
( T 2 + 6 T − 207 ) 2 (T^{2} + 6 T - 207)^{2} ( T 2 + 6 T − 2 0 7 ) 2
(T^2 + 6*T - 207)^2
19 19 1 9
( T 2 + 12 T + 72 ) 2 (T^{2} + 12 T + 72)^{2} ( T 2 + 1 2 T + 7 2 ) 2
(T^2 + 12*T + 72)^2
23 23 2 3
( T 2 + 52 T + 622 ) 2 (T^{2} + 52 T + 622)^{2} ( T 2 + 5 2 T + 6 2 2 ) 2
(T^2 + 52*T + 622)^2
29 29 2 9
( T 2 + 38 T − 503 ) 2 (T^{2} + 38 T - 503)^{2} ( T 2 + 3 8 T − 5 0 3 ) 2
(T^2 + 38*T - 503)^2
31 31 3 1
T 4 − 60 T 3 + ⋯ + 178929 T^{4} - 60 T^{3} + \cdots + 178929 T 4 − 6 0 T 3 + ⋯ + 1 7 8 9 2 9
T^4 - 60*T^3 + 1800*T^2 - 25380*T + 178929
37 37 3 7
T 4 − 68 T 3 + ⋯ + 21316 T^{4} - 68 T^{3} + \cdots + 21316 T 4 − 6 8 T 3 + ⋯ + 2 1 3 1 6
T^4 - 68*T^3 + 2312*T^2 - 9928*T + 21316
41 41 4 1
T 4 − 64 T 3 + ⋯ + 1478656 T^{4} - 64 T^{3} + \cdots + 1478656 T 4 − 6 4 T 3 + ⋯ + 1 4 7 8 6 5 6
T^4 - 64*T^3 + 2048*T^2 + 77824*T + 1478656
43 43 4 3
( T 2 + 76 T + 958 ) 2 (T^{2} + 76 T + 958)^{2} ( T 2 + 7 6 T + 9 5 8 ) 2
(T^2 + 76*T + 958)^2
47 47 4 7
T 4 − 12 T 3 + ⋯ + 60606225 T^{4} - 12 T^{3} + \cdots + 60606225 T 4 − 1 2 T 3 + ⋯ + 6 0 6 0 6 2 2 5
T^4 - 12*T^3 + 72*T^2 + 93420*T + 60606225
53 53 5 3
T 4 + 8882 T 2 + 16072081 T^{4} + 8882 T^{2} + 16072081 T 4 + 8 8 8 2 T 2 + 1 6 0 7 2 0 8 1
T^4 + 8882*T^2 + 16072081
59 59 5 9
T 4 + 52 T 3 + ⋯ + 8579041 T^{4} + 52 T^{3} + \cdots + 8579041 T 4 + 5 2 T 3 + ⋯ + 8 5 7 9 0 4 1
T^4 + 52*T^3 + 1352*T^2 - 152308*T + 8579041
61 61 6 1
( T 2 + 50 T − 1319 ) 2 (T^{2} + 50 T - 1319)^{2} ( T 2 + 5 0 T − 1 3 1 9 ) 2
(T^2 + 50*T - 1319)^2
67 67 6 7
T 4 + 44 T 3 + ⋯ + 18671041 T^{4} + 44 T^{3} + \cdots + 18671041 T 4 + 4 4 T 3 + ⋯ + 1 8 6 7 1 0 4 1
T^4 + 44*T^3 + 968*T^2 - 190124*T + 18671041
71 71 7 1
T 4 − 56 T 3 + ⋯ + 42510400 T^{4} - 56 T^{3} + \cdots + 42510400 T 4 − 5 6 T 3 + ⋯ + 4 2 5 1 0 4 0 0
T^4 - 56*T^3 + 1568*T^2 + 365120*T + 42510400
73 73 7 3
T 4 + 36 T 3 + ⋯ + 45562500 T^{4} + 36 T^{3} + \cdots + 45562500 T 4 + 3 6 T 3 + ⋯ + 4 5 5 6 2 5 0 0
T^4 + 36*T^3 + 648*T^2 - 243000*T + 45562500
79 79 7 9
( T 2 − 32 T − 3200 ) 2 (T^{2} - 32 T - 3200)^{2} ( T 2 − 3 2 T − 3 2 0 0 ) 2
(T^2 - 32*T - 3200)^2
83 83 8 3
T 4 − 140 T 3 + ⋯ + 667489 T^{4} - 140 T^{3} + \cdots + 667489 T 4 − 1 4 0 T 3 + ⋯ + 6 6 7 4 8 9
T^4 - 140*T^3 + 9800*T^2 + 114380*T + 667489
89 89 8 9
T 4 + 84 T 3 + ⋯ + 202500 T^{4} + 84 T^{3} + \cdots + 202500 T 4 + 8 4 T 3 + ⋯ + 2 0 2 5 0 0
T^4 + 84*T^3 + 3528*T^2 + 37800*T + 202500
97 97 9 7
T 4 − 128 T 3 + ⋯ + 102400 T^{4} - 128 T^{3} + \cdots + 102400 T 4 − 1 2 8 T 3 + ⋯ + 1 0 2 4 0 0
T^4 - 128*T^3 + 8192*T^2 - 40960*T + 102400
show more
show less