Properties

Label 650.3.f.h
Level 650650
Weight 33
Character orbit 650.f
Analytic conductor 17.71117.711
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(99,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 650.f (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,-8,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.711217183417.7112171834
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q2+(β3+2β2β1)q3+2β2q4+(2β3+2β22)q6+(3β3+3β23)q7+(2β22)q8++(109β2+17β1109)q99+O(q100) q + (\beta_{2} + 1) q^{2} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{3} + 2 \beta_{2} q^{4} + ( - 2 \beta_{3} + 2 \beta_{2} - 2) q^{6} + (3 \beta_{3} + 3 \beta_{2} - 3) q^{7} + (2 \beta_{2} - 2) q^{8}+ \cdots + ( - 109 \beta_{2} + 17 \beta_1 - 109) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q28q612q78q84q9+4q1116q1252q1324q1416q1612q174q1824q19+12q21104q2316q2452q2624q28+436q99+O(q100) 4 q + 4 q^{2} - 8 q^{6} - 12 q^{7} - 8 q^{8} - 4 q^{9} + 4 q^{11} - 16 q^{12} - 52 q^{13} - 24 q^{14} - 16 q^{16} - 12 q^{17} - 4 q^{18} - 24 q^{19} + 12 q^{21} - 104 q^{23} - 16 q^{24} - 52 q^{26} - 24 q^{28}+ \cdots - 436 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
−1.22474 + 1.22474i
1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 1.22474i
1.00000 1.00000i 4.44949i 2.00000i 0 −4.44949 4.44949i 0.674235 + 0.674235i −2.00000 2.00000i −10.7980 0
99.2 1.00000 1.00000i 0.449490i 2.00000i 0 0.449490 + 0.449490i −6.67423 6.67423i −2.00000 2.00000i 8.79796 0
499.1 1.00000 + 1.00000i 0.449490i 2.00000i 0 0.449490 0.449490i −6.67423 + 6.67423i −2.00000 + 2.00000i 8.79796 0
499.2 1.00000 + 1.00000i 4.44949i 2.00000i 0 −4.44949 + 4.44949i 0.674235 0.674235i −2.00000 + 2.00000i −10.7980 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.g odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.3.f.h 4
5.b even 2 1 650.3.f.g 4
5.c odd 4 1 650.3.k.f 4
5.c odd 4 1 650.3.k.g yes 4
13.d odd 4 1 650.3.f.g 4
65.f even 4 1 650.3.k.f 4
65.g odd 4 1 inner 650.3.f.h 4
65.k even 4 1 650.3.k.g yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.3.f.g 4 5.b even 2 1
650.3.f.g 4 13.d odd 4 1
650.3.f.h 4 1.a even 1 1 trivial
650.3.f.h 4 65.g odd 4 1 inner
650.3.k.f 4 5.c odd 4 1
650.3.k.f 4 65.f even 4 1
650.3.k.g yes 4 5.c odd 4 1
650.3.k.g yes 4 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(650,[χ])S_{3}^{\mathrm{new}}(650, [\chi]):

T34+20T32+4 T_{3}^{4} + 20T_{3}^{2} + 4 Copy content Toggle raw display
T74+12T73+72T72108T7+81 T_{7}^{4} + 12T_{7}^{3} + 72T_{7}^{2} - 108T_{7} + 81 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
33 T4+20T2+4 T^{4} + 20T^{2} + 4 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+12T3++81 T^{4} + 12 T^{3} + \cdots + 81 Copy content Toggle raw display
1111 T44T3++58081 T^{4} - 4 T^{3} + \cdots + 58081 Copy content Toggle raw display
1313 (T+13)4 (T + 13)^{4} Copy content Toggle raw display
1717 (T2+6T207)2 (T^{2} + 6 T - 207)^{2} Copy content Toggle raw display
1919 (T2+12T+72)2 (T^{2} + 12 T + 72)^{2} Copy content Toggle raw display
2323 (T2+52T+622)2 (T^{2} + 52 T + 622)^{2} Copy content Toggle raw display
2929 (T2+38T503)2 (T^{2} + 38 T - 503)^{2} Copy content Toggle raw display
3131 T460T3++178929 T^{4} - 60 T^{3} + \cdots + 178929 Copy content Toggle raw display
3737 T468T3++21316 T^{4} - 68 T^{3} + \cdots + 21316 Copy content Toggle raw display
4141 T464T3++1478656 T^{4} - 64 T^{3} + \cdots + 1478656 Copy content Toggle raw display
4343 (T2+76T+958)2 (T^{2} + 76 T + 958)^{2} Copy content Toggle raw display
4747 T412T3++60606225 T^{4} - 12 T^{3} + \cdots + 60606225 Copy content Toggle raw display
5353 T4+8882T2+16072081 T^{4} + 8882 T^{2} + 16072081 Copy content Toggle raw display
5959 T4+52T3++8579041 T^{4} + 52 T^{3} + \cdots + 8579041 Copy content Toggle raw display
6161 (T2+50T1319)2 (T^{2} + 50 T - 1319)^{2} Copy content Toggle raw display
6767 T4+44T3++18671041 T^{4} + 44 T^{3} + \cdots + 18671041 Copy content Toggle raw display
7171 T456T3++42510400 T^{4} - 56 T^{3} + \cdots + 42510400 Copy content Toggle raw display
7373 T4+36T3++45562500 T^{4} + 36 T^{3} + \cdots + 45562500 Copy content Toggle raw display
7979 (T232T3200)2 (T^{2} - 32 T - 3200)^{2} Copy content Toggle raw display
8383 T4140T3++667489 T^{4} - 140 T^{3} + \cdots + 667489 Copy content Toggle raw display
8989 T4+84T3++202500 T^{4} + 84 T^{3} + \cdots + 202500 Copy content Toggle raw display
9797 T4128T3++102400 T^{4} - 128 T^{3} + \cdots + 102400 Copy content Toggle raw display
show more
show less