Properties

Label 650.2.w.e.293.3
Level $650$
Weight $2$
Character 650.293
Analytic conductor $5.190$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(193,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.3
Root \(-1.62980i\) of defining polynomial
Character \(\chi\) \(=\) 650.293
Dual form 650.2.w.e.457.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(3.04125 - 0.814901i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.814901 - 3.04125i) q^{6} +(-0.696972 + 0.402397i) q^{7} -1.00000 q^{8} +(5.98707 - 3.45663i) q^{9} +(-0.778529 - 2.90551i) q^{11} +(-2.22635 - 2.22635i) q^{12} +(3.59966 - 0.206024i) q^{13} +0.804795i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.87508 + 6.99788i) q^{17} -6.91327i q^{18} +(-4.51652 - 1.21020i) q^{19} +(-1.79175 + 1.79175i) q^{21} +(-2.90551 - 0.778529i) q^{22} +(-0.113254 - 0.422668i) q^{23} +(-3.04125 + 0.814901i) q^{24} +(1.62141 - 3.22041i) q^{26} +(8.71230 - 8.71230i) q^{27} +(0.696972 + 0.402397i) q^{28} +(3.58287 + 2.06857i) q^{29} +(-0.536500 - 0.536500i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-4.73540 - 8.20196i) q^{33} +(5.12281 + 5.12281i) q^{34} +(-5.98707 - 3.45663i) q^{36} +(-0.835172 - 0.482187i) q^{37} +(-3.30632 + 3.30632i) q^{38} +(10.7796 - 3.55994i) q^{39} +(1.63091 - 0.437002i) q^{41} +(0.655828 + 2.44758i) q^{42} +(-6.14091 - 1.64545i) q^{43} +(-2.12698 + 2.12698i) q^{44} +(-0.422668 - 0.113254i) q^{46} +1.72276i q^{47} +(-0.814901 + 3.04125i) q^{48} +(-3.17615 + 5.50126i) q^{49} +22.8103i q^{51} +(-1.97825 - 3.01438i) q^{52} +(5.01074 + 5.01074i) q^{53} +(-3.18892 - 11.9012i) q^{54} +(0.696972 - 0.402397i) q^{56} -14.7221 q^{57} +(3.58287 - 2.06857i) q^{58} +(0.0422769 - 0.157780i) q^{59} +(1.11898 + 1.93813i) q^{61} +(-0.732873 + 0.196373i) q^{62} +(-2.78188 + 4.81836i) q^{63} +1.00000 q^{64} -9.47080 q^{66} +(-2.20825 + 3.82479i) q^{67} +(6.99788 - 1.87508i) q^{68} +(-0.688865 - 1.19315i) q^{69} +(2.63643 - 9.83928i) q^{71} +(-5.98707 + 3.45663i) q^{72} +1.73949 q^{73} +(-0.835172 + 0.482187i) q^{74} +(1.21020 + 4.51652i) q^{76} +(1.71178 + 1.71178i) q^{77} +(2.30679 - 11.1154i) q^{78} +7.75722i q^{79} +(9.02673 - 15.6348i) q^{81} +(0.437002 - 1.63091i) q^{82} +15.6444i q^{83} +(2.44758 + 0.655828i) q^{84} +(-4.49546 + 4.49546i) q^{86} +(12.5821 + 3.37136i) q^{87} +(0.778529 + 2.90551i) q^{88} +(-5.91063 + 1.58375i) q^{89} +(-2.42596 + 1.59209i) q^{91} +(-0.309415 + 0.309415i) q^{92} +(-2.06883 - 1.19444i) q^{93} +(1.49195 + 0.861379i) q^{94} +(2.22635 + 2.22635i) q^{96} +(-6.70520 - 11.6138i) q^{97} +(3.17615 + 5.50126i) q^{98} +(-14.7044 - 14.7044i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} - 6 q^{7} - 12 q^{8} + 24 q^{9} + 6 q^{11} + 6 q^{13} - 6 q^{16} - 36 q^{19} - 24 q^{21} - 6 q^{23} + 6 q^{26} + 12 q^{27} + 6 q^{28} - 6 q^{29} - 24 q^{31} + 6 q^{32} - 18 q^{33}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 3.04125 0.814901i 1.75587 0.470483i 0.770004 0.638039i \(-0.220254\pi\)
0.985863 + 0.167556i \(0.0535874\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0.814901 3.04125i 0.332682 1.24159i
\(7\) −0.696972 + 0.402397i −0.263431 + 0.152092i −0.625899 0.779904i \(-0.715268\pi\)
0.362468 + 0.931996i \(0.381934\pi\)
\(8\) −1.00000 −0.353553
\(9\) 5.98707 3.45663i 1.99569 1.15221i
\(10\) 0 0
\(11\) −0.778529 2.90551i −0.234735 0.876044i −0.978268 0.207344i \(-0.933518\pi\)
0.743533 0.668700i \(-0.233149\pi\)
\(12\) −2.22635 2.22635i −0.642692 0.642692i
\(13\) 3.59966 0.206024i 0.998366 0.0571409i
\(14\) 0.804795i 0.215090i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.87508 + 6.99788i −0.454773 + 1.69724i 0.233981 + 0.972241i \(0.424825\pi\)
−0.688754 + 0.724995i \(0.741842\pi\)
\(18\) 6.91327i 1.62947i
\(19\) −4.51652 1.21020i −1.03616 0.277638i −0.299639 0.954053i \(-0.596866\pi\)
−0.736521 + 0.676414i \(0.763533\pi\)
\(20\) 0 0
\(21\) −1.79175 + 1.79175i −0.390993 + 0.390993i
\(22\) −2.90551 0.778529i −0.619457 0.165983i
\(23\) −0.113254 0.422668i −0.0236150 0.0881324i 0.953113 0.302616i \(-0.0978599\pi\)
−0.976728 + 0.214483i \(0.931193\pi\)
\(24\) −3.04125 + 0.814901i −0.620793 + 0.166341i
\(25\) 0 0
\(26\) 1.62141 3.22041i 0.317984 0.631574i
\(27\) 8.71230 8.71230i 1.67668 1.67668i
\(28\) 0.696972 + 0.402397i 0.131715 + 0.0760459i
\(29\) 3.58287 + 2.06857i 0.665322 + 0.384124i 0.794302 0.607523i \(-0.207837\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(30\) 0 0
\(31\) −0.536500 0.536500i −0.0963583 0.0963583i 0.657284 0.753643i \(-0.271705\pi\)
−0.753643 + 0.657284i \(0.771705\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −4.73540 8.20196i −0.824328 1.42778i
\(34\) 5.12281 + 5.12281i 0.878554 + 0.878554i
\(35\) 0 0
\(36\) −5.98707 3.45663i −0.997844 0.576106i
\(37\) −0.835172 0.482187i −0.137301 0.0792710i 0.429776 0.902936i \(-0.358593\pi\)
−0.567077 + 0.823665i \(0.691926\pi\)
\(38\) −3.30632 + 3.30632i −0.536356 + 0.536356i
\(39\) 10.7796 3.55994i 1.72611 0.570046i
\(40\) 0 0
\(41\) 1.63091 0.437002i 0.254706 0.0682483i −0.129207 0.991618i \(-0.541243\pi\)
0.383913 + 0.923369i \(0.374576\pi\)
\(42\) 0.655828 + 2.44758i 0.101196 + 0.377670i
\(43\) −6.14091 1.64545i −0.936480 0.250929i −0.241864 0.970310i \(-0.577759\pi\)
−0.694616 + 0.719381i \(0.744426\pi\)
\(44\) −2.12698 + 2.12698i −0.320654 + 0.320654i
\(45\) 0 0
\(46\) −0.422668 0.113254i −0.0623190 0.0166983i
\(47\) 1.72276i 0.251290i 0.992075 + 0.125645i \(0.0401000\pi\)
−0.992075 + 0.125645i \(0.959900\pi\)
\(48\) −0.814901 + 3.04125i −0.117621 + 0.438967i
\(49\) −3.17615 + 5.50126i −0.453736 + 0.785894i
\(50\) 0 0
\(51\) 22.8103i 3.19408i
\(52\) −1.97825 3.01438i −0.274334 0.418020i
\(53\) 5.01074 + 5.01074i 0.688278 + 0.688278i 0.961851 0.273573i \(-0.0882055\pi\)
−0.273573 + 0.961851i \(0.588206\pi\)
\(54\) −3.18892 11.9012i −0.433958 1.61955i
\(55\) 0 0
\(56\) 0.696972 0.402397i 0.0931369 0.0537726i
\(57\) −14.7221 −1.94998
\(58\) 3.58287 2.06857i 0.470454 0.271617i
\(59\) 0.0422769 0.157780i 0.00550398 0.0205411i −0.963119 0.269075i \(-0.913282\pi\)
0.968623 + 0.248534i \(0.0799487\pi\)
\(60\) 0 0
\(61\) 1.11898 + 1.93813i 0.143271 + 0.248153i 0.928727 0.370765i \(-0.120905\pi\)
−0.785456 + 0.618918i \(0.787571\pi\)
\(62\) −0.732873 + 0.196373i −0.0930750 + 0.0249394i
\(63\) −2.78188 + 4.81836i −0.350484 + 0.607056i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −9.47080 −1.16578
\(67\) −2.20825 + 3.82479i −0.269780 + 0.467273i −0.968805 0.247824i \(-0.920284\pi\)
0.699025 + 0.715097i \(0.253618\pi\)
\(68\) 6.99788 1.87508i 0.848618 0.227387i
\(69\) −0.688865 1.19315i −0.0829296 0.143638i
\(70\) 0 0
\(71\) 2.63643 9.83928i 0.312886 1.16771i −0.613055 0.790040i \(-0.710060\pi\)
0.925941 0.377668i \(-0.123274\pi\)
\(72\) −5.98707 + 3.45663i −0.705582 + 0.407368i
\(73\) 1.73949 0.203592 0.101796 0.994805i \(-0.467541\pi\)
0.101796 + 0.994805i \(0.467541\pi\)
\(74\) −0.835172 + 0.482187i −0.0970867 + 0.0560530i
\(75\) 0 0
\(76\) 1.21020 + 4.51652i 0.138819 + 0.518080i
\(77\) 1.71178 + 1.71178i 0.195076 + 0.195076i
\(78\) 2.30679 11.1154i 0.261193 1.25857i
\(79\) 7.75722i 0.872756i 0.899763 + 0.436378i \(0.143739\pi\)
−0.899763 + 0.436378i \(0.856261\pi\)
\(80\) 0 0
\(81\) 9.02673 15.6348i 1.00297 1.73720i
\(82\) 0.437002 1.63091i 0.0482588 0.180104i
\(83\) 15.6444i 1.71720i 0.512649 + 0.858599i \(0.328664\pi\)
−0.512649 + 0.858599i \(0.671336\pi\)
\(84\) 2.44758 + 0.655828i 0.267053 + 0.0715567i
\(85\) 0 0
\(86\) −4.49546 + 4.49546i −0.484758 + 0.484758i
\(87\) 12.5821 + 3.37136i 1.34894 + 0.361448i
\(88\) 0.778529 + 2.90551i 0.0829914 + 0.309728i
\(89\) −5.91063 + 1.58375i −0.626525 + 0.167877i −0.558092 0.829779i \(-0.688467\pi\)
−0.0684328 + 0.997656i \(0.521800\pi\)
\(90\) 0 0
\(91\) −2.42596 + 1.59209i −0.254310 + 0.166896i
\(92\) −0.309415 + 0.309415i −0.0322587 + 0.0322587i
\(93\) −2.06883 1.19444i −0.214527 0.123857i
\(94\) 1.49195 + 0.861379i 0.153883 + 0.0888444i
\(95\) 0 0
\(96\) 2.22635 + 2.22635i 0.227226 + 0.227226i
\(97\) −6.70520 11.6138i −0.680810 1.17920i −0.974734 0.223369i \(-0.928294\pi\)
0.293924 0.955829i \(-0.405039\pi\)
\(98\) 3.17615 + 5.50126i 0.320840 + 0.555711i
\(99\) −14.7044 14.7044i −1.47785 1.47785i
\(100\) 0 0
\(101\) 9.02570 + 5.21099i 0.898091 + 0.518513i 0.876580 0.481256i \(-0.159819\pi\)
0.0215104 + 0.999769i \(0.493153\pi\)
\(102\) 19.7543 + 11.4052i 1.95597 + 1.12928i
\(103\) −11.9307 + 11.9307i −1.17557 + 1.17557i −0.194709 + 0.980861i \(0.562376\pi\)
−0.980861 + 0.194709i \(0.937624\pi\)
\(104\) −3.59966 + 0.206024i −0.352976 + 0.0202024i
\(105\) 0 0
\(106\) 6.84480 1.83406i 0.664826 0.178140i
\(107\) −2.91943 10.8955i −0.282232 1.05330i −0.950839 0.309687i \(-0.899776\pi\)
0.668607 0.743616i \(-0.266891\pi\)
\(108\) −11.9012 3.18892i −1.14520 0.306854i
\(109\) 5.74393 5.74393i 0.550169 0.550169i −0.376321 0.926489i \(-0.622811\pi\)
0.926489 + 0.376321i \(0.122811\pi\)
\(110\) 0 0
\(111\) −2.93290 0.785868i −0.278379 0.0745913i
\(112\) 0.804795i 0.0760459i
\(113\) 4.47593 16.7044i 0.421060 1.57142i −0.351320 0.936255i \(-0.614267\pi\)
0.772380 0.635161i \(-0.219066\pi\)
\(114\) −7.36103 + 12.7497i −0.689424 + 1.19412i
\(115\) 0 0
\(116\) 4.13714i 0.384124i
\(117\) 20.8392 13.6762i 1.92659 1.26436i
\(118\) −0.115503 0.115503i −0.0106329 0.0106329i
\(119\) −1.50905 5.63186i −0.138335 0.516272i
\(120\) 0 0
\(121\) 1.69040 0.975956i 0.153673 0.0887232i
\(122\) 2.23796 0.202616
\(123\) 4.60390 2.65807i 0.415120 0.239670i
\(124\) −0.196373 + 0.732873i −0.0176348 + 0.0658140i
\(125\) 0 0
\(126\) 2.78188 + 4.81836i 0.247830 + 0.429253i
\(127\) 3.97326 1.06463i 0.352570 0.0944707i −0.0781875 0.996939i \(-0.524913\pi\)
0.430757 + 0.902468i \(0.358247\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −20.0169 −1.76239
\(130\) 0 0
\(131\) −5.90842 −0.516221 −0.258110 0.966115i \(-0.583100\pi\)
−0.258110 + 0.966115i \(0.583100\pi\)
\(132\) −4.73540 + 8.20196i −0.412164 + 0.713889i
\(133\) 3.63487 0.973961i 0.315183 0.0844531i
\(134\) 2.20825 + 3.82479i 0.190763 + 0.330412i
\(135\) 0 0
\(136\) 1.87508 6.99788i 0.160787 0.600064i
\(137\) −6.99324 + 4.03755i −0.597473 + 0.344951i −0.768047 0.640394i \(-0.778771\pi\)
0.170574 + 0.985345i \(0.445438\pi\)
\(138\) −1.37773 −0.117280
\(139\) −13.2173 + 7.63102i −1.12108 + 0.647254i −0.941676 0.336521i \(-0.890750\pi\)
−0.179402 + 0.983776i \(0.557416\pi\)
\(140\) 0 0
\(141\) 1.40388 + 5.23934i 0.118228 + 0.441232i
\(142\) −7.20285 7.20285i −0.604450 0.604450i
\(143\) −3.40104 10.2984i −0.284410 0.861200i
\(144\) 6.91327i 0.576106i
\(145\) 0 0
\(146\) 0.869744 1.50644i 0.0719806 0.124674i
\(147\) −5.17650 + 19.3190i −0.426950 + 1.59340i
\(148\) 0.964373i 0.0792710i
\(149\) 10.7129 + 2.87051i 0.877634 + 0.235161i 0.669386 0.742915i \(-0.266557\pi\)
0.208248 + 0.978076i \(0.433224\pi\)
\(150\) 0 0
\(151\) 11.2046 11.2046i 0.911815 0.911815i −0.0845999 0.996415i \(-0.526961\pi\)
0.996415 + 0.0845999i \(0.0269612\pi\)
\(152\) 4.51652 + 1.21020i 0.366338 + 0.0981600i
\(153\) 12.9629 + 48.3782i 1.04799 + 3.91115i
\(154\) 2.33834 0.626556i 0.188429 0.0504893i
\(155\) 0 0
\(156\) −8.47279 7.55542i −0.678366 0.604918i
\(157\) −2.13077 + 2.13077i −0.170054 + 0.170054i −0.787003 0.616949i \(-0.788368\pi\)
0.616949 + 0.787003i \(0.288368\pi\)
\(158\) 6.71795 + 3.87861i 0.534452 + 0.308566i
\(159\) 19.3222 + 11.1557i 1.53235 + 0.884702i
\(160\) 0 0
\(161\) 0.249015 + 0.249015i 0.0196251 + 0.0196251i
\(162\) −9.02673 15.6348i −0.709207 1.22838i
\(163\) −3.31273 5.73782i −0.259473 0.449421i 0.706628 0.707586i \(-0.250216\pi\)
−0.966101 + 0.258165i \(0.916882\pi\)
\(164\) −1.19391 1.19391i −0.0932289 0.0932289i
\(165\) 0 0
\(166\) 13.5485 + 7.82220i 1.05156 + 0.607121i
\(167\) 7.39866 + 4.27162i 0.572526 + 0.330548i 0.758158 0.652071i \(-0.226100\pi\)
−0.185632 + 0.982619i \(0.559433\pi\)
\(168\) 1.79175 1.79175i 0.138237 0.138237i
\(169\) 12.9151 1.48324i 0.993470 0.114095i
\(170\) 0 0
\(171\) −31.2239 + 8.36642i −2.38775 + 0.639796i
\(172\) 1.64545 + 6.14091i 0.125465 + 0.468240i
\(173\) −3.47144 0.930169i −0.263929 0.0707195i 0.124428 0.992229i \(-0.460290\pi\)
−0.388357 + 0.921509i \(0.626957\pi\)
\(174\) 9.21072 9.21072i 0.698263 0.698263i
\(175\) 0 0
\(176\) 2.90551 + 0.778529i 0.219011 + 0.0586838i
\(177\) 0.514299i 0.0386570i
\(178\) −1.58375 + 5.91063i −0.118707 + 0.443020i
\(179\) 3.40272 5.89368i 0.254331 0.440514i −0.710383 0.703816i \(-0.751478\pi\)
0.964714 + 0.263302i \(0.0848114\pi\)
\(180\) 0 0
\(181\) 11.5815i 0.860846i −0.902627 0.430423i \(-0.858364\pi\)
0.902627 0.430423i \(-0.141636\pi\)
\(182\) 0.165807 + 2.89699i 0.0122905 + 0.214739i
\(183\) 4.98249 + 4.98249i 0.368316 + 0.368316i
\(184\) 0.113254 + 0.422668i 0.00834917 + 0.0311595i
\(185\) 0 0
\(186\) −2.06883 + 1.19444i −0.151694 + 0.0875804i
\(187\) 21.7922 1.59360
\(188\) 1.49195 0.861379i 0.108812 0.0628225i
\(189\) −2.56643 + 9.57804i −0.186680 + 0.696700i
\(190\) 0 0
\(191\) 2.32947 + 4.03477i 0.168555 + 0.291946i 0.937912 0.346873i \(-0.112757\pi\)
−0.769357 + 0.638819i \(0.779423\pi\)
\(192\) 3.04125 0.814901i 0.219483 0.0588104i
\(193\) −6.69708 + 11.5997i −0.482066 + 0.834963i −0.999788 0.0205858i \(-0.993447\pi\)
0.517722 + 0.855549i \(0.326780\pi\)
\(194\) −13.4104 −0.962811
\(195\) 0 0
\(196\) 6.35231 0.453736
\(197\) −11.0122 + 19.0737i −0.784586 + 1.35894i 0.144661 + 0.989481i \(0.453791\pi\)
−0.929246 + 0.369461i \(0.879542\pi\)
\(198\) −20.0866 + 5.38218i −1.42749 + 0.382495i
\(199\) −5.69362 9.86164i −0.403610 0.699073i 0.590549 0.807002i \(-0.298911\pi\)
−0.994159 + 0.107929i \(0.965578\pi\)
\(200\) 0 0
\(201\) −3.59900 + 13.4317i −0.253854 + 0.947396i
\(202\) 9.02570 5.21099i 0.635046 0.366644i
\(203\) −3.32955 −0.233688
\(204\) 19.7543 11.4052i 1.38308 0.798521i
\(205\) 0 0
\(206\) 4.36695 + 16.2977i 0.304260 + 1.13551i
\(207\) −2.13907 2.13907i −0.148675 0.148675i
\(208\) −1.62141 + 3.22041i −0.112424 + 0.223295i
\(209\) 14.0650i 0.972894i
\(210\) 0 0
\(211\) 1.35943 2.35460i 0.0935868 0.162097i −0.815431 0.578854i \(-0.803500\pi\)
0.909018 + 0.416757i \(0.136833\pi\)
\(212\) 1.83406 6.84480i 0.125964 0.470103i
\(213\) 32.0721i 2.19755i
\(214\) −10.8955 2.91943i −0.744798 0.199568i
\(215\) 0 0
\(216\) −8.71230 + 8.71230i −0.592797 + 0.592797i
\(217\) 0.589812 + 0.158040i 0.0400391 + 0.0107284i
\(218\) −2.10242 7.84636i −0.142394 0.531422i
\(219\) 5.29022 1.41751i 0.357480 0.0957865i
\(220\) 0 0
\(221\) −5.30791 + 25.5763i −0.357048 + 1.72045i
\(222\) −2.14703 + 2.14703i −0.144099 + 0.144099i
\(223\) −23.9414 13.8226i −1.60324 0.925630i −0.990834 0.135085i \(-0.956869\pi\)
−0.612404 0.790545i \(-0.709797\pi\)
\(224\) −0.696972 0.402397i −0.0465684 0.0268863i
\(225\) 0 0
\(226\) −12.2285 12.2285i −0.813425 0.813425i
\(227\) 1.72981 + 2.99612i 0.114812 + 0.198859i 0.917704 0.397264i \(-0.130040\pi\)
−0.802893 + 0.596123i \(0.796707\pi\)
\(228\) 7.36103 + 12.7497i 0.487496 + 0.844368i
\(229\) −8.92266 8.92266i −0.589626 0.589626i 0.347904 0.937530i \(-0.386893\pi\)
−0.937530 + 0.347904i \(0.886893\pi\)
\(230\) 0 0
\(231\) 6.60089 + 3.81103i 0.434307 + 0.250747i
\(232\) −3.58287 2.06857i −0.235227 0.135808i
\(233\) 1.21530 1.21530i 0.0796169 0.0796169i −0.666177 0.745794i \(-0.732070\pi\)
0.745794 + 0.666177i \(0.232070\pi\)
\(234\) −1.42430 24.8854i −0.0931096 1.62681i
\(235\) 0 0
\(236\) −0.157780 + 0.0422769i −0.0102706 + 0.00275199i
\(237\) 6.32137 + 23.5917i 0.410617 + 1.53244i
\(238\) −5.63186 1.50905i −0.365059 0.0978173i
\(239\) 10.5843 10.5843i 0.684643 0.684643i −0.276400 0.961043i \(-0.589141\pi\)
0.961043 + 0.276400i \(0.0891415\pi\)
\(240\) 0 0
\(241\) −26.2460 7.03259i −1.69065 0.453009i −0.720094 0.693877i \(-0.755901\pi\)
−0.970558 + 0.240868i \(0.922568\pi\)
\(242\) 1.95191i 0.125474i
\(243\) 5.14501 19.2014i 0.330052 1.23177i
\(244\) 1.11898 1.93813i 0.0716355 0.124076i
\(245\) 0 0
\(246\) 5.31613i 0.338944i
\(247\) −16.5073 3.42579i −1.05033 0.217978i
\(248\) 0.536500 + 0.536500i 0.0340678 + 0.0340678i
\(249\) 12.7486 + 47.5786i 0.807912 + 3.01517i
\(250\) 0 0
\(251\) 22.8576 13.1969i 1.44276 0.832979i 0.444728 0.895666i \(-0.353300\pi\)
0.998033 + 0.0626870i \(0.0199670\pi\)
\(252\) 5.56376 0.350484
\(253\) −1.13990 + 0.658119i −0.0716646 + 0.0413756i
\(254\) 1.06463 3.97326i 0.0668009 0.249304i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.96070 0.525368i 0.122305 0.0327715i −0.197147 0.980374i \(-0.563168\pi\)
0.319452 + 0.947602i \(0.396501\pi\)
\(258\) −10.0085 + 17.3352i −0.623100 + 1.07924i
\(259\) 0.776122 0.0482259
\(260\) 0 0
\(261\) 28.6012 1.77037
\(262\) −2.95421 + 5.11684i −0.182512 + 0.316119i
\(263\) 27.3875 7.33845i 1.68878 0.452508i 0.718708 0.695312i \(-0.244734\pi\)
0.970075 + 0.242804i \(0.0780671\pi\)
\(264\) 4.73540 + 8.20196i 0.291444 + 0.504796i
\(265\) 0 0
\(266\) 0.973961 3.63487i 0.0597174 0.222868i
\(267\) −16.6851 + 9.63315i −1.02111 + 0.589539i
\(268\) 4.41649 0.269780
\(269\) 2.82789 1.63268i 0.172420 0.0995465i −0.411307 0.911497i \(-0.634927\pi\)
0.583726 + 0.811951i \(0.301594\pi\)
\(270\) 0 0
\(271\) 1.42316 + 5.31129i 0.0864505 + 0.322638i 0.995585 0.0938651i \(-0.0299222\pi\)
−0.909134 + 0.416503i \(0.863256\pi\)
\(272\) −5.12281 5.12281i −0.310616 0.310616i
\(273\) −6.08056 + 6.81885i −0.368012 + 0.412696i
\(274\) 8.07510i 0.487835i
\(275\) 0 0
\(276\) −0.688865 + 1.19315i −0.0414648 + 0.0718192i
\(277\) 5.54414 20.6910i 0.333115 1.24320i −0.572783 0.819707i \(-0.694136\pi\)
0.905898 0.423496i \(-0.139197\pi\)
\(278\) 15.2620i 0.915356i
\(279\) −5.06655 1.35758i −0.303326 0.0812760i
\(280\) 0 0
\(281\) −15.6657 + 15.6657i −0.934539 + 0.934539i −0.997985 0.0634460i \(-0.979791\pi\)
0.0634460 + 0.997985i \(0.479791\pi\)
\(282\) 5.23934 + 1.40388i 0.311998 + 0.0835996i
\(283\) −2.33476 8.71344i −0.138787 0.517960i −0.999954 0.00963733i \(-0.996932\pi\)
0.861167 0.508323i \(-0.169734\pi\)
\(284\) −9.83928 + 2.63643i −0.583854 + 0.156443i
\(285\) 0 0
\(286\) −10.6192 2.20383i −0.627929 0.130315i
\(287\) −0.960854 + 0.960854i −0.0567174 + 0.0567174i
\(288\) 5.98707 + 3.45663i 0.352791 + 0.203684i
\(289\) −30.7320 17.7431i −1.80777 1.04371i
\(290\) 0 0
\(291\) −29.8563 29.8563i −1.75021 1.75021i
\(292\) −0.869744 1.50644i −0.0508979 0.0881578i
\(293\) −5.34888 9.26452i −0.312485 0.541239i 0.666415 0.745581i \(-0.267828\pi\)
−0.978900 + 0.204342i \(0.934495\pi\)
\(294\) 14.1425 + 14.1425i 0.824805 + 0.824805i
\(295\) 0 0
\(296\) 0.835172 + 0.482187i 0.0485434 + 0.0280265i
\(297\) −32.0964 18.5309i −1.86242 1.07527i
\(298\) 7.84237 7.84237i 0.454297 0.454297i
\(299\) −0.494754 1.49813i −0.0286124 0.0866390i
\(300\) 0 0
\(301\) 4.94217 1.32425i 0.284862 0.0763285i
\(302\) −4.10116 15.3057i −0.235995 0.880746i
\(303\) 31.6958 + 8.49288i 1.82088 + 0.487903i
\(304\) 3.30632 3.30632i 0.189631 0.189631i
\(305\) 0 0
\(306\) 48.3782 + 12.9629i 2.76560 + 0.741040i
\(307\) 12.9134i 0.737005i −0.929627 0.368502i \(-0.879871\pi\)
0.929627 0.368502i \(-0.120129\pi\)
\(308\) 0.626556 2.33834i 0.0357013 0.133239i
\(309\) −26.5620 + 46.0067i −1.51106 + 2.61723i
\(310\) 0 0
\(311\) 10.1340i 0.574646i −0.957834 0.287323i \(-0.907235\pi\)
0.957834 0.287323i \(-0.0927654\pi\)
\(312\) −10.7796 + 3.55994i −0.610273 + 0.201542i
\(313\) −10.4449 10.4449i −0.590383 0.590383i 0.347352 0.937735i \(-0.387081\pi\)
−0.937735 + 0.347352i \(0.887081\pi\)
\(314\) 0.779916 + 2.91069i 0.0440132 + 0.164260i
\(315\) 0 0
\(316\) 6.71795 3.87861i 0.377914 0.218189i
\(317\) 24.4508 1.37329 0.686646 0.726992i \(-0.259082\pi\)
0.686646 + 0.726992i \(0.259082\pi\)
\(318\) 19.3222 11.1557i 1.08353 0.625579i
\(319\) 3.22088 12.0205i 0.180335 0.673019i
\(320\) 0 0
\(321\) −17.7574 30.7568i −0.991123 1.71667i
\(322\) 0.340161 0.0911459i 0.0189564 0.00507936i
\(323\) 16.9376 29.3369i 0.942436 1.63235i
\(324\) −18.0535 −1.00297
\(325\) 0 0
\(326\) −6.62547 −0.366951
\(327\) 12.7880 22.1495i 0.707178 1.22487i
\(328\) −1.63091 + 0.437002i −0.0900522 + 0.0241294i
\(329\) −0.693233 1.20071i −0.0382192 0.0661975i
\(330\) 0 0
\(331\) −0.310163 + 1.15754i −0.0170481 + 0.0636243i −0.973926 0.226866i \(-0.927152\pi\)
0.956878 + 0.290491i \(0.0938186\pi\)
\(332\) 13.5485 7.82220i 0.743568 0.429299i
\(333\) −6.66697 −0.365348
\(334\) 7.39866 4.27162i 0.404837 0.233733i
\(335\) 0 0
\(336\) −0.655828 2.44758i −0.0357783 0.133527i
\(337\) 0.358931 + 0.358931i 0.0195522 + 0.0195522i 0.716815 0.697263i \(-0.245599\pi\)
−0.697263 + 0.716815i \(0.745599\pi\)
\(338\) 5.17303 11.9264i 0.281376 0.648712i
\(339\) 54.4496i 2.95730i
\(340\) 0 0
\(341\) −1.14113 + 1.97649i −0.0617954 + 0.107033i
\(342\) −8.36642 + 31.2239i −0.452404 + 1.68840i
\(343\) 10.7459i 0.580222i
\(344\) 6.14091 + 1.64545i 0.331096 + 0.0887168i
\(345\) 0 0
\(346\) −2.54127 + 2.54127i −0.136619 + 0.136619i
\(347\) −12.6705 3.39505i −0.680187 0.182256i −0.0978479 0.995201i \(-0.531196\pi\)
−0.582339 + 0.812946i \(0.697863\pi\)
\(348\) −3.37136 12.5821i −0.180724 0.674470i
\(349\) 22.5950 6.05431i 1.20948 0.324080i 0.402924 0.915234i \(-0.367994\pi\)
0.806559 + 0.591154i \(0.201327\pi\)
\(350\) 0 0
\(351\) 29.5664 33.1563i 1.57814 1.76975i
\(352\) 2.12698 2.12698i 0.113368 0.113368i
\(353\) 20.4439 + 11.8033i 1.08812 + 0.628227i 0.933076 0.359680i \(-0.117114\pi\)
0.155045 + 0.987907i \(0.450448\pi\)
\(354\) −0.445396 0.257149i −0.0236725 0.0136673i
\(355\) 0 0
\(356\) 4.32688 + 4.32688i 0.229324 + 0.229324i
\(357\) −9.17881 15.8982i −0.485794 0.841420i
\(358\) −3.40272 5.89368i −0.179839 0.311490i
\(359\) −9.07981 9.07981i −0.479214 0.479214i 0.425666 0.904880i \(-0.360040\pi\)
−0.904880 + 0.425666i \(0.860040\pi\)
\(360\) 0 0
\(361\) 2.47989 + 1.43177i 0.130521 + 0.0753561i
\(362\) −10.0299 5.79075i −0.527159 0.304355i
\(363\) 4.34564 4.34564i 0.228087 0.228087i
\(364\) 2.59177 + 1.30490i 0.135846 + 0.0683953i
\(365\) 0 0
\(366\) 6.80621 1.82372i 0.355766 0.0953273i
\(367\) −8.65453 32.2992i −0.451763 1.68600i −0.697434 0.716649i \(-0.745675\pi\)
0.245671 0.969353i \(-0.420992\pi\)
\(368\) 0.422668 + 0.113254i 0.0220331 + 0.00590375i
\(369\) 8.25383 8.25383i 0.429677 0.429677i
\(370\) 0 0
\(371\) −5.50866 1.47604i −0.285995 0.0766322i
\(372\) 2.38888i 0.123857i
\(373\) −6.19820 + 23.1320i −0.320931 + 1.19773i 0.597409 + 0.801937i \(0.296197\pi\)
−0.918340 + 0.395793i \(0.870470\pi\)
\(374\) 10.8961 18.8726i 0.563424 0.975880i
\(375\) 0 0
\(376\) 1.72276i 0.0888444i
\(377\) 13.3233 + 6.70799i 0.686184 + 0.345479i
\(378\) 7.01161 + 7.01161i 0.360638 + 0.360638i
\(379\) −1.03686 3.86961i −0.0532599 0.198769i 0.934169 0.356830i \(-0.116142\pi\)
−0.987429 + 0.158061i \(0.949476\pi\)
\(380\) 0 0
\(381\) 11.2161 6.47562i 0.574618 0.331756i
\(382\) 4.65895 0.238373
\(383\) −22.5091 + 12.9957i −1.15016 + 0.664047i −0.948927 0.315495i \(-0.897829\pi\)
−0.201236 + 0.979543i \(0.564496\pi\)
\(384\) 0.814901 3.04125i 0.0415852 0.155198i
\(385\) 0 0
\(386\) 6.69708 + 11.5997i 0.340872 + 0.590408i
\(387\) −42.4538 + 11.3754i −2.15805 + 0.578247i
\(388\) −6.70520 + 11.6138i −0.340405 + 0.589599i
\(389\) 10.8809 0.551682 0.275841 0.961203i \(-0.411044\pi\)
0.275841 + 0.961203i \(0.411044\pi\)
\(390\) 0 0
\(391\) 3.17014 0.160321
\(392\) 3.17615 5.50126i 0.160420 0.277855i
\(393\) −17.9690 + 4.81477i −0.906415 + 0.242873i
\(394\) 11.0122 + 19.0737i 0.554786 + 0.960917i
\(395\) 0 0
\(396\) −5.38218 + 20.0866i −0.270465 + 1.00939i
\(397\) −24.0126 + 13.8637i −1.20516 + 0.695799i −0.961698 0.274112i \(-0.911616\pi\)
−0.243461 + 0.969911i \(0.578283\pi\)
\(398\) −11.3872 −0.570791
\(399\) 10.2609 5.92412i 0.513686 0.296577i
\(400\) 0 0
\(401\) −7.44840 27.7978i −0.371955 1.38816i −0.857743 0.514079i \(-0.828134\pi\)
0.485787 0.874077i \(-0.338533\pi\)
\(402\) 9.83266 + 9.83266i 0.490408 + 0.490408i
\(403\) −2.04175 1.82069i −0.101707 0.0906949i
\(404\) 10.4220i 0.518513i
\(405\) 0 0
\(406\) −1.66477 + 2.88347i −0.0826213 + 0.143104i
\(407\) −0.750792 + 2.80199i −0.0372154 + 0.138890i
\(408\) 22.8103i 1.12928i
\(409\) −22.9783 6.15701i −1.13620 0.304444i −0.358779 0.933423i \(-0.616807\pi\)
−0.777423 + 0.628978i \(0.783473\pi\)
\(410\) 0 0
\(411\) −17.9780 + 17.9780i −0.886789 + 0.886789i
\(412\) 16.2977 + 4.36695i 0.802929 + 0.215144i
\(413\) 0.0340242 + 0.126980i 0.00167422 + 0.00624828i
\(414\) −2.92202 + 0.782952i −0.143609 + 0.0384800i
\(415\) 0 0
\(416\) 1.97825 + 3.01438i 0.0969918 + 0.147792i
\(417\) −33.9786 + 33.9786i −1.66394 + 1.66394i
\(418\) 12.1806 + 7.03248i 0.595773 + 0.343970i
\(419\) 31.9711 + 18.4585i 1.56189 + 0.901757i 0.997066 + 0.0765449i \(0.0243888\pi\)
0.564823 + 0.825212i \(0.308944\pi\)
\(420\) 0 0
\(421\) 10.2278 + 10.2278i 0.498473 + 0.498473i 0.910962 0.412489i \(-0.135341\pi\)
−0.412489 + 0.910962i \(0.635341\pi\)
\(422\) −1.35943 2.35460i −0.0661758 0.114620i
\(423\) 5.95494 + 10.3143i 0.289539 + 0.501496i
\(424\) −5.01074 5.01074i −0.243343 0.243343i
\(425\) 0 0
\(426\) −27.7753 16.0361i −1.34572 0.776950i
\(427\) −1.55980 0.900551i −0.0754840 0.0435807i
\(428\) −7.97603 + 7.97603i −0.385536 + 0.385536i
\(429\) −18.7356 28.5486i −0.904565 1.37834i
\(430\) 0 0
\(431\) −13.9188 + 3.72952i −0.670444 + 0.179645i −0.577955 0.816069i \(-0.696149\pi\)
−0.0924890 + 0.995714i \(0.529482\pi\)
\(432\) 3.18892 + 11.9012i 0.153427 + 0.572598i
\(433\) 10.7032 + 2.86792i 0.514364 + 0.137823i 0.506658 0.862147i \(-0.330881\pi\)
0.00770546 + 0.999970i \(0.497547\pi\)
\(434\) 0.431773 0.431773i 0.0207257 0.0207257i
\(435\) 0 0
\(436\) −7.84636 2.10242i −0.375772 0.100688i
\(437\) 2.04605i 0.0978758i
\(438\) 1.41751 5.29022i 0.0677313 0.252777i
\(439\) −2.21315 + 3.83328i −0.105628 + 0.182953i −0.913995 0.405727i \(-0.867019\pi\)
0.808367 + 0.588679i \(0.200352\pi\)
\(440\) 0 0
\(441\) 43.9152i 2.09120i
\(442\) 19.4958 + 17.3849i 0.927320 + 0.826917i
\(443\) −8.69869 8.69869i −0.413287 0.413287i 0.469595 0.882882i \(-0.344400\pi\)
−0.882882 + 0.469595i \(0.844400\pi\)
\(444\) 0.785868 + 2.93290i 0.0372957 + 0.139189i
\(445\) 0 0
\(446\) −23.9414 + 13.8226i −1.13366 + 0.654519i
\(447\) 34.9197 1.65165
\(448\) −0.696972 + 0.402397i −0.0329289 + 0.0190115i
\(449\) −5.78549 + 21.5917i −0.273034 + 1.01898i 0.684114 + 0.729376i \(0.260189\pi\)
−0.957147 + 0.289601i \(0.906477\pi\)
\(450\) 0 0
\(451\) −2.53943 4.39842i −0.119577 0.207113i
\(452\) −16.7044 + 4.47593i −0.785708 + 0.210530i
\(453\) 24.9453 43.2065i 1.17203 2.03002i
\(454\) 3.45962 0.162368
\(455\) 0 0
\(456\) 14.7221 0.689424
\(457\) 0.643128 1.11393i 0.0300843 0.0521075i −0.850591 0.525827i \(-0.823756\pi\)
0.880676 + 0.473720i \(0.157089\pi\)
\(458\) −12.1886 + 3.26592i −0.569535 + 0.152606i
\(459\) 44.6314 + 77.3039i 2.08322 + 3.60824i
\(460\) 0 0
\(461\) −2.59056 + 9.66810i −0.120654 + 0.450288i −0.999648 0.0265460i \(-0.991549\pi\)
0.878993 + 0.476834i \(0.158216\pi\)
\(462\) 6.60089 3.81103i 0.307101 0.177305i
\(463\) −9.95491 −0.462644 −0.231322 0.972877i \(-0.574305\pi\)
−0.231322 + 0.972877i \(0.574305\pi\)
\(464\) −3.58287 + 2.06857i −0.166331 + 0.0960310i
\(465\) 0 0
\(466\) −0.444830 1.66013i −0.0206064 0.0769040i
\(467\) 3.56456 + 3.56456i 0.164948 + 0.164948i 0.784755 0.619807i \(-0.212789\pi\)
−0.619807 + 0.784755i \(0.712789\pi\)
\(468\) −22.2636 11.2092i −1.02913 0.518147i
\(469\) 3.55437i 0.164125i
\(470\) 0 0
\(471\) −4.74384 + 8.21658i −0.218585 + 0.378600i
\(472\) −0.0422769 + 0.157780i −0.00194595 + 0.00726239i
\(473\) 19.1235i 0.879300i
\(474\) 23.5917 + 6.32137i 1.08360 + 0.290350i
\(475\) 0 0
\(476\) −4.12281 + 4.12281i −0.188969 + 0.188969i
\(477\) 47.3199 + 12.6793i 2.16663 + 0.580547i
\(478\) −3.87413 14.4584i −0.177199 0.661314i
\(479\) −11.0757 + 2.96772i −0.506061 + 0.135599i −0.502812 0.864396i \(-0.667701\pi\)
−0.00324963 + 0.999995i \(0.501034\pi\)
\(480\) 0 0
\(481\) −3.10568 1.56364i −0.141607 0.0712959i
\(482\) −19.2134 + 19.2134i −0.875146 + 0.875146i
\(483\) 0.960240 + 0.554395i 0.0436924 + 0.0252258i
\(484\) −1.69040 0.975956i −0.0768366 0.0443616i
\(485\) 0 0
\(486\) −14.0564 14.0564i −0.637612 0.637612i
\(487\) −0.122308 0.211843i −0.00554230 0.00959954i 0.863241 0.504792i \(-0.168431\pi\)
−0.868783 + 0.495193i \(0.835098\pi\)
\(488\) −1.11898 1.93813i −0.0506539 0.0877352i
\(489\) −14.7506 14.7506i −0.667046 0.667046i
\(490\) 0 0
\(491\) −17.4955 10.1011i −0.789563 0.455854i 0.0502457 0.998737i \(-0.484000\pi\)
−0.839809 + 0.542882i \(0.817333\pi\)
\(492\) −4.60390 2.65807i −0.207560 0.119835i
\(493\) −21.1938 + 21.1938i −0.954519 + 0.954519i
\(494\) −11.2205 + 12.5828i −0.504832 + 0.566128i
\(495\) 0 0
\(496\) 0.732873 0.196373i 0.0329070 0.00881740i
\(497\) 2.12178 + 7.91860i 0.0951750 + 0.355198i
\(498\) 47.5786 + 12.7486i 2.13205 + 0.571280i
\(499\) 2.69714 2.69714i 0.120740 0.120740i −0.644155 0.764895i \(-0.722791\pi\)
0.764895 + 0.644155i \(0.222791\pi\)
\(500\) 0 0
\(501\) 25.9821 + 6.96189i 1.16080 + 0.311034i
\(502\) 26.3937i 1.17801i
\(503\) −3.06353 + 11.4333i −0.136596 + 0.509784i 0.863390 + 0.504537i \(0.168337\pi\)
−0.999986 + 0.00524701i \(0.998330\pi\)
\(504\) 2.78188 4.81836i 0.123915 0.214627i
\(505\) 0 0
\(506\) 1.31624i 0.0585139i
\(507\) 38.0694 15.0354i 1.69072 0.667747i
\(508\) −2.90863 2.90863i −0.129049 0.129049i
\(509\) −3.40407 12.7042i −0.150883 0.563102i −0.999423 0.0339709i \(-0.989185\pi\)
0.848540 0.529131i \(-0.177482\pi\)
\(510\) 0 0
\(511\) −1.21238 + 0.699966i −0.0536324 + 0.0309647i
\(512\) −1.00000 −0.0441942
\(513\) −49.8929 + 28.8057i −2.20283 + 1.27180i
\(514\) 0.525368 1.96070i 0.0231730 0.0864827i
\(515\) 0 0
\(516\) 10.0085 + 17.3352i 0.440598 + 0.763138i
\(517\) 5.00549 1.34122i 0.220141 0.0589866i
\(518\) 0.388061 0.672141i 0.0170504 0.0295322i
\(519\) −11.3155 −0.496696
\(520\) 0 0
\(521\) −2.54807 −0.111633 −0.0558165 0.998441i \(-0.517776\pi\)
−0.0558165 + 0.998441i \(0.517776\pi\)
\(522\) 14.3006 24.7693i 0.625919 1.08412i
\(523\) 13.1286 3.51781i 0.574075 0.153823i 0.0399102 0.999203i \(-0.487293\pi\)
0.534165 + 0.845380i \(0.320626\pi\)
\(524\) 2.95421 + 5.11684i 0.129055 + 0.223530i
\(525\) 0 0
\(526\) 7.33845 27.3875i 0.319972 1.19415i
\(527\) 4.76035 2.74839i 0.207364 0.119722i
\(528\) 9.47080 0.412164
\(529\) 19.7528 11.4043i 0.858816 0.495838i
\(530\) 0 0
\(531\) −0.292272 1.09077i −0.0126835 0.0473355i
\(532\) −2.66091 2.66091i −0.115365 0.115365i
\(533\) 5.78070 1.90907i 0.250390 0.0826909i
\(534\) 19.2663i 0.833734i
\(535\) 0 0
\(536\) 2.20825 3.82479i 0.0953817 0.165206i
\(537\) 5.54575 20.6970i 0.239317 0.893142i
\(538\) 3.26537i 0.140780i
\(539\) 18.4567 + 4.94545i 0.794986 + 0.213016i
\(540\) 0 0
\(541\) 9.16253 9.16253i 0.393928 0.393928i −0.482157 0.876085i \(-0.660147\pi\)
0.876085 + 0.482157i \(0.160147\pi\)
\(542\) 5.31129 + 1.42316i 0.228139 + 0.0611298i
\(543\) −9.43777 35.2222i −0.405014 1.51153i
\(544\) −6.99788 + 1.87508i −0.300032 + 0.0803933i
\(545\) 0 0
\(546\) 2.86502 + 8.67535i 0.122611 + 0.371271i
\(547\) 22.6416 22.6416i 0.968085 0.968085i −0.0314209 0.999506i \(-0.510003\pi\)
0.999506 + 0.0314209i \(0.0100032\pi\)
\(548\) 6.99324 + 4.03755i 0.298737 + 0.172476i
\(549\) 13.3988 + 7.73582i 0.571849 + 0.330157i
\(550\) 0 0
\(551\) −13.6787 13.6787i −0.582733 0.582733i
\(552\) 0.688865 + 1.19315i 0.0293200 + 0.0507838i
\(553\) −3.12149 5.40657i −0.132739 0.229911i
\(554\) −15.1469 15.1469i −0.643529 0.643529i
\(555\) 0 0
\(556\) 13.2173 + 7.63102i 0.560539 + 0.323627i
\(557\) 26.0519 + 15.0411i 1.10386 + 0.637311i 0.937231 0.348709i \(-0.113380\pi\)
0.166624 + 0.986020i \(0.446713\pi\)
\(558\) −3.70897 + 3.70897i −0.157013 + 0.157013i
\(559\) −22.4442 4.65789i −0.949288 0.197008i
\(560\) 0 0
\(561\) 66.2756 17.7585i 2.79816 0.749764i
\(562\) 5.73406 + 21.3998i 0.241877 + 0.902696i
\(563\) −23.6201 6.32898i −0.995468 0.266735i −0.275922 0.961180i \(-0.588983\pi\)
−0.719546 + 0.694445i \(0.755650\pi\)
\(564\) 3.83546 3.83546i 0.161502 0.161502i
\(565\) 0 0
\(566\) −8.71344 2.33476i −0.366253 0.0981373i
\(567\) 14.5293i 0.610174i
\(568\) −2.63643 + 9.83928i −0.110622 + 0.412847i
\(569\) 10.6818 18.5014i 0.447805 0.775621i −0.550438 0.834876i \(-0.685539\pi\)
0.998243 + 0.0592553i \(0.0188726\pi\)
\(570\) 0 0
\(571\) 21.6572i 0.906327i 0.891427 + 0.453163i \(0.149705\pi\)
−0.891427 + 0.453163i \(0.850295\pi\)
\(572\) −7.21820 + 8.09462i −0.301808 + 0.338453i
\(573\) 10.3724 + 10.3724i 0.433315 + 0.433315i
\(574\) 0.351697 + 1.31255i 0.0146795 + 0.0547848i
\(575\) 0 0
\(576\) 5.98707 3.45663i 0.249461 0.144026i
\(577\) −10.9211 −0.454650 −0.227325 0.973819i \(-0.572998\pi\)
−0.227325 + 0.973819i \(0.572998\pi\)
\(578\) −30.7320 + 17.7431i −1.27828 + 0.738018i
\(579\) −10.9149 + 40.7350i −0.453608 + 1.69289i
\(580\) 0 0
\(581\) −6.29527 10.9037i −0.261172 0.452363i
\(582\) −40.7844 + 10.9282i −1.69057 + 0.452986i
\(583\) 10.6577 18.4598i 0.441399 0.764525i
\(584\) −1.73949 −0.0719806
\(585\) 0 0
\(586\) −10.6978 −0.441920
\(587\) −14.1110 + 24.4409i −0.582423 + 1.00879i 0.412769 + 0.910836i \(0.364562\pi\)
−0.995191 + 0.0979498i \(0.968772\pi\)
\(588\) 19.3190 5.17650i 0.796700 0.213475i
\(589\) 1.77384 + 3.07239i 0.0730899 + 0.126595i
\(590\) 0 0
\(591\) −17.9477 + 66.9816i −0.738268 + 2.75526i
\(592\) 0.835172 0.482187i 0.0343253 0.0198177i
\(593\) 28.7595 1.18101 0.590506 0.807033i \(-0.298928\pi\)
0.590506 + 0.807033i \(0.298928\pi\)
\(594\) −32.0964 + 18.5309i −1.31693 + 0.760332i
\(595\) 0 0
\(596\) −2.87051 10.7129i −0.117581 0.438817i
\(597\) −25.3520 25.3520i −1.03759 1.03759i
\(598\) −1.54479 0.320594i −0.0631714 0.0131101i
\(599\) 7.62284i 0.311461i −0.987800 0.155730i \(-0.950227\pi\)
0.987800 0.155730i \(-0.0497731\pi\)
\(600\) 0 0
\(601\) −8.07815 + 13.9918i −0.329515 + 0.570736i −0.982416 0.186707i \(-0.940218\pi\)
0.652901 + 0.757443i \(0.273552\pi\)
\(602\) 1.32425 4.94217i 0.0539724 0.201428i
\(603\) 30.5324i 1.24337i
\(604\) −15.3057 4.10116i −0.622781 0.166874i
\(605\) 0 0
\(606\) 23.2030 23.2030i 0.942556 0.942556i
\(607\) −32.1964 8.62700i −1.30681 0.350159i −0.462790 0.886468i \(-0.653151\pi\)
−0.844022 + 0.536309i \(0.819818\pi\)
\(608\) −1.21020 4.51652i −0.0490800 0.183169i
\(609\) −10.1260 + 2.71325i −0.410326 + 0.109946i
\(610\) 0 0
\(611\) 0.354930 + 6.20134i 0.0143589 + 0.250879i
\(612\) 35.4153 35.4153i 1.43158 1.43158i
\(613\) 36.4581 + 21.0491i 1.47253 + 0.850164i 0.999523 0.0308956i \(-0.00983592\pi\)
0.473005 + 0.881060i \(0.343169\pi\)
\(614\) −11.1833 6.45668i −0.451321 0.260570i
\(615\) 0 0
\(616\) −1.71178 1.71178i −0.0689697 0.0689697i
\(617\) 6.28781 + 10.8908i 0.253138 + 0.438447i 0.964388 0.264491i \(-0.0852041\pi\)
−0.711250 + 0.702939i \(0.751871\pi\)
\(618\) 26.5620 + 46.0067i 1.06848 + 1.85066i
\(619\) 8.75232 + 8.75232i 0.351786 + 0.351786i 0.860774 0.508988i \(-0.169980\pi\)
−0.508988 + 0.860774i \(0.669980\pi\)
\(620\) 0 0
\(621\) −4.66911 2.69571i −0.187365 0.108175i
\(622\) −8.77630 5.06700i −0.351898 0.203168i
\(623\) 3.48225 3.48225i 0.139513 0.139513i
\(624\) −2.30679 + 11.1154i −0.0923456 + 0.444970i
\(625\) 0 0
\(626\) −14.2680 + 3.82311i −0.570266 + 0.152802i
\(627\) 11.4615 + 42.7751i 0.457730 + 1.70827i
\(628\) 2.91069 + 0.779916i 0.116149 + 0.0311221i
\(629\) 4.94030 4.94030i 0.196983 0.196983i
\(630\) 0 0
\(631\) 26.6071 + 7.12936i 1.05921 + 0.283815i 0.746054 0.665886i \(-0.231946\pi\)
0.313159 + 0.949701i \(0.398613\pi\)
\(632\) 7.75722i 0.308566i
\(633\) 2.21560 8.26871i 0.0880620 0.328652i
\(634\) 12.2254 21.1750i 0.485532 0.840966i
\(635\) 0 0
\(636\) 22.3113i 0.884702i
\(637\) −10.2997 + 20.4570i −0.408088 + 0.810537i
\(638\) −8.79962 8.79962i −0.348380 0.348380i
\(639\) −18.2263 68.0216i −0.721022 2.69089i
\(640\) 0 0
\(641\) 25.0061 14.4373i 0.987680 0.570237i 0.0830998 0.996541i \(-0.473518\pi\)
0.904580 + 0.426304i \(0.140185\pi\)
\(642\) −35.5148 −1.40166
\(643\) 9.27773 5.35650i 0.365878 0.211240i −0.305778 0.952103i \(-0.598917\pi\)
0.671656 + 0.740863i \(0.265583\pi\)
\(644\) 0.0911459 0.340161i 0.00359165 0.0134042i
\(645\) 0 0
\(646\) −16.9376 29.3369i −0.666403 1.15424i
\(647\) 38.4306 10.2974i 1.51086 0.404834i 0.594140 0.804362i \(-0.297492\pi\)
0.916721 + 0.399527i \(0.130826\pi\)
\(648\) −9.02673 + 15.6348i −0.354604 + 0.614191i
\(649\) −0.491344 −0.0192869
\(650\) 0 0
\(651\) 1.92255 0.0753508
\(652\) −3.31273 + 5.73782i −0.129737 + 0.224710i
\(653\) −45.3569 + 12.1534i −1.77495 + 0.475598i −0.989649 0.143511i \(-0.954161\pi\)
−0.785306 + 0.619108i \(0.787494\pi\)
\(654\) −12.7880 22.1495i −0.500050 0.866113i
\(655\) 0 0
\(656\) −0.437002 + 1.63091i −0.0170621 + 0.0636765i
\(657\) 10.4144 6.01278i 0.406306 0.234581i
\(658\) −1.38647 −0.0540501
\(659\) −27.5684 + 15.9166i −1.07391 + 0.620024i −0.929248 0.369457i \(-0.879544\pi\)
−0.144665 + 0.989481i \(0.546210\pi\)
\(660\) 0 0
\(661\) −1.26555 4.72310i −0.0492243 0.183707i 0.936936 0.349500i \(-0.113648\pi\)
−0.986161 + 0.165792i \(0.946982\pi\)
\(662\) 0.847381 + 0.847381i 0.0329344 + 0.0329344i
\(663\) 4.69948 + 82.1094i 0.182513 + 3.18886i
\(664\) 15.6444i 0.607121i
\(665\) 0 0
\(666\) −3.33348 + 5.77376i −0.129170 + 0.223729i
\(667\) 0.468546 1.74864i 0.0181422 0.0677075i
\(668\) 8.54324i 0.330548i
\(669\) −84.0760 22.5281i −3.25057 0.870986i
\(670\) 0 0
\(671\) 4.76011 4.76011i 0.183762 0.183762i
\(672\) −2.44758 0.655828i −0.0944175 0.0252991i
\(673\) 2.90751 + 10.8510i 0.112076 + 0.418275i 0.999052 0.0435423i \(-0.0138643\pi\)
−0.886975 + 0.461817i \(0.847198\pi\)
\(674\) 0.490309 0.131378i 0.0188860 0.00506048i
\(675\) 0 0
\(676\) −7.74207 10.4432i −0.297772 0.401661i
\(677\) −12.8047 + 12.8047i −0.492125 + 0.492125i −0.908975 0.416850i \(-0.863134\pi\)
0.416850 + 0.908975i \(0.363134\pi\)
\(678\) −47.1548 27.2248i −1.81097 1.04556i
\(679\) 9.34669 + 5.39631i 0.358693 + 0.207091i
\(680\) 0 0
\(681\) 7.70233 + 7.70233i 0.295154 + 0.295154i
\(682\) 1.14113 + 1.97649i 0.0436960 + 0.0756836i
\(683\) 20.8046 + 36.0346i 0.796064 + 1.37882i 0.922161 + 0.386806i \(0.126422\pi\)
−0.126097 + 0.992018i \(0.540245\pi\)
\(684\) 22.8575 + 22.8575i 0.873978 + 0.873978i
\(685\) 0 0
\(686\) −9.30619 5.37293i −0.355312 0.205139i
\(687\) −34.4071 19.8650i −1.31271 0.757895i
\(688\) 4.49546 4.49546i 0.171388 0.171388i
\(689\) 19.0693 + 17.0046i 0.726483 + 0.647825i
\(690\) 0 0
\(691\) −17.8985 + 4.79589i −0.680891 + 0.182444i −0.582656 0.812719i \(-0.697986\pi\)
−0.0982353 + 0.995163i \(0.531320\pi\)
\(692\) 0.930169 + 3.47144i 0.0353597 + 0.131964i
\(693\) 16.1656 + 4.33155i 0.614079 + 0.164542i
\(694\) −9.27544 + 9.27544i −0.352091 + 0.352091i
\(695\) 0 0
\(696\) −12.5821 3.37136i −0.476923 0.127791i
\(697\) 12.2324i 0.463334i
\(698\) 6.05431 22.5950i 0.229159 0.855233i
\(699\) 2.70568 4.68638i 0.102338 0.177255i
\(700\) 0 0
\(701\) 8.16233i 0.308287i 0.988048 + 0.154143i \(0.0492618\pi\)
−0.988048 + 0.154143i \(0.950738\pi\)
\(702\) −13.9310 42.1834i −0.525791 1.59211i
\(703\) 3.18853 + 3.18853i 0.120258 + 0.120258i
\(704\) −0.778529 2.90551i −0.0293419 0.109505i
\(705\) 0 0
\(706\) 20.4439 11.8033i 0.769418 0.444223i
\(707\) −8.38755 −0.315446
\(708\) −0.445396 + 0.257149i −0.0167390 + 0.00966426i
\(709\) −4.24559 + 15.8447i −0.159446 + 0.595062i 0.839237 + 0.543766i \(0.183002\pi\)
−0.998683 + 0.0512963i \(0.983665\pi\)
\(710\) 0 0
\(711\) 26.8139 + 46.4430i 1.00560 + 1.74175i
\(712\) 5.91063 1.58375i 0.221510 0.0593535i
\(713\) −0.166001 + 0.287522i −0.00621679 + 0.0107678i
\(714\) −18.3576 −0.687017
\(715\) 0 0
\(716\) −6.80543 −0.254331
\(717\) 23.5644 40.8147i 0.880028 1.52425i
\(718\) −12.4033 + 3.32344i −0.462885 + 0.124030i
\(719\) −0.974618 1.68809i −0.0363471 0.0629550i 0.847280 0.531147i \(-0.178239\pi\)
−0.883627 + 0.468192i \(0.844906\pi\)
\(720\) 0 0
\(721\) 3.51450 13.1163i 0.130887 0.488476i
\(722\) 2.47989 1.43177i 0.0922920 0.0532848i
\(723\) −85.5514 −3.18169
\(724\) −10.0299 + 5.79075i −0.372757 + 0.215212i
\(725\) 0 0
\(726\) −1.59061 5.93625i −0.0590332 0.220315i
\(727\) −27.9848 27.9848i −1.03790 1.03790i −0.999253 0.0386462i \(-0.987695\pi\)
−0.0386462 0.999253i \(-0.512305\pi\)
\(728\) 2.42596 1.59209i 0.0899121 0.0590067i
\(729\) 8.42862i 0.312171i
\(730\) 0 0
\(731\) 23.0294 39.8880i 0.851772 1.47531i
\(732\) 1.82372 6.80621i 0.0674066 0.251565i
\(733\) 31.6699i 1.16975i −0.811122 0.584877i \(-0.801143\pi\)
0.811122 0.584877i \(-0.198857\pi\)
\(734\) −32.2992 8.65453i −1.19218 0.319445i
\(735\) 0 0
\(736\) 0.309415 0.309415i 0.0114052 0.0114052i
\(737\) 12.8322 + 3.43837i 0.472679 + 0.126654i
\(738\) −3.02111 11.2749i −0.111209 0.415036i
\(739\) 12.8501 3.44317i 0.472699 0.126659i −0.0146022 0.999893i \(-0.504648\pi\)
0.487301 + 0.873234i \(0.337982\pi\)
\(740\) 0 0
\(741\) −52.9944 + 3.03310i −1.94680 + 0.111424i
\(742\) −4.03262 + 4.03262i −0.148042 + 0.148042i
\(743\) 10.2608 + 5.92409i 0.376433 + 0.217334i 0.676265 0.736658i \(-0.263597\pi\)
−0.299832 + 0.953992i \(0.596931\pi\)
\(744\) 2.06883 + 1.19444i 0.0758469 + 0.0437902i
\(745\) 0 0
\(746\) 16.9338 + 16.9338i 0.619991 + 0.619991i
\(747\) 54.0770 + 93.6641i 1.97857 + 3.42699i
\(748\) −10.8961 18.8726i −0.398401 0.690051i
\(749\) 6.41906 + 6.41906i 0.234547 + 0.234547i
\(750\) 0 0
\(751\) 33.0412 + 19.0764i 1.20569 + 0.696106i 0.961815 0.273700i \(-0.0882476\pi\)
0.243876 + 0.969806i \(0.421581\pi\)
\(752\) −1.49195 0.861379i −0.0544059 0.0314112i
\(753\) 58.7617 58.7617i 2.14139 2.14139i
\(754\) 12.4709 8.18431i 0.454165 0.298055i
\(755\) 0 0
\(756\) 9.57804 2.56643i 0.348350 0.0933401i
\(757\) 3.87261 + 14.4528i 0.140752 + 0.525295i 0.999908 + 0.0135805i \(0.00432294\pi\)
−0.859155 + 0.511715i \(0.829010\pi\)
\(758\) −3.86961 1.03686i −0.140551 0.0376604i
\(759\) −2.93040 + 2.93040i −0.106367 + 0.106367i
\(760\) 0 0
\(761\) 25.4496 + 6.81919i 0.922546 + 0.247195i 0.688673 0.725072i \(-0.258193\pi\)
0.233873 + 0.972267i \(0.424860\pi\)
\(762\) 12.9512i 0.469174i
\(763\) −1.69202 + 6.31470i −0.0612552 + 0.228608i
\(764\) 2.32947 4.03477i 0.0842774 0.145973i
\(765\) 0 0
\(766\) 25.9913i 0.939105i
\(767\) 0.119676 0.576663i 0.00432125 0.0208221i
\(768\) −2.22635 2.22635i −0.0803365 0.0803365i
\(769\) 10.5098 + 39.2231i 0.378993 + 1.41442i 0.847422 + 0.530920i \(0.178153\pi\)
−0.468429 + 0.883501i \(0.655180\pi\)
\(770\) 0 0
\(771\) 5.53486 3.19555i 0.199333 0.115085i
\(772\) 13.3942 0.482066
\(773\) −19.8145 + 11.4399i −0.712677 + 0.411464i −0.812052 0.583586i \(-0.801649\pi\)
0.0993742 + 0.995050i \(0.468316\pi\)
\(774\) −11.3754 + 42.4538i −0.408882 + 1.52597i
\(775\) 0 0
\(776\) 6.70520 + 11.6138i 0.240703 + 0.416909i
\(777\) 2.36038 0.632462i 0.0846782 0.0226895i
\(778\) 5.44043 9.42310i 0.195049 0.337835i
\(779\) −7.89491 −0.282865
\(780\) 0 0
\(781\) −30.6407 −1.09641
\(782\) 1.58507 2.74542i 0.0566820 0.0981762i
\(783\) 49.2370 13.1930i 1.75959 0.471480i
\(784\) −3.17615 5.50126i −0.113434 0.196474i
\(785\) 0 0
\(786\) −4.81477 + 17.9690i −0.171737 + 0.640932i
\(787\) 23.9422 13.8230i 0.853447 0.492738i −0.00836529 0.999965i \(-0.502663\pi\)
0.861812 + 0.507227i \(0.169329\pi\)
\(788\) 22.0244 0.784586
\(789\) 77.3120 44.6361i 2.75238 1.58909i
\(790\) 0 0
\(791\) 3.60220 + 13.4436i 0.128080 + 0.477999i
\(792\) 14.7044 + 14.7044i 0.522497 + 0.522497i
\(793\) 4.42726 + 6.74609i 0.157217 + 0.239561i
\(794\) 27.7274i 0.984008i
\(795\) 0 0
\(796\) −5.69362 + 9.86164i −0.201805 + 0.349537i
\(797\) 3.73648 13.9447i 0.132353 0.493948i −0.867642 0.497190i \(-0.834365\pi\)
0.999995 + 0.00324171i \(0.00103187\pi\)
\(798\) 11.8482i 0.419423i
\(799\) −12.0557 3.23030i −0.426498 0.114280i
\(800\) 0 0
\(801\) −29.9129 + 29.9129i −1.05692 + 1.05692i
\(802\) −27.7978 7.44840i −0.981575 0.263012i
\(803\) −1.35424 5.05410i −0.0477902 0.178355i
\(804\) 13.4317 3.59900i 0.473698 0.126927i
\(805\) 0 0
\(806\) −2.59764 + 0.857865i −0.0914979 + 0.0302170i
\(807\) 7.26985 7.26985i 0.255911 0.255911i
\(808\) −9.02570 5.21099i −0.317523 0.183322i
\(809\) 45.6891 + 26.3786i 1.60634 + 0.927423i 0.990179 + 0.139806i \(0.0446480\pi\)
0.616165 + 0.787617i \(0.288685\pi\)
\(810\) 0 0
\(811\) 31.7531 + 31.7531i 1.11500 + 1.11500i 0.992464 + 0.122540i \(0.0391038\pi\)
0.122540 + 0.992464i \(0.460896\pi\)
\(812\) 1.66477 + 2.88347i 0.0584221 + 0.101190i
\(813\) 8.65635 + 14.9932i 0.303591 + 0.525836i
\(814\) 2.05120 + 2.05120i 0.0718946 + 0.0718946i
\(815\) 0 0
\(816\) −19.7543 11.4052i −0.691539 0.399260i
\(817\) 25.7442 + 14.8634i 0.900676 + 0.520006i
\(818\) −16.8213 + 16.8213i −0.588141 + 0.588141i
\(819\) −9.02112 + 17.9176i −0.315224 + 0.626091i
\(820\) 0 0
\(821\) −51.2844 + 13.7416i −1.78984 + 0.479586i −0.992319 0.123707i \(-0.960522\pi\)
−0.797520 + 0.603293i \(0.793855\pi\)
\(822\) 6.58040 + 24.5584i 0.229518 + 0.856573i
\(823\) 37.1169 + 9.94545i 1.29381 + 0.346677i 0.839108 0.543965i \(-0.183077\pi\)
0.454707 + 0.890641i \(0.349744\pi\)
\(824\) 11.9307 11.9307i 0.415627 0.415627i
\(825\) 0 0
\(826\) 0.126980 + 0.0340242i 0.00441820 + 0.00118385i
\(827\) 51.3144i 1.78438i −0.451664 0.892188i \(-0.649169\pi\)
0.451664 0.892188i \(-0.350831\pi\)
\(828\) −0.782952 + 2.92202i −0.0272095 + 0.101547i
\(829\) −6.20374 + 10.7452i −0.215465 + 0.373196i −0.953416 0.301658i \(-0.902460\pi\)
0.737951 + 0.674854i \(0.235793\pi\)
\(830\) 0 0
\(831\) 67.4445i 2.33962i
\(832\) 3.59966 0.206024i 0.124796 0.00714261i
\(833\) −32.5416 32.5416i −1.12750 1.12750i
\(834\) 12.4370 + 46.4157i 0.430660 + 1.60724i
\(835\) 0 0
\(836\) 12.1806 7.03248i 0.421275 0.243223i
\(837\) −9.34831 −0.323125
\(838\) 31.9711 18.4585i 1.10442 0.637639i
\(839\) −2.61916 + 9.77485i −0.0904235 + 0.337465i −0.996286 0.0861070i \(-0.972557\pi\)
0.905862 + 0.423572i \(0.139224\pi\)
\(840\) 0 0
\(841\) −5.94203 10.2919i −0.204898 0.354893i
\(842\) 13.9715 3.74364i 0.481488 0.129014i
\(843\) −34.8774 + 60.4094i −1.20124 + 2.08061i
\(844\) −2.71885 −0.0935868
\(845\) 0 0
\(846\) 11.9099 0.409470
\(847\) −0.785444 + 1.36043i −0.0269882 + 0.0467449i
\(848\) −6.84480 + 1.83406i −0.235051 + 0.0629818i
\(849\) −14.2012 24.5972i −0.487383 0.844172i
\(850\) 0 0
\(851\) −0.109219 + 0.407610i −0.00374397 + 0.0139727i
\(852\) −27.7753 + 16.0361i −0.951566 + 0.549387i
\(853\) −16.4655 −0.563769 −0.281884 0.959448i \(-0.590959\pi\)
−0.281884 + 0.959448i \(0.590959\pi\)
\(854\) −1.55980 + 0.900551i −0.0533752 + 0.0308162i
\(855\) 0 0
\(856\) 2.91943 + 10.8955i 0.0997840 + 0.372399i
\(857\) −26.1677 26.1677i −0.893870 0.893870i 0.101015 0.994885i \(-0.467791\pi\)
−0.994885 + 0.101015i \(0.967791\pi\)
\(858\) −34.0917 + 1.95122i −1.16387 + 0.0666135i
\(859\) 3.70443i 0.126394i 0.998001 + 0.0631968i \(0.0201296\pi\)
−0.998001 + 0.0631968i \(0.979870\pi\)
\(860\) 0 0
\(861\) −2.13920 + 3.70520i −0.0729036 + 0.126273i
\(862\) −3.72952 + 13.9188i −0.127028 + 0.474075i
\(863\) 9.65640i 0.328708i 0.986401 + 0.164354i \(0.0525539\pi\)
−0.986401 + 0.164354i \(0.947446\pi\)
\(864\) 11.9012 + 3.18892i 0.404888 + 0.108489i
\(865\) 0 0
\(866\) 7.83530 7.83530i 0.266254 0.266254i
\(867\) −107.923 28.9178i −3.66525 0.982100i
\(868\) −0.158040 0.589812i −0.00536422 0.0200195i
\(869\) 22.5387 6.03922i 0.764572 0.204867i
\(870\) 0 0
\(871\) −7.16093 + 14.2229i −0.242639 + 0.481925i
\(872\) −5.74393 + 5.74393i −0.194514 + 0.194514i
\(873\) −80.2890 46.3549i −2.71737 1.56887i
\(874\) 1.77193 + 1.02302i 0.0599364 + 0.0346043i
\(875\) 0 0
\(876\) −3.87271 3.87271i −0.130847 0.130847i
\(877\) −1.65175 2.86091i −0.0557755 0.0966060i 0.836790 0.547525i \(-0.184430\pi\)
−0.892565 + 0.450919i \(0.851096\pi\)
\(878\) 2.21315 + 3.83328i 0.0746901 + 0.129367i
\(879\) −23.8169 23.8169i −0.803325 0.803325i
\(880\) 0 0
\(881\) 6.11016 + 3.52770i 0.205857 + 0.118851i 0.599384 0.800461i \(-0.295412\pi\)
−0.393528 + 0.919313i \(0.628745\pi\)
\(882\) 38.0317 + 21.9576i 1.28059 + 0.739351i
\(883\) −22.1294 + 22.1294i −0.744714 + 0.744714i −0.973481 0.228767i \(-0.926531\pi\)
0.228767 + 0.973481i \(0.426531\pi\)
\(884\) 24.8037 8.19138i 0.834238 0.275506i
\(885\) 0 0
\(886\) −11.8826 + 3.18394i −0.399205 + 0.106967i
\(887\) 9.59340 + 35.8031i 0.322115 + 1.20215i 0.917180 + 0.398472i \(0.130459\pi\)
−0.595066 + 0.803677i \(0.702874\pi\)
\(888\) 2.93290 + 0.785868i 0.0984217 + 0.0263720i
\(889\) −2.34085 + 2.34085i −0.0785095 + 0.0785095i
\(890\) 0 0
\(891\) −52.4545 14.0551i −1.75729 0.470865i
\(892\) 27.6452i 0.925630i
\(893\) 2.08488 7.78087i 0.0697677 0.260377i
\(894\) 17.4599 30.2414i 0.583945 1.01142i
\(895\) 0 0
\(896\) 0.804795i 0.0268863i
\(897\) −2.72550 4.15301i −0.0910017 0.138665i
\(898\) 15.8062 + 15.8062i 0.527461 + 0.527461i
\(899\) −0.812422 3.03200i −0.0270958 0.101123i
\(900\) 0 0
\(901\) −44.4601 + 25.6691i −1.48118 + 0.855160i
\(902\) −5.07885 −0.169107
\(903\) 13.9512 8.05476i 0.464268 0.268046i
\(904\) −4.47593 + 16.7044i −0.148867 + 0.555579i
\(905\) 0 0
\(906\) −24.9453 43.2065i −0.828752 1.43544i
\(907\) 34.0294 9.11815i 1.12993 0.302763i 0.355033 0.934854i \(-0.384470\pi\)
0.774895 + 0.632090i \(0.217803\pi\)
\(908\) 1.72981 2.99612i 0.0574058 0.0994297i
\(909\) 72.0499 2.38975
\(910\) 0 0
\(911\) −45.7346 −1.51525 −0.757627 0.652687i \(-0.773642\pi\)
−0.757627 + 0.652687i \(0.773642\pi\)
\(912\) 7.36103 12.7497i 0.243748 0.422184i
\(913\) 45.4550 12.1796i 1.50434 0.403087i
\(914\) −0.643128 1.11393i −0.0212728 0.0368456i
\(915\) 0 0
\(916\) −3.26592 + 12.1886i −0.107909 + 0.402722i
\(917\) 4.11800 2.37753i 0.135988 0.0785130i
\(918\) 89.2629 2.94611
\(919\) −18.5669 + 10.7196i −0.612464 + 0.353606i −0.773929 0.633272i \(-0.781711\pi\)
0.161465 + 0.986878i \(0.448378\pi\)
\(920\) 0 0
\(921\) −10.5231 39.2728i −0.346748 1.29408i
\(922\) 7.07754 + 7.07754i 0.233086 + 0.233086i
\(923\) 7.46311 35.9612i 0.245651 1.18368i
\(924\) 7.62205i 0.250747i
\(925\) 0 0
\(926\) −4.97746 + 8.62121i −0.163569 + 0.283310i
\(927\) −30.1899 + 112.670i −0.991566 + 3.70058i
\(928\) 4.13714i 0.135808i
\(929\) −6.50804 1.74382i −0.213522 0.0572130i 0.150472 0.988614i \(-0.451921\pi\)
−0.363994 + 0.931401i \(0.618587\pi\)
\(930\) 0 0
\(931\) 21.0028 21.0028i 0.688338 0.688338i
\(932\) −1.66013 0.444830i −0.0543793 0.0145709i
\(933\) −8.25820 30.8200i −0.270361 1.00900i
\(934\) 4.86928 1.30472i 0.159328 0.0426917i
\(935\) 0 0
\(936\) −20.8392 + 13.6762i −0.681152 + 0.447020i
\(937\) 18.4026 18.4026i 0.601188 0.601188i −0.339440 0.940628i \(-0.610237\pi\)
0.940628 + 0.339440i \(0.110237\pi\)
\(938\) −3.07817 1.77718i −0.100506 0.0580271i
\(939\) −40.2772 23.2541i −1.31440 0.758868i
\(940\) 0 0
\(941\) 32.3684 + 32.3684i 1.05518 + 1.05518i 0.998386 + 0.0567952i \(0.0180882\pi\)
0.0567952 + 0.998386i \(0.481912\pi\)
\(942\) 4.74384 + 8.21658i 0.154563 + 0.267710i
\(943\) −0.369414 0.639843i −0.0120298 0.0208362i
\(944\) 0.115503 + 0.115503i 0.00375929 + 0.00375929i
\(945\) 0 0
\(946\) 16.5614 + 9.56175i 0.538459 + 0.310879i
\(947\) −25.0053 14.4368i −0.812562 0.469133i 0.0352831 0.999377i \(-0.488767\pi\)
−0.847845 + 0.530245i \(0.822100\pi\)
\(948\) 17.2703 17.2703i 0.560913 0.560913i
\(949\) 6.26157 0.358377i 0.203259 0.0116334i
\(950\) 0 0
\(951\) 74.3609 19.9249i 2.41132 0.646111i
\(952\) 1.50905 + 5.63186i 0.0489087 + 0.182530i
\(953\) 17.0854 + 4.57801i 0.553449 + 0.148296i 0.524695 0.851290i \(-0.324179\pi\)
0.0287541 + 0.999587i \(0.490846\pi\)
\(954\) 34.6406 34.6406i 1.12153 1.12153i
\(955\) 0 0
\(956\) −14.4584 3.87413i −0.467620 0.125298i
\(957\) 39.1820i 1.26658i
\(958\) −2.96772 + 11.0757i −0.0958828 + 0.357839i
\(959\) 3.24940 5.62812i 0.104929 0.181742i
\(960\) 0 0
\(961\) 30.4243i 0.981430i
\(962\) −2.90699 + 1.90777i −0.0937252 + 0.0615091i
\(963\) −55.1404 55.1404i −1.77687 1.77687i
\(964\) 7.03259 + 26.2460i 0.226504 + 0.845326i
\(965\) 0 0
\(966\) 0.960240 0.554395i 0.0308952 0.0178374i
\(967\) −0.721666 −0.0232072 −0.0116036 0.999933i \(-0.503694\pi\)
−0.0116036 + 0.999933i \(0.503694\pi\)
\(968\) −1.69040 + 0.975956i −0.0543317 + 0.0313684i
\(969\) 27.6050 103.023i 0.886800 3.30958i
\(970\) 0 0
\(971\) 15.4150 + 26.6996i 0.494691 + 0.856830i 0.999981 0.00611936i \(-0.00194787\pi\)
−0.505290 + 0.862950i \(0.668615\pi\)
\(972\) −19.2014 + 5.14501i −0.615886 + 0.165026i
\(973\) 6.14140 10.6372i 0.196884 0.341014i
\(974\) −0.244616 −0.00783799
\(975\) 0 0
\(976\) −2.23796 −0.0716355
\(977\) −9.26370 + 16.0452i −0.296372 + 0.513331i −0.975303 0.220871i \(-0.929110\pi\)
0.678931 + 0.734202i \(0.262443\pi\)
\(978\) −20.1497 + 5.39910i −0.644317 + 0.172644i
\(979\) 9.20319 + 15.9404i 0.294135 + 0.509457i
\(980\) 0 0
\(981\) 14.5346 54.2440i 0.464055 1.73188i
\(982\) −17.4955 + 10.1011i −0.558305 + 0.322338i
\(983\) 2.90661 0.0927066 0.0463533 0.998925i \(-0.485240\pi\)
0.0463533 + 0.998925i \(0.485240\pi\)
\(984\) −4.60390 + 2.65807i −0.146767 + 0.0847360i
\(985\) 0 0
\(986\) 7.75746 + 28.9512i 0.247048 + 0.921995i
\(987\) −3.08676 3.08676i −0.0982526 0.0982526i
\(988\) 5.28681 + 16.0086i 0.168196 + 0.509302i
\(989\) 2.78192i 0.0884599i
\(990\) 0 0
\(991\) 25.5607 44.2724i 0.811961 1.40636i −0.0995281 0.995035i \(-0.531733\pi\)
0.911489 0.411323i \(-0.134933\pi\)
\(992\) 0.196373 0.732873i 0.00623484 0.0232687i
\(993\) 3.77313i 0.119737i
\(994\) 7.91860 + 2.12178i 0.251163 + 0.0672989i
\(995\) 0 0
\(996\) 34.8299 34.8299i 1.10363 1.10363i
\(997\) −3.73922 1.00192i −0.118422 0.0317312i 0.199121 0.979975i \(-0.436191\pi\)
−0.317543 + 0.948244i \(0.602858\pi\)
\(998\) −0.987220 3.68436i −0.0312499 0.116626i
\(999\) −11.4772 + 3.07531i −0.363123 + 0.0972986i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.e.293.3 12
5.2 odd 4 650.2.t.e.7.1 12
5.3 odd 4 130.2.p.a.7.3 12
5.4 even 2 130.2.s.a.33.1 yes 12
13.2 odd 12 650.2.t.e.93.1 12
65.2 even 12 inner 650.2.w.e.457.3 12
65.28 even 12 130.2.s.a.67.1 yes 12
65.54 odd 12 130.2.p.a.93.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.a.7.3 12 5.3 odd 4
130.2.p.a.93.3 yes 12 65.54 odd 12
130.2.s.a.33.1 yes 12 5.4 even 2
130.2.s.a.67.1 yes 12 65.28 even 12
650.2.t.e.7.1 12 5.2 odd 4
650.2.t.e.93.1 12 13.2 odd 12
650.2.w.e.293.3 12 1.1 even 1 trivial
650.2.w.e.457.3 12 65.2 even 12 inner