Properties

Label 650.3.f.g.499.2
Level $650$
Weight $3$
Character 650.499
Analytic conductor $17.711$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(99,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,0,-8,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 499.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 650.499
Dual form 650.3.f.g.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +0.449490i q^{3} +2.00000i q^{4} +(0.449490 - 0.449490i) q^{6} +(6.67423 - 6.67423i) q^{7} +(2.00000 - 2.00000i) q^{8} +8.79796 q^{9} +(-10.0227 - 10.0227i) q^{11} -0.898979 q^{12} +13.0000 q^{13} -13.3485 q^{14} -4.00000 q^{16} -11.6969 q^{17} +(-8.79796 - 8.79796i) q^{18} +(-6.00000 + 6.00000i) q^{19} +(3.00000 + 3.00000i) q^{21} +20.0454i q^{22} +33.3485 q^{23} +(0.898979 + 0.898979i) q^{24} +(-13.0000 - 13.0000i) q^{26} +8.00000i q^{27} +(13.3485 + 13.3485i) q^{28} -48.3939 q^{29} +(11.3258 - 11.3258i) q^{31} +(4.00000 + 4.00000i) q^{32} +(4.50510 - 4.50510i) q^{33} +(11.6969 + 11.6969i) q^{34} +17.5959i q^{36} +(-31.6969 + 31.6969i) q^{37} +12.0000 q^{38} +5.84337i q^{39} +(45.3939 - 45.3939i) q^{41} -6.00000i q^{42} +15.9546 q^{43} +(20.0454 - 20.0454i) q^{44} +(-33.3485 - 33.3485i) q^{46} +(59.4620 - 59.4620i) q^{47} -1.79796i q^{48} -40.0908i q^{49} -5.25765i q^{51} +26.0000i q^{52} -79.6969i q^{53} +(8.00000 - 8.00000i) q^{54} -26.6969i q^{56} +(-2.69694 - 2.69694i) q^{57} +(48.3939 + 48.3939i) q^{58} +(-53.4166 - 53.4166i) q^{59} -69.0908 q^{61} -22.6515 q^{62} +(58.7196 - 58.7196i) q^{63} -8.00000i q^{64} -9.01021 q^{66} +(58.7650 + 58.7650i) q^{67} -23.3939i q^{68} +14.9898i q^{69} +(-44.7878 + 44.7878i) q^{71} +(17.5959 - 17.5959i) q^{72} +(67.7878 - 67.7878i) q^{73} +63.3939 q^{74} +(-12.0000 - 12.0000i) q^{76} -133.788 q^{77} +(5.84337 - 5.84337i) q^{78} +74.7878 q^{79} +75.5857 q^{81} -90.7878 q^{82} +(5.41658 + 5.41658i) q^{83} +(-6.00000 + 6.00000i) q^{84} +(-15.9546 - 15.9546i) q^{86} -21.7526i q^{87} -40.0908 q^{88} +(-35.6969 - 35.6969i) q^{89} +(86.7650 - 86.7650i) q^{91} +66.6969i q^{92} +(5.09082 + 5.09082i) q^{93} -118.924 q^{94} +(-1.79796 + 1.79796i) q^{96} +(-61.3939 - 61.3939i) q^{97} +(-40.0908 + 40.0908i) q^{98} +(-88.1793 - 88.1793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{6} + 12 q^{7} + 8 q^{8} - 4 q^{9} + 4 q^{11} + 16 q^{12} + 52 q^{13} - 24 q^{14} - 16 q^{16} + 12 q^{17} + 4 q^{18} - 24 q^{19} + 12 q^{21} + 104 q^{23} - 16 q^{24} - 52 q^{26} + 24 q^{28}+ \cdots - 436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 0.449490i 0.149830i 0.997190 + 0.0749150i \(0.0238685\pi\)
−0.997190 + 0.0749150i \(0.976131\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0.449490 0.449490i 0.0749150 0.0749150i
\(7\) 6.67423 6.67423i 0.953462 0.953462i −0.0455022 0.998964i \(-0.514489\pi\)
0.998964 + 0.0455022i \(0.0144888\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 8.79796 0.977551
\(10\) 0 0
\(11\) −10.0227 10.0227i −0.911155 0.911155i 0.0852083 0.996363i \(-0.472844\pi\)
−0.996363 + 0.0852083i \(0.972844\pi\)
\(12\) −0.898979 −0.0749150
\(13\) 13.0000 1.00000
\(14\) −13.3485 −0.953462
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) −11.6969 −0.688055 −0.344028 0.938960i \(-0.611791\pi\)
−0.344028 + 0.938960i \(0.611791\pi\)
\(18\) −8.79796 8.79796i −0.488775 0.488775i
\(19\) −6.00000 + 6.00000i −0.315789 + 0.315789i −0.847147 0.531358i \(-0.821682\pi\)
0.531358 + 0.847147i \(0.321682\pi\)
\(20\) 0 0
\(21\) 3.00000 + 3.00000i 0.142857 + 0.142857i
\(22\) 20.0454i 0.911155i
\(23\) 33.3485 1.44993 0.724967 0.688784i \(-0.241855\pi\)
0.724967 + 0.688784i \(0.241855\pi\)
\(24\) 0.898979 + 0.898979i 0.0374575 + 0.0374575i
\(25\) 0 0
\(26\) −13.0000 13.0000i −0.500000 0.500000i
\(27\) 8.00000i 0.296296i
\(28\) 13.3485 + 13.3485i 0.476731 + 0.476731i
\(29\) −48.3939 −1.66875 −0.834377 0.551194i \(-0.814172\pi\)
−0.834377 + 0.551194i \(0.814172\pi\)
\(30\) 0 0
\(31\) 11.3258 11.3258i 0.365347 0.365347i −0.500430 0.865777i \(-0.666825\pi\)
0.865777 + 0.500430i \(0.166825\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 4.50510 4.50510i 0.136518 0.136518i
\(34\) 11.6969 + 11.6969i 0.344028 + 0.344028i
\(35\) 0 0
\(36\) 17.5959i 0.488775i
\(37\) −31.6969 + 31.6969i −0.856674 + 0.856674i −0.990945 0.134271i \(-0.957131\pi\)
0.134271 + 0.990945i \(0.457131\pi\)
\(38\) 12.0000 0.315789
\(39\) 5.84337i 0.149830i
\(40\) 0 0
\(41\) 45.3939 45.3939i 1.10717 1.10717i 0.113646 0.993521i \(-0.463747\pi\)
0.993521 0.113646i \(-0.0362531\pi\)
\(42\) 6.00000i 0.142857i
\(43\) 15.9546 0.371037 0.185519 0.982641i \(-0.440604\pi\)
0.185519 + 0.982641i \(0.440604\pi\)
\(44\) 20.0454 20.0454i 0.455577 0.455577i
\(45\) 0 0
\(46\) −33.3485 33.3485i −0.724967 0.724967i
\(47\) 59.4620 59.4620i 1.26515 1.26515i 0.316584 0.948564i \(-0.397464\pi\)
0.948564 0.316584i \(-0.102536\pi\)
\(48\) 1.79796i 0.0374575i
\(49\) 40.0908i 0.818180i
\(50\) 0 0
\(51\) 5.25765i 0.103091i
\(52\) 26.0000i 0.500000i
\(53\) 79.6969i 1.50372i −0.659325 0.751858i \(-0.729158\pi\)
0.659325 0.751858i \(-0.270842\pi\)
\(54\) 8.00000 8.00000i 0.148148 0.148148i
\(55\) 0 0
\(56\) 26.6969i 0.476731i
\(57\) −2.69694 2.69694i −0.0473147 0.0473147i
\(58\) 48.3939 + 48.3939i 0.834377 + 0.834377i
\(59\) −53.4166 53.4166i −0.905366 0.905366i 0.0905281 0.995894i \(-0.471144\pi\)
−0.995894 + 0.0905281i \(0.971144\pi\)
\(60\) 0 0
\(61\) −69.0908 −1.13264 −0.566318 0.824187i \(-0.691633\pi\)
−0.566318 + 0.824187i \(0.691633\pi\)
\(62\) −22.6515 −0.365347
\(63\) 58.7196 58.7196i 0.932058 0.932058i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −9.01021 −0.136518
\(67\) 58.7650 + 58.7650i 0.877090 + 0.877090i 0.993233 0.116142i \(-0.0370529\pi\)
−0.116142 + 0.993233i \(0.537053\pi\)
\(68\) 23.3939i 0.344028i
\(69\) 14.9898i 0.217243i
\(70\) 0 0
\(71\) −44.7878 + 44.7878i −0.630813 + 0.630813i −0.948272 0.317459i \(-0.897171\pi\)
0.317459 + 0.948272i \(0.397171\pi\)
\(72\) 17.5959 17.5959i 0.244388 0.244388i
\(73\) 67.7878 67.7878i 0.928599 0.928599i −0.0690162 0.997616i \(-0.521986\pi\)
0.997616 + 0.0690162i \(0.0219860\pi\)
\(74\) 63.3939 0.856674
\(75\) 0 0
\(76\) −12.0000 12.0000i −0.157895 0.157895i
\(77\) −133.788 −1.73750
\(78\) 5.84337 5.84337i 0.0749150 0.0749150i
\(79\) 74.7878 0.946680 0.473340 0.880880i \(-0.343048\pi\)
0.473340 + 0.880880i \(0.343048\pi\)
\(80\) 0 0
\(81\) 75.5857 0.933157
\(82\) −90.7878 −1.10717
\(83\) 5.41658 + 5.41658i 0.0652600 + 0.0652600i 0.738984 0.673724i \(-0.235306\pi\)
−0.673724 + 0.738984i \(0.735306\pi\)
\(84\) −6.00000 + 6.00000i −0.0714286 + 0.0714286i
\(85\) 0 0
\(86\) −15.9546 15.9546i −0.185519 0.185519i
\(87\) 21.7526i 0.250029i
\(88\) −40.0908 −0.455577
\(89\) −35.6969 35.6969i −0.401089 0.401089i 0.477528 0.878617i \(-0.341533\pi\)
−0.878617 + 0.477528i \(0.841533\pi\)
\(90\) 0 0
\(91\) 86.7650 86.7650i 0.953462 0.953462i
\(92\) 66.6969i 0.724967i
\(93\) 5.09082 + 5.09082i 0.0547400 + 0.0547400i
\(94\) −118.924 −1.26515
\(95\) 0 0
\(96\) −1.79796 + 1.79796i −0.0187287 + 0.0187287i
\(97\) −61.3939 61.3939i −0.632927 0.632927i 0.315874 0.948801i \(-0.397702\pi\)
−0.948801 + 0.315874i \(0.897702\pi\)
\(98\) −40.0908 + 40.0908i −0.409090 + 0.409090i
\(99\) −88.1793 88.1793i −0.890700 0.890700i
\(100\) 0 0
\(101\) 96.4847i 0.955294i 0.878552 + 0.477647i \(0.158510\pi\)
−0.878552 + 0.477647i \(0.841490\pi\)
\(102\) −5.25765 + 5.25765i −0.0515456 + 0.0515456i
\(103\) −49.5755 −0.481316 −0.240658 0.970610i \(-0.577363\pi\)
−0.240658 + 0.970610i \(0.577363\pi\)
\(104\) 26.0000 26.0000i 0.250000 0.250000i
\(105\) 0 0
\(106\) −79.6969 + 79.6969i −0.751858 + 0.751858i
\(107\) 85.2577i 0.796801i −0.917212 0.398400i \(-0.869566\pi\)
0.917212 0.398400i \(-0.130434\pi\)
\(108\) −16.0000 −0.148148
\(109\) 107.182 107.182i 0.983318 0.983318i −0.0165454 0.999863i \(-0.505267\pi\)
0.999863 + 0.0165454i \(0.00526681\pi\)
\(110\) 0 0
\(111\) −14.2474 14.2474i −0.128355 0.128355i
\(112\) −26.6969 + 26.6969i −0.238366 + 0.238366i
\(113\) 45.3939i 0.401716i 0.979620 + 0.200858i \(0.0643729\pi\)
−0.979620 + 0.200858i \(0.935627\pi\)
\(114\) 5.39388i 0.0473147i
\(115\) 0 0
\(116\) 96.7878i 0.834377i
\(117\) 114.373 0.977551
\(118\) 106.833i 0.905366i
\(119\) −78.0681 + 78.0681i −0.656035 + 0.656035i
\(120\) 0 0
\(121\) 79.9092i 0.660406i
\(122\) 69.0908 + 69.0908i 0.566318 + 0.566318i
\(123\) 20.4041 + 20.4041i 0.165887 + 0.165887i
\(124\) 22.6515 + 22.6515i 0.182674 + 0.182674i
\(125\) 0 0
\(126\) −117.439 −0.932058
\(127\) −170.788 −1.34479 −0.672393 0.740195i \(-0.734733\pi\)
−0.672393 + 0.740195i \(0.734733\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 7.17143i 0.0555924i
\(130\) 0 0
\(131\) 93.5301 0.713970 0.356985 0.934110i \(-0.383805\pi\)
0.356985 + 0.934110i \(0.383805\pi\)
\(132\) 9.01021 + 9.01021i 0.0682591 + 0.0682591i
\(133\) 80.0908i 0.602187i
\(134\) 117.530i 0.877090i
\(135\) 0 0
\(136\) −23.3939 + 23.3939i −0.172014 + 0.172014i
\(137\) 86.3031 86.3031i 0.629949 0.629949i −0.318106 0.948055i \(-0.603047\pi\)
0.948055 + 0.318106i \(0.103047\pi\)
\(138\) 14.9898 14.9898i 0.108622 0.108622i
\(139\) −21.6209 −0.155546 −0.0777731 0.996971i \(-0.524781\pi\)
−0.0777731 + 0.996971i \(0.524781\pi\)
\(140\) 0 0
\(141\) 26.7276 + 26.7276i 0.189557 + 0.189557i
\(142\) 89.5755 0.630813
\(143\) −130.295 130.295i −0.911155 0.911155i
\(144\) −35.1918 −0.244388
\(145\) 0 0
\(146\) −135.576 −0.928599
\(147\) 18.0204 0.122588
\(148\) −63.3939 63.3939i −0.428337 0.428337i
\(149\) −55.9092 + 55.9092i −0.375229 + 0.375229i −0.869378 0.494148i \(-0.835480\pi\)
0.494148 + 0.869378i \(0.335480\pi\)
\(150\) 0 0
\(151\) 73.3258 + 73.3258i 0.485601 + 0.485601i 0.906915 0.421314i \(-0.138431\pi\)
−0.421314 + 0.906915i \(0.638431\pi\)
\(152\) 24.0000i 0.157895i
\(153\) −102.909 −0.672609
\(154\) 133.788 + 133.788i 0.868752 + 0.868752i
\(155\) 0 0
\(156\) −11.6867 −0.0749150
\(157\) 117.606i 0.749084i −0.927210 0.374542i \(-0.877800\pi\)
0.927210 0.374542i \(-0.122200\pi\)
\(158\) −74.7878 74.7878i −0.473340 0.473340i
\(159\) 35.8230 0.225302
\(160\) 0 0
\(161\) 222.576 222.576i 1.38246 1.38246i
\(162\) −75.5857 75.5857i −0.466578 0.466578i
\(163\) 123.258 123.258i 0.756182 0.756182i −0.219443 0.975625i \(-0.570424\pi\)
0.975625 + 0.219443i \(0.0704241\pi\)
\(164\) 90.7878 + 90.7878i 0.553584 + 0.553584i
\(165\) 0 0
\(166\) 10.8332i 0.0652600i
\(167\) −43.5755 + 43.5755i −0.260931 + 0.260931i −0.825432 0.564501i \(-0.809069\pi\)
0.564501 + 0.825432i \(0.309069\pi\)
\(168\) 12.0000 0.0714286
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) −52.7878 + 52.7878i −0.308700 + 0.308700i
\(172\) 31.9092i 0.185519i
\(173\) −52.7276 −0.304784 −0.152392 0.988320i \(-0.548698\pi\)
−0.152392 + 0.988320i \(0.548698\pi\)
\(174\) −21.7526 + 21.7526i −0.125015 + 0.125015i
\(175\) 0 0
\(176\) 40.0908 + 40.0908i 0.227789 + 0.227789i
\(177\) 24.0102 24.0102i 0.135651 0.135651i
\(178\) 71.3939i 0.401089i
\(179\) 140.000i 0.782123i 0.920365 + 0.391061i \(0.127892\pi\)
−0.920365 + 0.391061i \(0.872108\pi\)
\(180\) 0 0
\(181\) 245.363i 1.35560i 0.735247 + 0.677799i \(0.237066\pi\)
−0.735247 + 0.677799i \(0.762934\pi\)
\(182\) −173.530 −0.953462
\(183\) 31.0556i 0.169703i
\(184\) 66.6969 66.6969i 0.362483 0.362483i
\(185\) 0 0
\(186\) 10.1816i 0.0547400i
\(187\) 117.235 + 117.235i 0.626925 + 0.626925i
\(188\) 118.924 + 118.924i 0.632574 + 0.632574i
\(189\) 53.3939 + 53.3939i 0.282507 + 0.282507i
\(190\) 0 0
\(191\) 42.7878 0.224020 0.112010 0.993707i \(-0.464271\pi\)
0.112010 + 0.993707i \(0.464271\pi\)
\(192\) 3.59592 0.0187287
\(193\) −53.1214 + 53.1214i −0.275241 + 0.275241i −0.831206 0.555965i \(-0.812349\pi\)
0.555965 + 0.831206i \(0.312349\pi\)
\(194\) 122.788i 0.632927i
\(195\) 0 0
\(196\) 80.1816 0.409090
\(197\) 170.788 + 170.788i 0.866943 + 0.866943i 0.992133 0.125190i \(-0.0399540\pi\)
−0.125190 + 0.992133i \(0.539954\pi\)
\(198\) 176.359i 0.890700i
\(199\) 266.788i 1.34064i 0.742071 + 0.670321i \(0.233844\pi\)
−0.742071 + 0.670321i \(0.766156\pi\)
\(200\) 0 0
\(201\) −26.4143 + 26.4143i −0.131414 + 0.131414i
\(202\) 96.4847 96.4847i 0.477647 0.477647i
\(203\) −322.992 + 322.992i −1.59109 + 1.59109i
\(204\) 10.5153 0.0515456
\(205\) 0 0
\(206\) 49.5755 + 49.5755i 0.240658 + 0.240658i
\(207\) 293.398 1.41738
\(208\) −52.0000 −0.250000
\(209\) 120.272 0.575466
\(210\) 0 0
\(211\) 66.4699 0.315023 0.157512 0.987517i \(-0.449653\pi\)
0.157512 + 0.987517i \(0.449653\pi\)
\(212\) 159.394 0.751858
\(213\) −20.1316 20.1316i −0.0945147 0.0945147i
\(214\) −85.2577 + 85.2577i −0.398400 + 0.398400i
\(215\) 0 0
\(216\) 16.0000 + 16.0000i 0.0740741 + 0.0740741i
\(217\) 151.182i 0.696690i
\(218\) −214.363 −0.983318
\(219\) 30.4699 + 30.4699i 0.139132 + 0.139132i
\(220\) 0 0
\(221\) −152.060 −0.688055
\(222\) 28.4949i 0.128355i
\(223\) 211.439 + 211.439i 0.948158 + 0.948158i 0.998721 0.0505627i \(-0.0161015\pi\)
−0.0505627 + 0.998721i \(0.516101\pi\)
\(224\) 53.3939 0.238366
\(225\) 0 0
\(226\) 45.3939 45.3939i 0.200858 0.200858i
\(227\) 57.9773 + 57.9773i 0.255407 + 0.255407i 0.823183 0.567776i \(-0.192196\pi\)
−0.567776 + 0.823183i \(0.692196\pi\)
\(228\) 5.39388 5.39388i 0.0236574 0.0236574i
\(229\) −259.151 259.151i −1.13166 1.13166i −0.989901 0.141763i \(-0.954723\pi\)
−0.141763 0.989901i \(-0.545277\pi\)
\(230\) 0 0
\(231\) 60.1362i 0.260330i
\(232\) −96.7878 + 96.7878i −0.417189 + 0.417189i
\(233\) −94.0000 −0.403433 −0.201717 0.979444i \(-0.564652\pi\)
−0.201717 + 0.979444i \(0.564652\pi\)
\(234\) −114.373 114.373i −0.488775 0.488775i
\(235\) 0 0
\(236\) 106.833 106.833i 0.452683 0.452683i
\(237\) 33.6163i 0.141841i
\(238\) 156.136 0.656035
\(239\) −279.644 + 279.644i −1.17006 + 1.17006i −0.187861 + 0.982196i \(0.560156\pi\)
−0.982196 + 0.187861i \(0.939844\pi\)
\(240\) 0 0
\(241\) 259.060 + 259.060i 1.07494 + 1.07494i 0.996955 + 0.0779840i \(0.0248483\pi\)
0.0779840 + 0.996955i \(0.475152\pi\)
\(242\) 79.9092 79.9092i 0.330203 0.330203i
\(243\) 105.975i 0.436111i
\(244\) 138.182i 0.566318i
\(245\) 0 0
\(246\) 40.8082i 0.165887i
\(247\) −78.0000 + 78.0000i −0.315789 + 0.315789i
\(248\) 45.3031i 0.182674i
\(249\) −2.43470 + 2.43470i −0.00977790 + 0.00977790i
\(250\) 0 0
\(251\) 67.1510i 0.267534i 0.991013 + 0.133767i \(0.0427074\pi\)
−0.991013 + 0.133767i \(0.957293\pi\)
\(252\) 117.439 + 117.439i 0.466029 + 0.466029i
\(253\) −334.242 334.242i −1.32111 1.32111i
\(254\) 170.788 + 170.788i 0.672393 + 0.672393i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −318.212 −1.23818 −0.619090 0.785320i \(-0.712498\pi\)
−0.619090 + 0.785320i \(0.712498\pi\)
\(258\) 7.17143 7.17143i 0.0277962 0.0277962i
\(259\) 423.106i 1.63361i
\(260\) 0 0
\(261\) −425.767 −1.63129
\(262\) −93.5301 93.5301i −0.356985 0.356985i
\(263\) 80.4995i 0.306082i −0.988220 0.153041i \(-0.951093\pi\)
0.988220 0.153041i \(-0.0489066\pi\)
\(264\) 18.0204i 0.0682591i
\(265\) 0 0
\(266\) 80.0908 80.0908i 0.301093 0.301093i
\(267\) 16.0454 16.0454i 0.0600952 0.0600952i
\(268\) −117.530 + 117.530i −0.438545 + 0.438545i
\(269\) 45.2429 0.168189 0.0840945 0.996458i \(-0.473200\pi\)
0.0840945 + 0.996458i \(0.473200\pi\)
\(270\) 0 0
\(271\) 233.326 + 233.326i 0.860981 + 0.860981i 0.991452 0.130471i \(-0.0416491\pi\)
−0.130471 + 0.991452i \(0.541649\pi\)
\(272\) 46.7878 0.172014
\(273\) 39.0000 + 39.0000i 0.142857 + 0.142857i
\(274\) −172.606 −0.629949
\(275\) 0 0
\(276\) −29.9796 −0.108622
\(277\) 297.151 1.07275 0.536374 0.843981i \(-0.319794\pi\)
0.536374 + 0.843981i \(0.319794\pi\)
\(278\) 21.6209 + 21.6209i 0.0777731 + 0.0777731i
\(279\) 99.6436 99.6436i 0.357146 0.357146i
\(280\) 0 0
\(281\) −208.182 208.182i −0.740860 0.740860i 0.231884 0.972744i \(-0.425511\pi\)
−0.972744 + 0.231884i \(0.925511\pi\)
\(282\) 53.4551i 0.189557i
\(283\) 231.106 0.816628 0.408314 0.912842i \(-0.366117\pi\)
0.408314 + 0.912842i \(0.366117\pi\)
\(284\) −89.5755 89.5755i −0.315407 0.315407i
\(285\) 0 0
\(286\) 260.590i 0.911155i
\(287\) 605.939i 2.11128i
\(288\) 35.1918 + 35.1918i 0.122194 + 0.122194i
\(289\) −152.182 −0.526580
\(290\) 0 0
\(291\) 27.5959 27.5959i 0.0948313 0.0948313i
\(292\) 135.576 + 135.576i 0.464300 + 0.464300i
\(293\) 29.2122 29.2122i 0.0997005 0.0997005i −0.655497 0.755198i \(-0.727541\pi\)
0.755198 + 0.655497i \(0.227541\pi\)
\(294\) −18.0204 18.0204i −0.0612939 0.0612939i
\(295\) 0 0
\(296\) 126.788i 0.428337i
\(297\) 80.1816 80.1816i 0.269972 0.269972i
\(298\) 111.818 0.375229
\(299\) 433.530 1.44993
\(300\) 0 0
\(301\) 106.485 106.485i 0.353770 0.353770i
\(302\) 146.652i 0.485601i
\(303\) −43.3689 −0.143132
\(304\) 24.0000 24.0000i 0.0789474 0.0789474i
\(305\) 0 0
\(306\) 102.909 + 102.909i 0.336305 + 0.336305i
\(307\) −144.788 + 144.788i −0.471621 + 0.471621i −0.902439 0.430818i \(-0.858225\pi\)
0.430818 + 0.902439i \(0.358225\pi\)
\(308\) 267.576i 0.868752i
\(309\) 22.2837i 0.0721155i
\(310\) 0 0
\(311\) 311.773i 1.00249i −0.865307 0.501243i \(-0.832876\pi\)
0.865307 0.501243i \(-0.167124\pi\)
\(312\) 11.6867 + 11.6867i 0.0374575 + 0.0374575i
\(313\) 330.605i 1.05625i 0.849168 + 0.528123i \(0.177104\pi\)
−0.849168 + 0.528123i \(0.822896\pi\)
\(314\) −117.606 + 117.606i −0.374542 + 0.374542i
\(315\) 0 0
\(316\) 149.576i 0.473340i
\(317\) −16.2724 16.2724i −0.0513326 0.0513326i 0.680974 0.732307i \(-0.261556\pi\)
−0.732307 + 0.680974i \(0.761556\pi\)
\(318\) −35.8230 35.8230i −0.112651 0.112651i
\(319\) 485.037 + 485.037i 1.52049 + 1.52049i
\(320\) 0 0
\(321\) 38.3224 0.119385
\(322\) −445.151 −1.38246
\(323\) 70.1816 70.1816i 0.217281 0.217281i
\(324\) 151.171i 0.466578i
\(325\) 0 0
\(326\) −246.515 −0.756182
\(327\) 48.1770 + 48.1770i 0.147330 + 0.147330i
\(328\) 181.576i 0.553584i
\(329\) 793.727i 2.41254i
\(330\) 0 0
\(331\) 25.1510 25.1510i 0.0759849 0.0759849i −0.668093 0.744078i \(-0.732889\pi\)
0.744078 + 0.668093i \(0.232889\pi\)
\(332\) −10.8332 + 10.8332i −0.0326300 + 0.0326300i
\(333\) −278.868 + 278.868i −0.837443 + 0.837443i
\(334\) 87.1510 0.260931
\(335\) 0 0
\(336\) −12.0000 12.0000i −0.0357143 0.0357143i
\(337\) −345.454 −1.02509 −0.512543 0.858661i \(-0.671297\pi\)
−0.512543 + 0.858661i \(0.671297\pi\)
\(338\) −169.000 169.000i −0.500000 0.500000i
\(339\) −20.4041 −0.0601890
\(340\) 0 0
\(341\) −227.030 −0.665776
\(342\) 105.576 0.308700
\(343\) 59.4620 + 59.4620i 0.173359 + 0.173359i
\(344\) 31.9092 31.9092i 0.0927593 0.0927593i
\(345\) 0 0
\(346\) 52.7276 + 52.7276i 0.152392 + 0.152392i
\(347\) 237.621i 0.684786i 0.939557 + 0.342393i \(0.111238\pi\)
−0.939557 + 0.342393i \(0.888762\pi\)
\(348\) 43.5051 0.125015
\(349\) −18.8786 18.8786i −0.0540933 0.0540933i 0.679543 0.733636i \(-0.262178\pi\)
−0.733636 + 0.679543i \(0.762178\pi\)
\(350\) 0 0
\(351\) 104.000i 0.296296i
\(352\) 80.1816i 0.227789i
\(353\) 196.485 + 196.485i 0.556614 + 0.556614i 0.928342 0.371728i \(-0.121235\pi\)
−0.371728 + 0.928342i \(0.621235\pi\)
\(354\) −48.0204 −0.135651
\(355\) 0 0
\(356\) 71.3939 71.3939i 0.200545 0.200545i
\(357\) −35.0908 35.0908i −0.0982936 0.0982936i
\(358\) 140.000 140.000i 0.391061 0.391061i
\(359\) −359.462 359.462i −1.00129 1.00129i −0.999999 0.00128770i \(-0.999590\pi\)
−0.00128770 0.999999i \(-0.500410\pi\)
\(360\) 0 0
\(361\) 289.000i 0.800554i
\(362\) 245.363 245.363i 0.677799 0.677799i
\(363\) −35.9184 −0.0989486
\(364\) 173.530 + 173.530i 0.476731 + 0.476731i
\(365\) 0 0
\(366\) −31.0556 + 31.0556i −0.0848514 + 0.0848514i
\(367\) 491.287i 1.33866i 0.742966 + 0.669329i \(0.233418\pi\)
−0.742966 + 0.669329i \(0.766582\pi\)
\(368\) −133.394 −0.362483
\(369\) 399.373 399.373i 1.08231 1.08231i
\(370\) 0 0
\(371\) −531.916 531.916i −1.43374 1.43374i
\(372\) −10.1816 + 10.1816i −0.0273700 + 0.0273700i
\(373\) 528.939i 1.41807i −0.705175 0.709033i \(-0.749132\pi\)
0.705175 0.709033i \(-0.250868\pi\)
\(374\) 234.470i 0.626925i
\(375\) 0 0
\(376\) 237.848i 0.632574i
\(377\) −629.120 −1.66875
\(378\) 106.788i 0.282507i
\(379\) −246.765 + 246.765i −0.651095 + 0.651095i −0.953257 0.302162i \(-0.902292\pi\)
0.302162 + 0.953257i \(0.402292\pi\)
\(380\) 0 0
\(381\) 76.7673i 0.201489i
\(382\) −42.7878 42.7878i −0.112010 0.112010i
\(383\) 414.954 + 414.954i 1.08343 + 1.08343i 0.996187 + 0.0872426i \(0.0278055\pi\)
0.0872426 + 0.996187i \(0.472194\pi\)
\(384\) −3.59592 3.59592i −0.00936437 0.00936437i
\(385\) 0 0
\(386\) 106.243 0.275241
\(387\) 140.368 0.362708
\(388\) 122.788 122.788i 0.316463 0.316463i
\(389\) 597.939i 1.53712i −0.639779 0.768559i \(-0.720974\pi\)
0.639779 0.768559i \(-0.279026\pi\)
\(390\) 0 0
\(391\) −390.075 −0.997634
\(392\) −80.1816 80.1816i −0.204545 0.204545i
\(393\) 42.0408i 0.106974i
\(394\) 341.576i 0.866943i
\(395\) 0 0
\(396\) 176.359 176.359i 0.445350 0.445350i
\(397\) −396.909 + 396.909i −0.999771 + 0.999771i −1.00000 0.000228728i \(-0.999927\pi\)
0.000228728 1.00000i \(0.499927\pi\)
\(398\) 266.788 266.788i 0.670321 0.670321i
\(399\) −36.0000 −0.0902256
\(400\) 0 0
\(401\) −128.363 128.363i −0.320108 0.320108i 0.528701 0.848808i \(-0.322679\pi\)
−0.848808 + 0.528701i \(0.822679\pi\)
\(402\) 52.8286 0.131414
\(403\) 147.235 147.235i 0.365347 0.365347i
\(404\) −192.969 −0.477647
\(405\) 0 0
\(406\) 645.984 1.59109
\(407\) 635.378 1.56113
\(408\) −10.5153 10.5153i −0.0257728 0.0257728i
\(409\) −241.727 + 241.727i −0.591018 + 0.591018i −0.937907 0.346888i \(-0.887238\pi\)
0.346888 + 0.937907i \(0.387238\pi\)
\(410\) 0 0
\(411\) 38.7923 + 38.7923i 0.0943853 + 0.0943853i
\(412\) 99.1510i 0.240658i
\(413\) −713.030 −1.72646
\(414\) −293.398 293.398i −0.708692 0.708692i
\(415\) 0 0
\(416\) 52.0000 + 52.0000i 0.125000 + 0.125000i
\(417\) 9.71838i 0.0233055i
\(418\) −120.272 120.272i −0.287733 0.287733i
\(419\) −678.833 −1.62013 −0.810063 0.586342i \(-0.800567\pi\)
−0.810063 + 0.586342i \(0.800567\pi\)
\(420\) 0 0
\(421\) −74.6969 + 74.6969i −0.177427 + 0.177427i −0.790233 0.612806i \(-0.790041\pi\)
0.612806 + 0.790233i \(0.290041\pi\)
\(422\) −66.4699 66.4699i −0.157512 0.157512i
\(423\) 523.144 523.144i 1.23675 1.23675i
\(424\) −159.394 159.394i −0.375929 0.375929i
\(425\) 0 0
\(426\) 40.2633i 0.0945147i
\(427\) −461.128 + 461.128i −1.07993 + 1.07993i
\(428\) 170.515 0.398400
\(429\) 58.5663 58.5663i 0.136518 0.136518i
\(430\) 0 0
\(431\) 280.652 280.652i 0.651164 0.651164i −0.302110 0.953273i \(-0.597691\pi\)
0.953273 + 0.302110i \(0.0976908\pi\)
\(432\) 32.0000i 0.0740741i
\(433\) −133.394 −0.308069 −0.154034 0.988065i \(-0.549227\pi\)
−0.154034 + 0.988065i \(0.549227\pi\)
\(434\) −151.182 + 151.182i −0.348345 + 0.348345i
\(435\) 0 0
\(436\) 214.363 + 214.363i 0.491659 + 0.491659i
\(437\) −200.091 + 200.091i −0.457874 + 0.457874i
\(438\) 60.9398i 0.139132i
\(439\) 782.302i 1.78201i −0.453994 0.891005i \(-0.650001\pi\)
0.453994 0.891005i \(-0.349999\pi\)
\(440\) 0 0
\(441\) 352.717i 0.799813i
\(442\) 152.060 + 152.060i 0.344028 + 0.344028i
\(443\) 354.742i 0.800773i 0.916346 + 0.400386i \(0.131124\pi\)
−0.916346 + 0.400386i \(0.868876\pi\)
\(444\) 28.4949 28.4949i 0.0641777 0.0641777i
\(445\) 0 0
\(446\) 422.879i 0.948158i
\(447\) −25.1306 25.1306i −0.0562206 0.0562206i
\(448\) −53.3939 53.3939i −0.119183 0.119183i
\(449\) 242.333 + 242.333i 0.539716 + 0.539716i 0.923446 0.383729i \(-0.125360\pi\)
−0.383729 + 0.923446i \(0.625360\pi\)
\(450\) 0 0
\(451\) −909.939 −2.01760
\(452\) −90.7878 −0.200858
\(453\) −32.9592 + 32.9592i −0.0727576 + 0.0727576i
\(454\) 115.955i 0.255407i
\(455\) 0 0
\(456\) −10.7878 −0.0236574
\(457\) −83.4245 83.4245i −0.182548 0.182548i 0.609917 0.792465i \(-0.291203\pi\)
−0.792465 + 0.609917i \(0.791203\pi\)
\(458\) 518.302i 1.13166i
\(459\) 93.5755i 0.203868i
\(460\) 0 0
\(461\) 224.454 224.454i 0.486885 0.486885i −0.420437 0.907322i \(-0.638123\pi\)
0.907322 + 0.420437i \(0.138123\pi\)
\(462\) −60.1362 + 60.1362i −0.130165 + 0.130165i
\(463\) 525.401 525.401i 1.13477 1.13477i 0.145402 0.989373i \(-0.453552\pi\)
0.989373 0.145402i \(-0.0464476\pi\)
\(464\) 193.576 0.417189
\(465\) 0 0
\(466\) 94.0000 + 94.0000i 0.201717 + 0.201717i
\(467\) 621.893 1.33168 0.665839 0.746096i \(-0.268074\pi\)
0.665839 + 0.746096i \(0.268074\pi\)
\(468\) 228.747i 0.488775i
\(469\) 784.423 1.67254
\(470\) 0 0
\(471\) 52.8627 0.112235
\(472\) −213.666 −0.452683
\(473\) −159.908 159.908i −0.338072 0.338072i
\(474\) 33.6163 33.6163i 0.0709205 0.0709205i
\(475\) 0 0
\(476\) −156.136 156.136i −0.328017 0.328017i
\(477\) 701.170i 1.46996i
\(478\) 559.287 1.17006
\(479\) 358.007 + 358.007i 0.747405 + 0.747405i 0.973991 0.226586i \(-0.0727565\pi\)
−0.226586 + 0.973991i \(0.572757\pi\)
\(480\) 0 0
\(481\) −412.060 + 412.060i −0.856674 + 0.856674i
\(482\) 518.120i 1.07494i
\(483\) 100.045 + 100.045i 0.207133 + 0.207133i
\(484\) −159.818 −0.330203
\(485\) 0 0
\(486\) 105.975 105.975i 0.218056 0.218056i
\(487\) 97.7503 + 97.7503i 0.200719 + 0.200719i 0.800308 0.599589i \(-0.204669\pi\)
−0.599589 + 0.800308i \(0.704669\pi\)
\(488\) −138.182 + 138.182i −0.283159 + 0.283159i
\(489\) 55.4031 + 55.4031i 0.113299 + 0.113299i
\(490\) 0 0
\(491\) 667.923i 1.36033i 0.733058 + 0.680166i \(0.238092\pi\)
−0.733058 + 0.680166i \(0.761908\pi\)
\(492\) −40.8082 + 40.8082i −0.0829434 + 0.0829434i
\(493\) 566.060 1.14820
\(494\) 156.000 0.315789
\(495\) 0 0
\(496\) −45.3031 + 45.3031i −0.0913368 + 0.0913368i
\(497\) 597.848i 1.20291i
\(498\) 4.86939 0.00977790
\(499\) −93.9773 + 93.9773i −0.188331 + 0.188331i −0.794974 0.606643i \(-0.792516\pi\)
0.606643 + 0.794974i \(0.292516\pi\)
\(500\) 0 0
\(501\) −19.5867 19.5867i −0.0390953 0.0390953i
\(502\) 67.1510 67.1510i 0.133767 0.133767i
\(503\) 68.7265i 0.136633i −0.997664 0.0683166i \(-0.978237\pi\)
0.997664 0.0683166i \(-0.0217628\pi\)
\(504\) 234.879i 0.466029i
\(505\) 0 0
\(506\) 668.484i 1.32111i
\(507\) 75.9638i 0.149830i
\(508\) 341.576i 0.672393i
\(509\) −488.545 + 488.545i −0.959813 + 0.959813i −0.999223 0.0394100i \(-0.987452\pi\)
0.0394100 + 0.999223i \(0.487452\pi\)
\(510\) 0 0
\(511\) 904.863i 1.77077i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −48.0000 48.0000i −0.0935673 0.0935673i
\(514\) 318.212 + 318.212i 0.619090 + 0.619090i
\(515\) 0 0
\(516\) −14.3429 −0.0277962
\(517\) −1191.94 −2.30549
\(518\) 423.106 423.106i 0.816806 0.816806i
\(519\) 23.7005i 0.0456657i
\(520\) 0 0
\(521\) 120.908 0.232069 0.116035 0.993245i \(-0.462982\pi\)
0.116035 + 0.993245i \(0.462982\pi\)
\(522\) 425.767 + 425.767i 0.815646 + 0.815646i
\(523\) 160.000i 0.305927i 0.988232 + 0.152964i \(0.0488817\pi\)
−0.988232 + 0.152964i \(0.951118\pi\)
\(524\) 187.060i 0.356985i
\(525\) 0 0
\(526\) −80.4995 + 80.4995i −0.153041 + 0.153041i
\(527\) −132.477 + 132.477i −0.251379 + 0.251379i
\(528\) −18.0204 + 18.0204i −0.0341296 + 0.0341296i
\(529\) 583.120 1.10231
\(530\) 0 0
\(531\) −469.957 469.957i −0.885041 0.885041i
\(532\) −160.182 −0.301093
\(533\) 590.120 590.120i 1.10717 1.10717i
\(534\) −32.0908 −0.0600952
\(535\) 0 0
\(536\) 235.060 0.438545
\(537\) −62.9286 −0.117185
\(538\) −45.2429 45.2429i −0.0840945 0.0840945i
\(539\) −401.818 + 401.818i −0.745489 + 0.745489i
\(540\) 0 0
\(541\) −95.9092 95.9092i −0.177281 0.177281i 0.612888 0.790170i \(-0.290008\pi\)
−0.790170 + 0.612888i \(0.790008\pi\)
\(542\) 466.652i 0.860981i
\(543\) −110.288 −0.203109
\(544\) −46.7878 46.7878i −0.0860069 0.0860069i
\(545\) 0 0
\(546\) 78.0000i 0.142857i
\(547\) 842.983i 1.54110i −0.637378 0.770551i \(-0.719981\pi\)
0.637378 0.770551i \(-0.280019\pi\)
\(548\) 172.606 + 172.606i 0.314975 + 0.314975i
\(549\) −607.858 −1.10721
\(550\) 0 0
\(551\) 290.363 290.363i 0.526975 0.526975i
\(552\) 29.9796 + 29.9796i 0.0543109 + 0.0543109i
\(553\) 499.151 499.151i 0.902624 0.902624i
\(554\) −297.151 297.151i −0.536374 0.536374i
\(555\) 0 0
\(556\) 43.2418i 0.0777731i
\(557\) 157.666 157.666i 0.283063 0.283063i −0.551266 0.834329i \(-0.685855\pi\)
0.834329 + 0.551266i \(0.185855\pi\)
\(558\) −199.287 −0.357146
\(559\) 207.410 0.371037
\(560\) 0 0
\(561\) −52.6959 + 52.6959i −0.0939321 + 0.0939321i
\(562\) 416.363i 0.740860i
\(563\) −100.486 −0.178483 −0.0892413 0.996010i \(-0.528444\pi\)
−0.0892413 + 0.996010i \(0.528444\pi\)
\(564\) −53.4551 + 53.4551i −0.0947786 + 0.0947786i
\(565\) 0 0
\(566\) −231.106 231.106i −0.408314 0.408314i
\(567\) 504.477 504.477i 0.889730 0.889730i
\(568\) 179.151i 0.315407i
\(569\) 692.212i 1.21654i −0.793730 0.608271i \(-0.791863\pi\)
0.793730 0.608271i \(-0.208137\pi\)
\(570\) 0 0
\(571\) 243.637i 0.426684i 0.976978 + 0.213342i \(0.0684349\pi\)
−0.976978 + 0.213342i \(0.931565\pi\)
\(572\) 260.590 260.590i 0.455577 0.455577i
\(573\) 19.2327i 0.0335648i
\(574\) −605.939 + 605.939i −1.05564 + 1.05564i
\(575\) 0 0
\(576\) 70.3837i 0.122194i
\(577\) 761.453 + 761.453i 1.31968 + 1.31968i 0.914030 + 0.405646i \(0.132953\pi\)
0.405646 + 0.914030i \(0.367047\pi\)
\(578\) 152.182 + 152.182i 0.263290 + 0.263290i
\(579\) −23.8775 23.8775i −0.0412393 0.0412393i
\(580\) 0 0
\(581\) 72.3031 0.124446
\(582\) −55.1918 −0.0948313
\(583\) −798.779 + 798.779i −1.37012 + 1.37012i
\(584\) 271.151i 0.464300i
\(585\) 0 0
\(586\) −58.4245 −0.0997005
\(587\) 367.235 + 367.235i 0.625613 + 0.625613i 0.946961 0.321348i \(-0.104136\pi\)
−0.321348 + 0.946961i \(0.604136\pi\)
\(588\) 36.0408i 0.0612939i
\(589\) 135.909i 0.230746i
\(590\) 0 0
\(591\) −76.7673 + 76.7673i −0.129894 + 0.129894i
\(592\) 126.788 126.788i 0.214169 0.214169i
\(593\) −339.334 + 339.334i −0.572232 + 0.572232i −0.932752 0.360520i \(-0.882599\pi\)
0.360520 + 0.932752i \(0.382599\pi\)
\(594\) −160.363 −0.269972
\(595\) 0 0
\(596\) −111.818 111.818i −0.187615 0.187615i
\(597\) −119.918 −0.200868
\(598\) −433.530 433.530i −0.724967 0.724967i
\(599\) −931.741 −1.55549 −0.777747 0.628577i \(-0.783638\pi\)
−0.777747 + 0.628577i \(0.783638\pi\)
\(600\) 0 0
\(601\) −297.697 −0.495336 −0.247668 0.968845i \(-0.579664\pi\)
−0.247668 + 0.968845i \(0.579664\pi\)
\(602\) −212.969 −0.353770
\(603\) 517.012 + 517.012i 0.857400 + 0.857400i
\(604\) −146.652 + 146.652i −0.242801 + 0.242801i
\(605\) 0 0
\(606\) 43.3689 + 43.3689i 0.0715658 + 0.0715658i
\(607\) 219.650i 0.361862i 0.983496 + 0.180931i \(0.0579111\pi\)
−0.983496 + 0.180931i \(0.942089\pi\)
\(608\) −48.0000 −0.0789474
\(609\) −145.182 145.182i −0.238393 0.238393i
\(610\) 0 0
\(611\) 773.006 773.006i 1.26515 1.26515i
\(612\) 205.818i 0.336305i
\(613\) 392.363 + 392.363i 0.640071 + 0.640071i 0.950573 0.310502i \(-0.100497\pi\)
−0.310502 + 0.950573i \(0.600497\pi\)
\(614\) 289.576 0.471621
\(615\) 0 0
\(616\) −267.576 + 267.576i −0.434376 + 0.434376i
\(617\) 436.605 + 436.605i 0.707626 + 0.707626i 0.966035 0.258410i \(-0.0831984\pi\)
−0.258410 + 0.966035i \(0.583198\pi\)
\(618\) −22.2837 + 22.2837i −0.0360577 + 0.0360577i
\(619\) 282.363 + 282.363i 0.456160 + 0.456160i 0.897393 0.441232i \(-0.145459\pi\)
−0.441232 + 0.897393i \(0.645459\pi\)
\(620\) 0 0
\(621\) 266.788i 0.429610i
\(622\) −311.773 + 311.773i −0.501243 + 0.501243i
\(623\) −476.499 −0.764847
\(624\) 23.3735i 0.0374575i
\(625\) 0 0
\(626\) 330.605 330.605i 0.528123 0.528123i
\(627\) 54.0612i 0.0862221i
\(628\) 235.212 0.374542
\(629\) 370.757 370.757i 0.589439 0.589439i
\(630\) 0 0
\(631\) −131.803 131.803i −0.208879 0.208879i 0.594912 0.803791i \(-0.297187\pi\)
−0.803791 + 0.594912i \(0.797187\pi\)
\(632\) 149.576 149.576i 0.236670 0.236670i
\(633\) 29.8775i 0.0471999i
\(634\) 32.5449i 0.0513326i
\(635\) 0 0
\(636\) 71.6459i 0.112651i
\(637\) 521.181i 0.818180i
\(638\) 970.075i 1.52049i
\(639\) −394.041 + 394.041i −0.616652 + 0.616652i
\(640\) 0 0
\(641\) 911.938i 1.42268i 0.702848 + 0.711340i \(0.251911\pi\)
−0.702848 + 0.711340i \(0.748089\pi\)
\(642\) −38.3224 38.3224i −0.0596923 0.0596923i
\(643\) 554.363 + 554.363i 0.862151 + 0.862151i 0.991588 0.129436i \(-0.0413168\pi\)
−0.129436 + 0.991588i \(0.541317\pi\)
\(644\) 445.151 + 445.151i 0.691228 + 0.691228i
\(645\) 0 0
\(646\) −140.363 −0.217281
\(647\) −28.1362 −0.0434872 −0.0217436 0.999764i \(-0.506922\pi\)
−0.0217436 + 0.999764i \(0.506922\pi\)
\(648\) 151.171 151.171i 0.233289 0.233289i
\(649\) 1070.76i 1.64986i
\(650\) 0 0
\(651\) 67.9546 0.104385
\(652\) 246.515 + 246.515i 0.378091 + 0.378091i
\(653\) 725.908i 1.11165i 0.831299 + 0.555826i \(0.187598\pi\)
−0.831299 + 0.555826i \(0.812402\pi\)
\(654\) 96.3541i 0.147330i
\(655\) 0 0
\(656\) −181.576 + 181.576i −0.276792 + 0.276792i
\(657\) 596.394 596.394i 0.907753 0.907753i
\(658\) −793.727 + 793.727i −1.20627 + 1.20627i
\(659\) 1237.82 1.87833 0.939163 0.343473i \(-0.111603\pi\)
0.939163 + 0.343473i \(0.111603\pi\)
\(660\) 0 0
\(661\) 562.121 + 562.121i 0.850411 + 0.850411i 0.990184 0.139773i \(-0.0446373\pi\)
−0.139773 + 0.990184i \(0.544637\pi\)
\(662\) −50.3020 −0.0759849
\(663\) 68.3495i 0.103091i
\(664\) 21.6663 0.0326300
\(665\) 0 0
\(666\) 557.737 0.837443
\(667\) −1613.86 −2.41958
\(668\) −87.1510 87.1510i −0.130466 0.130466i
\(669\) −95.0398 + 95.0398i −0.142062 + 0.142062i
\(670\) 0 0
\(671\) 692.477 + 692.477i 1.03201 + 1.03201i
\(672\) 24.0000i 0.0357143i
\(673\) −711.272 −1.05687 −0.528434 0.848974i \(-0.677221\pi\)
−0.528434 + 0.848974i \(0.677221\pi\)
\(674\) 345.454 + 345.454i 0.512543 + 0.512543i
\(675\) 0 0
\(676\) 338.000i 0.500000i
\(677\) 425.151i 0.627993i 0.949424 + 0.313996i \(0.101668\pi\)
−0.949424 + 0.313996i \(0.898332\pi\)
\(678\) 20.4041 + 20.4041i 0.0300945 + 0.0300945i
\(679\) −819.514 −1.20694
\(680\) 0 0
\(681\) −26.0602 + 26.0602i −0.0382675 + 0.0382675i
\(682\) 227.030 + 227.030i 0.332888 + 0.332888i
\(683\) −69.9773 + 69.9773i −0.102456 + 0.102456i −0.756477 0.654021i \(-0.773081\pi\)
0.654021 + 0.756477i \(0.273081\pi\)
\(684\) −105.576 105.576i −0.154350 0.154350i
\(685\) 0 0
\(686\) 118.924i 0.173359i
\(687\) 116.486 116.486i 0.169557 0.169557i
\(688\) −63.8184 −0.0927593
\(689\) 1036.06i 1.50372i
\(690\) 0 0
\(691\) 297.614 297.614i 0.430700 0.430700i −0.458166 0.888867i \(-0.651494\pi\)
0.888867 + 0.458166i \(0.151494\pi\)
\(692\) 105.455i 0.152392i
\(693\) −1177.06 −1.69850
\(694\) 237.621 237.621i 0.342393 0.342393i
\(695\) 0 0
\(696\) −43.5051 43.5051i −0.0625073 0.0625073i
\(697\) −530.969 + 530.969i −0.761793 + 0.761793i
\(698\) 37.7571i 0.0540933i
\(699\) 42.2520i 0.0604464i
\(700\) 0 0
\(701\) 129.910i 0.185321i 0.995698 + 0.0926606i \(0.0295372\pi\)
−0.995698 + 0.0926606i \(0.970463\pi\)
\(702\) 104.000 104.000i 0.148148 0.148148i
\(703\) 380.363i 0.541057i
\(704\) −80.1816 + 80.1816i −0.113894 + 0.113894i
\(705\) 0 0
\(706\) 392.969i 0.556614i
\(707\) 643.961 + 643.961i 0.910837 + 0.910837i
\(708\) 48.0204 + 48.0204i 0.0678254 + 0.0678254i
\(709\) 602.969 + 602.969i 0.850450 + 0.850450i 0.990189 0.139738i \(-0.0446260\pi\)
−0.139738 + 0.990189i \(0.544626\pi\)
\(710\) 0 0
\(711\) 657.980 0.925428
\(712\) −142.788 −0.200545
\(713\) 377.697 377.697i 0.529729 0.529729i
\(714\) 70.1816i 0.0982936i
\(715\) 0 0
\(716\) −280.000 −0.391061
\(717\) −125.697 125.697i −0.175310 0.175310i
\(718\) 718.924i 1.00129i
\(719\) 749.589i 1.04254i 0.853391 + 0.521272i \(0.174542\pi\)
−0.853391 + 0.521272i \(0.825458\pi\)
\(720\) 0 0
\(721\) −330.879 + 330.879i −0.458916 + 0.458916i
\(722\) 289.000 289.000i 0.400277 0.400277i
\(723\) −116.445 + 116.445i −0.161058 + 0.161058i
\(724\) −490.727 −0.677799
\(725\) 0 0
\(726\) 35.9184 + 35.9184i 0.0494743 + 0.0494743i
\(727\) 885.090 1.21745 0.608727 0.793379i \(-0.291680\pi\)
0.608727 + 0.793379i \(0.291680\pi\)
\(728\) 347.060i 0.476731i
\(729\) 632.637 0.867814
\(730\) 0 0
\(731\) −186.620 −0.255294
\(732\) 62.1112 0.0848514
\(733\) −253.727 253.727i −0.346148 0.346148i 0.512525 0.858673i \(-0.328710\pi\)
−0.858673 + 0.512525i \(0.828710\pi\)
\(734\) 491.287 491.287i 0.669329 0.669329i
\(735\) 0 0
\(736\) 133.394 + 133.394i 0.181242 + 0.181242i
\(737\) 1177.97i 1.59833i
\(738\) −798.747 −1.08231
\(739\) 818.643 + 818.643i 1.10777 + 1.10777i 0.993443 + 0.114328i \(0.0364714\pi\)
0.114328 + 0.993443i \(0.463529\pi\)
\(740\) 0 0
\(741\) −35.0602 35.0602i −0.0473147 0.0473147i
\(742\) 1063.83i 1.43374i
\(743\) 223.705 + 223.705i 0.301083 + 0.301083i 0.841438 0.540354i \(-0.181710\pi\)
−0.540354 + 0.841438i \(0.681710\pi\)
\(744\) 20.3633 0.0273700
\(745\) 0 0
\(746\) −528.939 + 528.939i −0.709033 + 0.709033i
\(747\) 47.6549 + 47.6549i 0.0637950 + 0.0637950i
\(748\) −234.470 + 234.470i −0.313462 + 0.313462i
\(749\) −569.030 569.030i −0.759719 0.759719i
\(750\) 0 0
\(751\) 739.501i 0.984688i 0.870401 + 0.492344i \(0.163860\pi\)
−0.870401 + 0.492344i \(0.836140\pi\)
\(752\) −237.848 + 237.848i −0.316287 + 0.316287i
\(753\) −30.1837 −0.0400846
\(754\) 629.120 + 629.120i 0.834377 + 0.834377i
\(755\) 0 0
\(756\) −106.788 + 106.788i −0.141254 + 0.141254i
\(757\) 882.058i 1.16520i −0.812758 0.582601i \(-0.802035\pi\)
0.812758 0.582601i \(-0.197965\pi\)
\(758\) 493.530 0.651095
\(759\) 150.238 150.238i 0.197942 0.197942i
\(760\) 0 0
\(761\) −638.393 638.393i −0.838887 0.838887i 0.149826 0.988712i \(-0.452129\pi\)
−0.988712 + 0.149826i \(0.952129\pi\)
\(762\) −76.7673 + 76.7673i −0.100745 + 0.100745i
\(763\) 1430.71i 1.87511i
\(764\) 85.5755i 0.112010i
\(765\) 0 0
\(766\) 829.907i 1.08343i
\(767\) −694.416 694.416i −0.905366 0.905366i
\(768\) 7.19184i 0.00936437i
\(769\) 649.090 649.090i 0.844070 0.844070i −0.145315 0.989385i \(-0.546420\pi\)
0.989385 + 0.145315i \(0.0464197\pi\)
\(770\) 0 0
\(771\) 143.033i 0.185516i
\(772\) −106.243 106.243i −0.137620 0.137620i
\(773\) −605.939 605.939i −0.783879 0.783879i 0.196604 0.980483i \(-0.437009\pi\)
−0.980483 + 0.196604i \(0.937009\pi\)
\(774\) −140.368 140.368i −0.181354 0.181354i
\(775\) 0 0
\(776\) −245.576 −0.316463
\(777\) −190.182 −0.244764
\(778\) −597.939 + 597.939i −0.768559 + 0.768559i
\(779\) 544.727i 0.699264i
\(780\) 0 0
\(781\) 897.789 1.14954
\(782\) 390.075 + 390.075i 0.498817 + 0.498817i
\(783\) 387.151i 0.494446i
\(784\) 160.363i 0.204545i
\(785\) 0 0
\(786\) 42.0408 42.0408i 0.0534870 0.0534870i
\(787\) 946.461 946.461i 1.20262 1.20262i 0.229252 0.973367i \(-0.426372\pi\)
0.973367 0.229252i \(-0.0736278\pi\)
\(788\) −341.576 + 341.576i −0.433471 + 0.433471i
\(789\) 36.1837 0.0458602
\(790\) 0 0
\(791\) 302.969 + 302.969i 0.383021 + 0.383021i
\(792\) −352.717 −0.445350
\(793\) −898.181 −1.13264
\(794\) 793.818 0.999771
\(795\) 0 0
\(796\) −533.576 −0.670321
\(797\) 832.878 1.04502 0.522508 0.852634i \(-0.324997\pi\)
0.522508 + 0.852634i \(0.324997\pi\)
\(798\) 36.0000 + 36.0000i 0.0451128 + 0.0451128i
\(799\) −695.523 + 695.523i −0.870492 + 0.870492i
\(800\) 0 0
\(801\) −314.060 314.060i −0.392085 0.392085i
\(802\) 256.727i 0.320108i
\(803\) −1358.83 −1.69220
\(804\) −52.8286 52.8286i −0.0657072 0.0657072i
\(805\) 0 0
\(806\) −294.470 −0.365347
\(807\) 20.3362i 0.0251998i
\(808\) 192.969 + 192.969i 0.238823 + 0.238823i
\(809\) −1194.00 −1.47590 −0.737948 0.674857i \(-0.764205\pi\)
−0.737948 + 0.674857i \(0.764205\pi\)
\(810\) 0 0
\(811\) 52.2656 52.2656i 0.0644458 0.0644458i −0.674149 0.738595i \(-0.735490\pi\)
0.738595 + 0.674149i \(0.235490\pi\)
\(812\) −645.984 645.984i −0.795547 0.795547i
\(813\) −104.878 + 104.878i −0.129001 + 0.129001i
\(814\) −635.378 635.378i −0.780563 0.780563i
\(815\) 0 0
\(816\) 21.0306i 0.0257728i
\(817\) −95.7276 + 95.7276i −0.117170 + 0.117170i
\(818\) 483.453 0.591018
\(819\) 763.355 763.355i 0.932058 0.932058i
\(820\) 0 0
\(821\) −250.515 + 250.515i −0.305134 + 0.305134i −0.843019 0.537884i \(-0.819224\pi\)
0.537884 + 0.843019i \(0.319224\pi\)
\(822\) 77.5847i 0.0943853i
\(823\) −1065.94 −1.29519 −0.647593 0.761986i \(-0.724224\pi\)
−0.647593 + 0.761986i \(0.724224\pi\)
\(824\) −99.1510 + 99.1510i −0.120329 + 0.120329i
\(825\) 0 0
\(826\) 713.030 + 713.030i 0.863232 + 0.863232i
\(827\) −118.690 + 118.690i −0.143519 + 0.143519i −0.775216 0.631697i \(-0.782359\pi\)
0.631697 + 0.775216i \(0.282359\pi\)
\(828\) 586.797i 0.708692i
\(829\) 1422.06i 1.71539i −0.514157 0.857696i \(-0.671895\pi\)
0.514157 0.857696i \(-0.328105\pi\)
\(830\) 0 0
\(831\) 133.566i 0.160730i
\(832\) 104.000i 0.125000i
\(833\) 468.940i 0.562953i
\(834\) −9.71838 + 9.71838i −0.0116527 + 0.0116527i
\(835\) 0 0
\(836\) 240.545i 0.287733i
\(837\) 90.6061 + 90.6061i 0.108251 + 0.108251i
\(838\) 678.833 + 678.833i 0.810063 + 0.810063i
\(839\) −7.93877 7.93877i −0.00946218 0.00946218i 0.702360 0.711822i \(-0.252130\pi\)
−0.711822 + 0.702360i \(0.752130\pi\)
\(840\) 0 0
\(841\) 1500.97 1.78474
\(842\) 149.394 0.177427
\(843\) 93.5755 93.5755i 0.111003 0.111003i
\(844\) 132.940i 0.157512i
\(845\) 0 0
\(846\) −1046.29 −1.23675
\(847\) 533.333 + 533.333i 0.629673 + 0.629673i
\(848\) 318.788i 0.375929i
\(849\) 103.880i 0.122355i
\(850\) 0 0
\(851\) −1057.04 + 1057.04i −1.24212 + 1.24212i
\(852\) 40.2633 40.2633i 0.0472574 0.0472574i
\(853\) −373.788 + 373.788i −0.438204 + 0.438204i −0.891407 0.453203i \(-0.850281\pi\)
0.453203 + 0.891407i \(0.350281\pi\)
\(854\) 922.257 1.07993
\(855\) 0 0
\(856\) −170.515 170.515i −0.199200 0.199200i
\(857\) 181.031 0.211238 0.105619 0.994407i \(-0.466318\pi\)
0.105619 + 0.994407i \(0.466318\pi\)
\(858\) −117.133 −0.136518
\(859\) 1050.47 1.22290 0.611449 0.791284i \(-0.290587\pi\)
0.611449 + 0.791284i \(0.290587\pi\)
\(860\) 0 0
\(861\) 272.363 0.316334
\(862\) −561.303 −0.651164
\(863\) 800.976 + 800.976i 0.928130 + 0.928130i 0.997585 0.0694550i \(-0.0221260\pi\)
−0.0694550 + 0.997585i \(0.522126\pi\)
\(864\) −32.0000 + 32.0000i −0.0370370 + 0.0370370i
\(865\) 0 0
\(866\) 133.394 + 133.394i 0.154034 + 0.154034i
\(867\) 68.4041i 0.0788974i
\(868\) 302.363 0.348345
\(869\) −749.576 749.576i −0.862573 0.862573i
\(870\) 0 0
\(871\) 763.946 + 763.946i 0.877090 + 0.877090i
\(872\) 428.727i 0.491659i
\(873\) −540.141 540.141i −0.618718 0.618718i
\(874\) 400.182 0.457874
\(875\) 0 0
\(876\) −60.9398 + 60.9398i −0.0695660 + 0.0695660i
\(877\) −693.817 693.817i −0.791126 0.791126i 0.190551 0.981677i \(-0.438972\pi\)
−0.981677 + 0.190551i \(0.938972\pi\)
\(878\) −782.302 + 782.302i −0.891005 + 0.891005i
\(879\) 13.1306 + 13.1306i 0.0149381 + 0.0149381i
\(880\) 0 0
\(881\) 1023.73i 1.16201i 0.813902 + 0.581003i \(0.197339\pi\)
−0.813902 + 0.581003i \(0.802661\pi\)
\(882\) −352.717 + 352.717i −0.399906 + 0.399906i
\(883\) 1010.54 1.14444 0.572221 0.820099i \(-0.306082\pi\)
0.572221 + 0.820099i \(0.306082\pi\)
\(884\) 304.120i 0.344028i
\(885\) 0 0
\(886\) 354.742 354.742i 0.400386 0.400386i
\(887\) 338.424i 0.381538i 0.981635 + 0.190769i \(0.0610982\pi\)
−0.981635 + 0.190769i \(0.938902\pi\)
\(888\) −56.9898 −0.0641777
\(889\) −1139.88 + 1139.88i −1.28220 + 1.28220i
\(890\) 0 0
\(891\) −757.573 757.573i −0.850251 0.850251i
\(892\) −422.879 + 422.879i −0.474079 + 0.474079i
\(893\) 713.544i 0.799041i
\(894\) 50.2612i 0.0562206i
\(895\) 0 0
\(896\) 106.788i 0.119183i
\(897\) 194.867i 0.217243i
\(898\) 484.665i 0.539716i
\(899\) −548.098 + 548.098i −0.609675 + 0.609675i
\(900\) 0 0
\(901\) 932.210i 1.03464i
\(902\) 909.939 + 909.939i 1.00880 + 1.00880i
\(903\) 47.8638 + 47.8638i 0.0530053 + 0.0530053i
\(904\) 90.7878 + 90.7878i 0.100429 + 0.100429i
\(905\) 0 0
\(906\) 65.9184 0.0727576
\(907\) −1255.39 −1.38411 −0.692057 0.721843i \(-0.743295\pi\)
−0.692057 + 0.721843i \(0.743295\pi\)
\(908\) −115.955 + 115.955i −0.127703 + 0.127703i
\(909\) 848.868i 0.933849i
\(910\) 0 0
\(911\) 1710.79 1.87792 0.938961 0.344022i \(-0.111790\pi\)
0.938961 + 0.344022i \(0.111790\pi\)
\(912\) 10.7878 + 10.7878i 0.0118287 + 0.0118287i
\(913\) 108.578i 0.118924i
\(914\) 166.849i 0.182548i
\(915\) 0 0
\(916\) 518.302 518.302i 0.565832 0.565832i
\(917\) 624.242 624.242i 0.680744 0.680744i
\(918\) −93.5755 + 93.5755i −0.101934 + 0.101934i
\(919\) −535.029 −0.582186 −0.291093 0.956695i \(-0.594019\pi\)
−0.291093 + 0.956695i \(0.594019\pi\)
\(920\) 0 0
\(921\) −65.0806 65.0806i −0.0706630 0.0706630i
\(922\) −448.908 −0.486885
\(923\) −582.241 + 582.241i −0.630813 + 0.630813i
\(924\) 120.272 0.130165
\(925\) 0 0
\(926\) −1050.80 −1.13477
\(927\) −436.163 −0.470511
\(928\) −193.576 193.576i −0.208594 0.208594i
\(929\) −259.243 + 259.243i −0.279056 + 0.279056i −0.832732 0.553676i \(-0.813225\pi\)
0.553676 + 0.832732i \(0.313225\pi\)
\(930\) 0 0
\(931\) 240.545 + 240.545i 0.258373 + 0.258373i
\(932\) 188.000i 0.201717i
\(933\) 140.139 0.150202
\(934\) −621.893 621.893i −0.665839 0.665839i
\(935\) 0 0
\(936\) 228.747 228.747i 0.244388 0.244388i
\(937\) 74.3347i 0.0793327i −0.999213 0.0396663i \(-0.987371\pi\)
0.999213 0.0396663i \(-0.0126295\pi\)
\(938\) −784.423 784.423i −0.836272 0.836272i
\(939\) −148.604 −0.158257
\(940\) 0 0
\(941\) 1033.57 1033.57i 1.09838 1.09838i 0.103778 0.994600i \(-0.466907\pi\)
0.994600 0.103778i \(-0.0330933\pi\)
\(942\) −52.8627 52.8627i −0.0561176 0.0561176i
\(943\) 1513.82 1513.82i 1.60532 1.60532i
\(944\) 213.666 + 213.666i 0.226341 + 0.226341i
\(945\) 0 0
\(946\) 319.816i 0.338072i
\(947\) 135.553 135.553i 0.143139 0.143139i −0.631906 0.775045i \(-0.717727\pi\)
0.775045 + 0.631906i \(0.217727\pi\)
\(948\) −67.2327 −0.0709205
\(949\) 881.241 881.241i 0.928599 0.928599i
\(950\) 0 0
\(951\) 7.31430 7.31430i 0.00769116 0.00769116i
\(952\) 312.272i 0.328017i
\(953\) 316.757 0.332379 0.166189 0.986094i \(-0.446854\pi\)
0.166189 + 0.986094i \(0.446854\pi\)
\(954\) −701.170 + 701.170i −0.734979 + 0.734979i
\(955\) 0 0
\(956\) −559.287 559.287i −0.585028 0.585028i
\(957\) −218.019 + 218.019i −0.227815 + 0.227815i
\(958\) 716.014i 0.747405i
\(959\) 1152.01i 1.20127i
\(960\) 0 0
\(961\) 704.454i 0.733043i
\(962\) 824.120 0.856674
\(963\) 750.093i 0.778913i
\(964\) −518.120 + 518.120i −0.537469 + 0.537469i
\(965\) 0 0
\(966\) 200.091i 0.207133i
\(967\) −1341.08 1341.08i −1.38685 1.38685i −0.831853 0.554996i \(-0.812720\pi\)
−0.554996 0.831853i \(-0.687280\pi\)
\(968\) 159.818 + 159.818i 0.165102 + 0.165102i
\(969\) 31.5459 + 31.5459i 0.0325551 + 0.0325551i
\(970\) 0 0
\(971\) −1180.05 −1.21529 −0.607644 0.794209i \(-0.707885\pi\)
−0.607644 + 0.794209i \(0.707885\pi\)
\(972\) −211.950 −0.218056
\(973\) −144.303 + 144.303i −0.148307 + 0.148307i
\(974\) 195.501i 0.200719i
\(975\) 0 0
\(976\) 276.363 0.283159
\(977\) −311.817 311.817i −0.319158 0.319158i 0.529286 0.848444i \(-0.322460\pi\)
−0.848444 + 0.529286i \(0.822460\pi\)
\(978\) 110.806i 0.113299i
\(979\) 715.560i 0.730909i
\(980\) 0 0
\(981\) 942.980 942.980i 0.961243 0.961243i
\(982\) 667.923 667.923i 0.680166 0.680166i
\(983\) 73.7661 73.7661i 0.0750418 0.0750418i −0.668590 0.743631i \(-0.733102\pi\)
0.743631 + 0.668590i \(0.233102\pi\)
\(984\) 81.6163 0.0829434
\(985\) 0 0
\(986\) −566.060 566.060i −0.574098 0.574098i
\(987\) 356.772 0.361471
\(988\) −156.000 156.000i −0.157895 0.157895i
\(989\) 532.061 0.537979
\(990\) 0 0
\(991\) 1075.65 1.08542 0.542710 0.839920i \(-0.317398\pi\)
0.542710 + 0.839920i \(0.317398\pi\)
\(992\) 90.6061 0.0913368
\(993\) 11.3051 + 11.3051i 0.0113848 + 0.0113848i
\(994\) 597.848 597.848i 0.601457 0.601457i
\(995\) 0 0
\(996\) −4.86939 4.86939i −0.00488895 0.00488895i
\(997\) 662.362i 0.664355i 0.943217 + 0.332178i \(0.107783\pi\)
−0.943217 + 0.332178i \(0.892217\pi\)
\(998\) 187.955 0.188331
\(999\) −253.576 253.576i −0.253829 0.253829i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.f.g.499.2 4
5.2 odd 4 650.3.k.g.551.2 yes 4
5.3 odd 4 650.3.k.f.551.1 yes 4
5.4 even 2 650.3.f.h.499.1 4
13.8 odd 4 650.3.f.h.99.2 4
65.8 even 4 650.3.k.f.151.1 4
65.34 odd 4 inner 650.3.f.g.99.1 4
65.47 even 4 650.3.k.g.151.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.3.f.g.99.1 4 65.34 odd 4 inner
650.3.f.g.499.2 4 1.1 even 1 trivial
650.3.f.h.99.2 4 13.8 odd 4
650.3.f.h.499.1 4 5.4 even 2
650.3.k.f.151.1 4 65.8 even 4
650.3.k.f.551.1 yes 4 5.3 odd 4
650.3.k.g.151.2 yes 4 65.47 even 4
650.3.k.g.551.2 yes 4 5.2 odd 4