Properties

Label 130.2.s.a.67.1
Level $130$
Weight $2$
Character 130.67
Analytic conductor $1.038$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(33,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.33"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.1
Root \(-1.62980i\) of defining polynomial
Character \(\chi\) \(=\) 130.67
Dual form 130.2.s.a.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-3.04125 - 0.814901i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.208246 + 2.22635i) q^{5} +(0.814901 + 3.04125i) q^{6} +(0.696972 + 0.402397i) q^{7} +1.00000 q^{8} +(5.98707 + 3.45663i) q^{9} +(1.82395 - 1.29352i) q^{10} +(-0.778529 + 2.90551i) q^{11} +(2.22635 - 2.22635i) q^{12} +(-3.59966 - 0.206024i) q^{13} -0.804795i q^{14} +(1.18093 - 6.94059i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.87508 + 6.99788i) q^{17} -6.91327i q^{18} +(-4.51652 + 1.21020i) q^{19} +(-2.03220 - 0.932829i) q^{20} +(-1.79175 - 1.79175i) q^{21} +(2.90551 - 0.778529i) q^{22} +(0.113254 - 0.422668i) q^{23} +(-3.04125 - 0.814901i) q^{24} +(-4.91327 + 0.927256i) q^{25} +(1.62141 + 3.22041i) q^{26} +(-8.71230 - 8.71230i) q^{27} +(-0.696972 + 0.402397i) q^{28} +(3.58287 - 2.06857i) q^{29} +(-6.60119 + 2.44758i) q^{30} +(-0.536500 + 0.536500i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(4.73540 - 8.20196i) q^{33} +(5.12281 - 5.12281i) q^{34} +(-0.750735 + 1.63550i) q^{35} +(-5.98707 + 3.45663i) q^{36} +(0.835172 - 0.482187i) q^{37} +(3.30632 + 3.30632i) q^{38} +(10.7796 + 3.55994i) q^{39} +(0.208246 + 2.22635i) q^{40} +(1.63091 + 0.437002i) q^{41} +(-0.655828 + 2.44758i) q^{42} +(6.14091 - 1.64545i) q^{43} +(-2.12698 - 2.12698i) q^{44} +(-6.44889 + 14.0491i) q^{45} +(-0.422668 + 0.113254i) q^{46} +1.72276i q^{47} +(0.814901 + 3.04125i) q^{48} +(-3.17615 - 5.50126i) q^{49} +(3.25966 + 3.79139i) q^{50} -22.8103i q^{51} +(1.97825 - 3.01438i) q^{52} +(-5.01074 + 5.01074i) q^{53} +(-3.18892 + 11.9012i) q^{54} +(-6.63080 - 1.12822i) q^{55} +(0.696972 + 0.402397i) q^{56} +14.7221 q^{57} +(-3.58287 - 2.06857i) q^{58} +(0.0422769 + 0.157780i) q^{59} +(5.42026 + 4.49301i) q^{60} +(1.11898 - 1.93813i) q^{61} +(0.732873 + 0.196373i) q^{62} +(2.78188 + 4.81836i) q^{63} +1.00000 q^{64} +(-0.290932 - 8.05701i) q^{65} -9.47080 q^{66} +(2.20825 + 3.82479i) q^{67} +(-6.99788 - 1.87508i) q^{68} +(-0.688865 + 1.19315i) q^{69} +(1.79175 - 0.167595i) q^{70} +(2.63643 + 9.83928i) q^{71} +(5.98707 + 3.45663i) q^{72} -1.73949 q^{73} +(-0.835172 - 0.482187i) q^{74} +(15.6981 + 1.18381i) q^{75} +(1.21020 - 4.51652i) q^{76} +(-1.71178 + 1.71178i) q^{77} +(-2.30679 - 11.1154i) q^{78} -7.75722i q^{79} +(1.82395 - 1.29352i) q^{80} +(9.02673 + 15.6348i) q^{81} +(-0.437002 - 1.63091i) q^{82} +15.6444i q^{83} +(2.44758 - 0.655828i) q^{84} +(-15.1893 + 5.63186i) q^{85} +(-4.49546 - 4.49546i) q^{86} +(-12.5821 + 3.37136i) q^{87} +(-0.778529 + 2.90551i) q^{88} +(-5.91063 - 1.58375i) q^{89} +(15.3914 - 1.43966i) q^{90} +(-2.42596 - 1.59209i) q^{91} +(0.309415 + 0.309415i) q^{92} +(2.06883 - 1.19444i) q^{93} +(1.49195 - 0.861379i) q^{94} +(-3.63487 - 9.80333i) q^{95} +(2.22635 - 2.22635i) q^{96} +(6.70520 - 11.6138i) q^{97} +(-3.17615 + 5.50126i) q^{98} +(-14.7044 + 14.7044i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} + 6 q^{7} + 12 q^{8} + 24 q^{9} + 6 q^{11} - 6 q^{13} - 6 q^{15} - 6 q^{16} - 36 q^{19} - 24 q^{21} + 6 q^{23} + 12 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} - 18 q^{30}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −3.04125 0.814901i −1.75587 0.470483i −0.770004 0.638039i \(-0.779746\pi\)
−0.985863 + 0.167556i \(0.946413\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.208246 + 2.22635i 0.0931304 + 0.995654i
\(6\) 0.814901 + 3.04125i 0.332682 + 1.24159i
\(7\) 0.696972 + 0.402397i 0.263431 + 0.152092i 0.625899 0.779904i \(-0.284732\pi\)
−0.362468 + 0.931996i \(0.618066\pi\)
\(8\) 1.00000 0.353553
\(9\) 5.98707 + 3.45663i 1.99569 + 1.15221i
\(10\) 1.82395 1.29352i 0.576784 0.409047i
\(11\) −0.778529 + 2.90551i −0.234735 + 0.876044i 0.743533 + 0.668700i \(0.233149\pi\)
−0.978268 + 0.207344i \(0.933518\pi\)
\(12\) 2.22635 2.22635i 0.642692 0.642692i
\(13\) −3.59966 0.206024i −0.998366 0.0571409i
\(14\) 0.804795i 0.215090i
\(15\) 1.18093 6.94059i 0.304914 1.79205i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.87508 + 6.99788i 0.454773 + 1.69724i 0.688754 + 0.724995i \(0.258158\pi\)
−0.233981 + 0.972241i \(0.575175\pi\)
\(18\) 6.91327i 1.62947i
\(19\) −4.51652 + 1.21020i −1.03616 + 0.277638i −0.736521 0.676414i \(-0.763533\pi\)
−0.299639 + 0.954053i \(0.596866\pi\)
\(20\) −2.03220 0.932829i −0.454413 0.208587i
\(21\) −1.79175 1.79175i −0.390993 0.390993i
\(22\) 2.90551 0.778529i 0.619457 0.165983i
\(23\) 0.113254 0.422668i 0.0236150 0.0881324i −0.953113 0.302616i \(-0.902140\pi\)
0.976728 + 0.214483i \(0.0688068\pi\)
\(24\) −3.04125 0.814901i −0.620793 0.166341i
\(25\) −4.91327 + 0.927256i −0.982653 + 0.185451i
\(26\) 1.62141 + 3.22041i 0.317984 + 0.631574i
\(27\) −8.71230 8.71230i −1.67668 1.67668i
\(28\) −0.696972 + 0.402397i −0.131715 + 0.0760459i
\(29\) 3.58287 2.06857i 0.665322 0.384124i −0.128980 0.991647i \(-0.541170\pi\)
0.794302 + 0.607523i \(0.207837\pi\)
\(30\) −6.60119 + 2.44758i −1.20521 + 0.446865i
\(31\) −0.536500 + 0.536500i −0.0963583 + 0.0963583i −0.753643 0.657284i \(-0.771705\pi\)
0.657284 + 0.753643i \(0.271705\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 4.73540 8.20196i 0.824328 1.42778i
\(34\) 5.12281 5.12281i 0.878554 0.878554i
\(35\) −0.750735 + 1.63550i −0.126897 + 0.276450i
\(36\) −5.98707 + 3.45663i −0.997844 + 0.576106i
\(37\) 0.835172 0.482187i 0.137301 0.0792710i −0.429776 0.902936i \(-0.641407\pi\)
0.567077 + 0.823665i \(0.308074\pi\)
\(38\) 3.30632 + 3.30632i 0.536356 + 0.536356i
\(39\) 10.7796 + 3.55994i 1.72611 + 0.570046i
\(40\) 0.208246 + 2.22635i 0.0329266 + 0.352017i
\(41\) 1.63091 + 0.437002i 0.254706 + 0.0682483i 0.383913 0.923369i \(-0.374576\pi\)
−0.129207 + 0.991618i \(0.541243\pi\)
\(42\) −0.655828 + 2.44758i −0.101196 + 0.377670i
\(43\) 6.14091 1.64545i 0.936480 0.250929i 0.241864 0.970310i \(-0.422241\pi\)
0.694616 + 0.719381i \(0.255574\pi\)
\(44\) −2.12698 2.12698i −0.320654 0.320654i
\(45\) −6.44889 + 14.0491i −0.961344 + 2.09432i
\(46\) −0.422668 + 0.113254i −0.0623190 + 0.0166983i
\(47\) 1.72276i 0.251290i 0.992075 + 0.125645i \(0.0401000\pi\)
−0.992075 + 0.125645i \(0.959900\pi\)
\(48\) 0.814901 + 3.04125i 0.117621 + 0.438967i
\(49\) −3.17615 5.50126i −0.453736 0.785894i
\(50\) 3.25966 + 3.79139i 0.460986 + 0.536183i
\(51\) 22.8103i 3.19408i
\(52\) 1.97825 3.01438i 0.274334 0.418020i
\(53\) −5.01074 + 5.01074i −0.688278 + 0.688278i −0.961851 0.273573i \(-0.911794\pi\)
0.273573 + 0.961851i \(0.411794\pi\)
\(54\) −3.18892 + 11.9012i −0.433958 + 1.61955i
\(55\) −6.63080 1.12822i −0.894098 0.152129i
\(56\) 0.696972 + 0.402397i 0.0931369 + 0.0537726i
\(57\) 14.7221 1.94998
\(58\) −3.58287 2.06857i −0.470454 0.271617i
\(59\) 0.0422769 + 0.157780i 0.00550398 + 0.0205411i 0.968623 0.248534i \(-0.0799487\pi\)
−0.963119 + 0.269075i \(0.913282\pi\)
\(60\) 5.42026 + 4.49301i 0.699753 + 0.580045i
\(61\) 1.11898 1.93813i 0.143271 0.248153i −0.785456 0.618918i \(-0.787571\pi\)
0.928727 + 0.370765i \(0.120905\pi\)
\(62\) 0.732873 + 0.196373i 0.0930750 + 0.0249394i
\(63\) 2.78188 + 4.81836i 0.350484 + 0.607056i
\(64\) 1.00000 0.125000
\(65\) −0.290932 8.05701i −0.0360856 0.999349i
\(66\) −9.47080 −1.16578
\(67\) 2.20825 + 3.82479i 0.269780 + 0.467273i 0.968805 0.247824i \(-0.0797156\pi\)
−0.699025 + 0.715097i \(0.746382\pi\)
\(68\) −6.99788 1.87508i −0.848618 0.227387i
\(69\) −0.688865 + 1.19315i −0.0829296 + 0.143638i
\(70\) 1.79175 0.167595i 0.214156 0.0200314i
\(71\) 2.63643 + 9.83928i 0.312886 + 1.16771i 0.925941 + 0.377668i \(0.123274\pi\)
−0.613055 + 0.790040i \(0.710060\pi\)
\(72\) 5.98707 + 3.45663i 0.705582 + 0.407368i
\(73\) −1.73949 −0.203592 −0.101796 0.994805i \(-0.532459\pi\)
−0.101796 + 0.994805i \(0.532459\pi\)
\(74\) −0.835172 0.482187i −0.0970867 0.0560530i
\(75\) 15.6981 + 1.18381i 1.81266 + 0.136694i
\(76\) 1.21020 4.51652i 0.138819 0.518080i
\(77\) −1.71178 + 1.71178i −0.195076 + 0.195076i
\(78\) −2.30679 11.1154i −0.261193 1.25857i
\(79\) 7.75722i 0.872756i −0.899763 0.436378i \(-0.856261\pi\)
0.899763 0.436378i \(-0.143739\pi\)
\(80\) 1.82395 1.29352i 0.203924 0.144620i
\(81\) 9.02673 + 15.6348i 1.00297 + 1.73720i
\(82\) −0.437002 1.63091i −0.0482588 0.180104i
\(83\) 15.6444i 1.71720i 0.512649 + 0.858599i \(0.328664\pi\)
−0.512649 + 0.858599i \(0.671336\pi\)
\(84\) 2.44758 0.655828i 0.267053 0.0715567i
\(85\) −15.1893 + 5.63186i −1.64751 + 0.610861i
\(86\) −4.49546 4.49546i −0.484758 0.484758i
\(87\) −12.5821 + 3.37136i −1.34894 + 0.361448i
\(88\) −0.778529 + 2.90551i −0.0829914 + 0.309728i
\(89\) −5.91063 1.58375i −0.626525 0.167877i −0.0684328 0.997656i \(-0.521800\pi\)
−0.558092 + 0.829779i \(0.688467\pi\)
\(90\) 15.3914 1.43966i 1.62239 0.151753i
\(91\) −2.42596 1.59209i −0.254310 0.166896i
\(92\) 0.309415 + 0.309415i 0.0322587 + 0.0322587i
\(93\) 2.06883 1.19444i 0.214527 0.123857i
\(94\) 1.49195 0.861379i 0.153883 0.0888444i
\(95\) −3.63487 9.80333i −0.372930 1.00580i
\(96\) 2.22635 2.22635i 0.227226 0.227226i
\(97\) 6.70520 11.6138i 0.680810 1.17920i −0.293924 0.955829i \(-0.594961\pi\)
0.974734 0.223369i \(-0.0717056\pi\)
\(98\) −3.17615 + 5.50126i −0.320840 + 0.555711i
\(99\) −14.7044 + 14.7044i −1.47785 + 1.47785i
\(100\) 1.65361 4.71864i 0.165361 0.471864i
\(101\) 9.02570 5.21099i 0.898091 0.518513i 0.0215104 0.999769i \(-0.493153\pi\)
0.876580 + 0.481256i \(0.159819\pi\)
\(102\) −19.7543 + 11.4052i −1.95597 + 1.12928i
\(103\) 11.9307 + 11.9307i 1.17557 + 1.17557i 0.980861 + 0.194709i \(0.0623762\pi\)
0.194709 + 0.980861i \(0.437624\pi\)
\(104\) −3.59966 0.206024i −0.352976 0.0202024i
\(105\) 3.61595 4.36220i 0.352880 0.425707i
\(106\) 6.84480 + 1.83406i 0.664826 + 0.178140i
\(107\) 2.91943 10.8955i 0.282232 1.05330i −0.668607 0.743616i \(-0.733109\pi\)
0.950839 0.309687i \(-0.100224\pi\)
\(108\) 11.9012 3.18892i 1.14520 0.306854i
\(109\) 5.74393 + 5.74393i 0.550169 + 0.550169i 0.926489 0.376321i \(-0.122811\pi\)
−0.376321 + 0.926489i \(0.622811\pi\)
\(110\) 2.33834 + 6.30655i 0.222952 + 0.601306i
\(111\) −2.93290 + 0.785868i −0.278379 + 0.0745913i
\(112\) 0.804795i 0.0760459i
\(113\) −4.47593 16.7044i −0.421060 1.57142i −0.772380 0.635161i \(-0.780934\pi\)
0.351320 0.936255i \(-0.385733\pi\)
\(114\) −7.36103 12.7497i −0.689424 1.19412i
\(115\) 0.964592 + 0.164123i 0.0899487 + 0.0153046i
\(116\) 4.13714i 0.384124i
\(117\) −20.8392 13.6762i −1.92659 1.26436i
\(118\) 0.115503 0.115503i 0.0106329 0.0106329i
\(119\) −1.50905 + 5.63186i −0.138335 + 0.516272i
\(120\) 1.18093 6.94059i 0.107803 0.633586i
\(121\) 1.69040 + 0.975956i 0.153673 + 0.0887232i
\(122\) −2.23796 −0.202616
\(123\) −4.60390 2.65807i −0.415120 0.239670i
\(124\) −0.196373 0.732873i −0.0176348 0.0658140i
\(125\) −3.08756 10.7456i −0.276160 0.961112i
\(126\) 2.78188 4.81836i 0.247830 0.429253i
\(127\) −3.97326 1.06463i −0.352570 0.0944707i 0.0781875 0.996939i \(-0.475087\pi\)
−0.430757 + 0.902468i \(0.641753\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −20.0169 −1.76239
\(130\) −6.83211 + 4.28046i −0.599215 + 0.375421i
\(131\) −5.90842 −0.516221 −0.258110 0.966115i \(-0.583100\pi\)
−0.258110 + 0.966115i \(0.583100\pi\)
\(132\) 4.73540 + 8.20196i 0.412164 + 0.713889i
\(133\) −3.63487 0.973961i −0.315183 0.0844531i
\(134\) 2.20825 3.82479i 0.190763 0.330412i
\(135\) 17.5823 21.2109i 1.51325 1.82555i
\(136\) 1.87508 + 6.99788i 0.160787 + 0.600064i
\(137\) 6.99324 + 4.03755i 0.597473 + 0.344951i 0.768047 0.640394i \(-0.221229\pi\)
−0.170574 + 0.985345i \(0.554562\pi\)
\(138\) 1.37773 0.117280
\(139\) −13.2173 7.63102i −1.12108 0.647254i −0.179402 0.983776i \(-0.557416\pi\)
−0.941676 + 0.336521i \(0.890750\pi\)
\(140\) −1.04102 1.46791i −0.0879821 0.124061i
\(141\) 1.40388 5.23934i 0.118228 0.441232i
\(142\) 7.20285 7.20285i 0.604450 0.604450i
\(143\) 3.40104 10.2984i 0.284410 0.861200i
\(144\) 6.91327i 0.576106i
\(145\) 5.35148 + 7.54595i 0.444416 + 0.626657i
\(146\) 0.869744 + 1.50644i 0.0719806 + 0.124674i
\(147\) 5.17650 + 19.3190i 0.426950 + 1.59340i
\(148\) 0.964373i 0.0792710i
\(149\) 10.7129 2.87051i 0.877634 0.235161i 0.208248 0.978076i \(-0.433224\pi\)
0.669386 + 0.742915i \(0.266557\pi\)
\(150\) −6.82384 14.1869i −0.557164 1.15835i
\(151\) 11.2046 + 11.2046i 0.911815 + 0.911815i 0.996415 0.0845999i \(-0.0269612\pi\)
−0.0845999 + 0.996415i \(0.526961\pi\)
\(152\) −4.51652 + 1.21020i −0.366338 + 0.0981600i
\(153\) −12.9629 + 48.3782i −1.04799 + 3.91115i
\(154\) 2.33834 + 0.626556i 0.188429 + 0.0504893i
\(155\) −1.30616 1.08271i −0.104913 0.0869656i
\(156\) −8.47279 + 7.55542i −0.678366 + 0.604918i
\(157\) 2.13077 + 2.13077i 0.170054 + 0.170054i 0.787003 0.616949i \(-0.211632\pi\)
−0.616949 + 0.787003i \(0.711632\pi\)
\(158\) −6.71795 + 3.87861i −0.534452 + 0.308566i
\(159\) 19.3222 11.1557i 1.53235 0.884702i
\(160\) −2.03220 0.932829i −0.160659 0.0737466i
\(161\) 0.249015 0.249015i 0.0196251 0.0196251i
\(162\) 9.02673 15.6348i 0.709207 1.22838i
\(163\) 3.31273 5.73782i 0.259473 0.449421i −0.706628 0.707586i \(-0.749784\pi\)
0.966101 + 0.258165i \(0.0831177\pi\)
\(164\) −1.19391 + 1.19391i −0.0932289 + 0.0932289i
\(165\) 19.2466 + 8.83464i 1.49834 + 0.687776i
\(166\) 13.5485 7.82220i 1.05156 0.607121i
\(167\) −7.39866 + 4.27162i −0.572526 + 0.330548i −0.758158 0.652071i \(-0.773900\pi\)
0.185632 + 0.982619i \(0.440567\pi\)
\(168\) −1.79175 1.79175i −0.138237 0.138237i
\(169\) 12.9151 + 1.48324i 0.993470 + 0.114095i
\(170\) 12.4720 + 10.3384i 0.956556 + 0.792916i
\(171\) −31.2239 8.36642i −2.38775 0.639796i
\(172\) −1.64545 + 6.14091i −0.125465 + 0.468240i
\(173\) 3.47144 0.930169i 0.263929 0.0707195i −0.124428 0.992229i \(-0.539710\pi\)
0.388357 + 0.921509i \(0.373043\pi\)
\(174\) 9.21072 + 9.21072i 0.698263 + 0.698263i
\(175\) −3.79754 1.33081i −0.287067 0.100600i
\(176\) 2.90551 0.778529i 0.219011 0.0586838i
\(177\) 0.514299i 0.0386570i
\(178\) 1.58375 + 5.91063i 0.118707 + 0.443020i
\(179\) 3.40272 + 5.89368i 0.254331 + 0.440514i 0.964714 0.263302i \(-0.0848114\pi\)
−0.710383 + 0.703816i \(0.751478\pi\)
\(180\) −8.94246 12.6095i −0.666531 0.939855i
\(181\) 11.5815i 0.860846i 0.902627 + 0.430423i \(0.141636\pi\)
−0.902627 + 0.430423i \(0.858364\pi\)
\(182\) −0.165807 + 2.89699i −0.0122905 + 0.214739i
\(183\) −4.98249 + 4.98249i −0.368316 + 0.368316i
\(184\) 0.113254 0.422668i 0.00834917 0.0311595i
\(185\) 1.24744 + 1.75897i 0.0917134 + 0.129322i
\(186\) −2.06883 1.19444i −0.151694 0.0875804i
\(187\) −21.7922 −1.59360
\(188\) −1.49195 0.861379i −0.108812 0.0628225i
\(189\) −2.56643 9.57804i −0.186680 0.696700i
\(190\) −6.67250 + 8.04956i −0.484074 + 0.583976i
\(191\) 2.32947 4.03477i 0.168555 0.291946i −0.769357 0.638819i \(-0.779423\pi\)
0.937912 + 0.346873i \(0.112757\pi\)
\(192\) −3.04125 0.814901i −0.219483 0.0588104i
\(193\) 6.69708 + 11.5997i 0.482066 + 0.834963i 0.999788 0.0205858i \(-0.00655313\pi\)
−0.517722 + 0.855549i \(0.673220\pi\)
\(194\) −13.4104 −0.962811
\(195\) −5.68086 + 24.7405i −0.406815 + 1.77170i
\(196\) 6.35231 0.453736
\(197\) 11.0122 + 19.0737i 0.784586 + 1.35894i 0.929246 + 0.369461i \(0.120458\pi\)
−0.144661 + 0.989481i \(0.546209\pi\)
\(198\) 20.0866 + 5.38218i 1.42749 + 0.382495i
\(199\) −5.69362 + 9.86164i −0.403610 + 0.699073i −0.994159 0.107929i \(-0.965578\pi\)
0.590549 + 0.807002i \(0.298911\pi\)
\(200\) −4.91327 + 0.927256i −0.347420 + 0.0655669i
\(201\) −3.59900 13.4317i −0.253854 0.947396i
\(202\) −9.02570 5.21099i −0.635046 0.366644i
\(203\) 3.32955 0.233688
\(204\) 19.7543 + 11.4052i 1.38308 + 0.798521i
\(205\) −0.633288 + 3.72199i −0.0442308 + 0.259955i
\(206\) 4.36695 16.2977i 0.304260 1.13551i
\(207\) 2.13907 2.13907i 0.148675 0.148675i
\(208\) 1.62141 + 3.22041i 0.112424 + 0.223295i
\(209\) 14.0650i 0.972894i
\(210\) −5.58575 0.950403i −0.385453 0.0655840i
\(211\) 1.35943 + 2.35460i 0.0935868 + 0.162097i 0.909018 0.416757i \(-0.136833\pi\)
−0.815431 + 0.578854i \(0.803500\pi\)
\(212\) −1.83406 6.84480i −0.125964 0.470103i
\(213\) 32.0721i 2.19755i
\(214\) −10.8955 + 2.91943i −0.744798 + 0.199568i
\(215\) 4.94217 + 13.3292i 0.337053 + 0.909041i
\(216\) −8.71230 8.71230i −0.592797 0.592797i
\(217\) −0.589812 + 0.158040i −0.0400391 + 0.0107284i
\(218\) 2.10242 7.84636i 0.142394 0.531422i
\(219\) 5.29022 + 1.41751i 0.357480 + 0.0957865i
\(220\) 4.29247 5.17834i 0.289398 0.349123i
\(221\) −5.30791 25.5763i −0.357048 1.72045i
\(222\) 2.14703 + 2.14703i 0.144099 + 0.144099i
\(223\) 23.9414 13.8226i 1.60324 0.925630i 0.612404 0.790545i \(-0.290203\pi\)
0.990834 0.135085i \(-0.0431306\pi\)
\(224\) −0.696972 + 0.402397i −0.0465684 + 0.0268863i
\(225\) −32.6212 11.4318i −2.17475 0.762121i
\(226\) −12.2285 + 12.2285i −0.813425 + 0.813425i
\(227\) −1.72981 + 2.99612i −0.114812 + 0.198859i −0.917704 0.397264i \(-0.869960\pi\)
0.802893 + 0.596123i \(0.203293\pi\)
\(228\) −7.36103 + 12.7497i −0.487496 + 0.844368i
\(229\) −8.92266 + 8.92266i −0.589626 + 0.589626i −0.937530 0.347904i \(-0.886893\pi\)
0.347904 + 0.937530i \(0.386893\pi\)
\(230\) −0.340161 0.917423i −0.0224296 0.0604931i
\(231\) 6.60089 3.81103i 0.434307 0.250747i
\(232\) 3.58287 2.06857i 0.235227 0.135808i
\(233\) −1.21530 1.21530i −0.0796169 0.0796169i 0.666177 0.745794i \(-0.267930\pi\)
−0.745794 + 0.666177i \(0.767930\pi\)
\(234\) −1.42430 + 24.8854i −0.0931096 + 1.62681i
\(235\) −3.83546 + 0.358757i −0.250198 + 0.0234027i
\(236\) −0.157780 0.0422769i −0.0102706 0.00275199i
\(237\) −6.32137 + 23.5917i −0.410617 + 1.53244i
\(238\) 5.63186 1.50905i 0.365059 0.0978173i
\(239\) 10.5843 + 10.5843i 0.684643 + 0.684643i 0.961043 0.276400i \(-0.0891415\pi\)
−0.276400 + 0.961043i \(0.589141\pi\)
\(240\) −6.60119 + 2.44758i −0.426105 + 0.157991i
\(241\) −26.2460 + 7.03259i −1.69065 + 0.453009i −0.970558 0.240868i \(-0.922568\pi\)
−0.720094 + 0.693877i \(0.755901\pi\)
\(242\) 1.95191i 0.125474i
\(243\) −5.14501 19.2014i −0.330052 1.23177i
\(244\) 1.11898 + 1.93813i 0.0716355 + 0.124076i
\(245\) 11.5863 8.21684i 0.740222 0.524955i
\(246\) 5.31613i 0.338944i
\(247\) 16.5073 3.42579i 1.05033 0.217978i
\(248\) −0.536500 + 0.536500i −0.0340678 + 0.0340678i
\(249\) 12.7486 47.5786i 0.807912 3.01517i
\(250\) −7.76214 + 8.04669i −0.490921 + 0.508917i
\(251\) 22.8576 + 13.1969i 1.44276 + 0.832979i 0.998033 0.0626870i \(-0.0199670\pi\)
0.444728 + 0.895666i \(0.353300\pi\)
\(252\) −5.56376 −0.350484
\(253\) 1.13990 + 0.658119i 0.0716646 + 0.0413756i
\(254\) 1.06463 + 3.97326i 0.0668009 + 0.249304i
\(255\) 50.7838 4.75015i 3.18020 0.297466i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.96070 0.525368i −0.122305 0.0327715i 0.197147 0.980374i \(-0.436832\pi\)
−0.319452 + 0.947602i \(0.603499\pi\)
\(258\) 10.0085 + 17.3352i 0.623100 + 1.07924i
\(259\) 0.776122 0.0482259
\(260\) 7.12304 + 3.77655i 0.441752 + 0.234212i
\(261\) 28.6012 1.77037
\(262\) 2.95421 + 5.11684i 0.182512 + 0.316119i
\(263\) −27.3875 7.33845i −1.68878 0.452508i −0.718708 0.695312i \(-0.755266\pi\)
−0.970075 + 0.242804i \(0.921933\pi\)
\(264\) 4.73540 8.20196i 0.291444 0.504796i
\(265\) −12.1991 10.1122i −0.749387 0.621187i
\(266\) 0.973961 + 3.63487i 0.0597174 + 0.222868i
\(267\) 16.6851 + 9.63315i 1.02111 + 0.589539i
\(268\) −4.41649 −0.269780
\(269\) 2.82789 + 1.63268i 0.172420 + 0.0995465i 0.583726 0.811951i \(-0.301594\pi\)
−0.411307 + 0.911497i \(0.634927\pi\)
\(270\) −27.1604 4.62128i −1.65293 0.281242i
\(271\) 1.42316 5.31129i 0.0864505 0.322638i −0.909134 0.416503i \(-0.863256\pi\)
0.995585 + 0.0938651i \(0.0299222\pi\)
\(272\) 5.12281 5.12281i 0.310616 0.310616i
\(273\) 6.08056 + 6.81885i 0.368012 + 0.412696i
\(274\) 8.07510i 0.487835i
\(275\) 1.13097 14.9974i 0.0682000 0.904380i
\(276\) −0.688865 1.19315i −0.0414648 0.0718192i
\(277\) −5.54414 20.6910i −0.333115 1.24320i −0.905898 0.423496i \(-0.860803\pi\)
0.572783 0.819707i \(-0.305864\pi\)
\(278\) 15.2620i 0.915356i
\(279\) −5.06655 + 1.35758i −0.303326 + 0.0812760i
\(280\) −0.750735 + 1.63550i −0.0448650 + 0.0977399i
\(281\) −15.6657 15.6657i −0.934539 0.934539i 0.0634460 0.997985i \(-0.479791\pi\)
−0.997985 + 0.0634460i \(0.979791\pi\)
\(282\) −5.23934 + 1.40388i −0.311998 + 0.0835996i
\(283\) 2.33476 8.71344i 0.138787 0.517960i −0.861167 0.508323i \(-0.830266\pi\)
0.999954 0.00963733i \(-0.00306771\pi\)
\(284\) −9.83928 2.63643i −0.583854 0.156443i
\(285\) 3.06581 + 32.7765i 0.181603 + 1.94151i
\(286\) −10.6192 + 2.20383i −0.627929 + 0.130315i
\(287\) 0.960854 + 0.960854i 0.0567174 + 0.0567174i
\(288\) −5.98707 + 3.45663i −0.352791 + 0.203684i
\(289\) −30.7320 + 17.7431i −1.80777 + 1.04371i
\(290\) 3.85924 8.40749i 0.226623 0.493705i
\(291\) −29.8563 + 29.8563i −1.75021 + 1.75021i
\(292\) 0.869744 1.50644i 0.0508979 0.0881578i
\(293\) 5.34888 9.26452i 0.312485 0.541239i −0.666415 0.745581i \(-0.732172\pi\)
0.978900 + 0.204342i \(0.0655054\pi\)
\(294\) 14.1425 14.1425i 0.824805 0.824805i
\(295\) −0.342468 + 0.126980i −0.0199393 + 0.00739307i
\(296\) 0.835172 0.482187i 0.0485434 0.0280265i
\(297\) 32.0964 18.5309i 1.86242 1.07527i
\(298\) −7.84237 7.84237i −0.454297 0.454297i
\(299\) −0.494754 + 1.49813i −0.0286124 + 0.0866390i
\(300\) −8.87426 + 13.0030i −0.512355 + 0.750731i
\(301\) 4.94217 + 1.32425i 0.284862 + 0.0763285i
\(302\) 4.10116 15.3057i 0.235995 0.880746i
\(303\) −31.6958 + 8.49288i −1.82088 + 0.487903i
\(304\) 3.30632 + 3.30632i 0.189631 + 0.189631i
\(305\) 4.54799 + 2.08764i 0.260417 + 0.119538i
\(306\) 48.3782 12.9629i 2.76560 0.741040i
\(307\) 12.9134i 0.737005i −0.929627 0.368502i \(-0.879871\pi\)
0.929627 0.368502i \(-0.120129\pi\)
\(308\) −0.626556 2.33834i −0.0357013 0.133239i
\(309\) −26.5620 46.0067i −1.51106 2.61723i
\(310\) −0.284577 + 1.67253i −0.0161629 + 0.0949931i
\(311\) 10.1340i 0.574646i 0.957834 + 0.287323i \(0.0927654\pi\)
−0.957834 + 0.287323i \(0.907235\pi\)
\(312\) 10.7796 + 3.55994i 0.610273 + 0.201542i
\(313\) 10.4449 10.4449i 0.590383 0.590383i −0.347352 0.937735i \(-0.612919\pi\)
0.937735 + 0.347352i \(0.112919\pi\)
\(314\) 0.779916 2.91069i 0.0440132 0.164260i
\(315\) −10.1480 + 7.19684i −0.571777 + 0.405496i
\(316\) 6.71795 + 3.87861i 0.377914 + 0.218189i
\(317\) −24.4508 −1.37329 −0.686646 0.726992i \(-0.740918\pi\)
−0.686646 + 0.726992i \(0.740918\pi\)
\(318\) −19.3222 11.1557i −1.08353 0.625579i
\(319\) 3.22088 + 12.0205i 0.180335 + 0.673019i
\(320\) 0.208246 + 2.22635i 0.0116413 + 0.124457i
\(321\) −17.7574 + 30.7568i −0.991123 + 1.71667i
\(322\) −0.340161 0.0911459i −0.0189564 0.00507936i
\(323\) −16.9376 29.3369i −0.942436 1.63235i
\(324\) −18.0535 −1.00297
\(325\) 17.8771 2.32555i 0.991645 0.128999i
\(326\) −6.62547 −0.366951
\(327\) −12.7880 22.1495i −0.707178 1.22487i
\(328\) 1.63091 + 0.437002i 0.0900522 + 0.0241294i
\(329\) −0.693233 + 1.20071i −0.0382192 + 0.0661975i
\(330\) −1.97226 21.0853i −0.108569 1.16071i
\(331\) −0.310163 1.15754i −0.0170481 0.0636243i 0.956878 0.290491i \(-0.0938186\pi\)
−0.973926 + 0.226866i \(0.927152\pi\)
\(332\) −13.5485 7.82220i −0.743568 0.429299i
\(333\) 6.66697 0.365348
\(334\) 7.39866 + 4.27162i 0.404837 + 0.233733i
\(335\) −8.05547 + 5.71283i −0.440117 + 0.312125i
\(336\) −0.655828 + 2.44758i −0.0357783 + 0.133527i
\(337\) −0.358931 + 0.358931i −0.0195522 + 0.0195522i −0.716815 0.697263i \(-0.754401\pi\)
0.697263 + 0.716815i \(0.254401\pi\)
\(338\) −5.17303 11.9264i −0.281376 0.648712i
\(339\) 54.4496i 2.95730i
\(340\) 2.71730 15.9702i 0.147366 0.866107i
\(341\) −1.14113 1.97649i −0.0617954 0.107033i
\(342\) 8.36642 + 31.2239i 0.452404 + 1.68840i
\(343\) 10.7459i 0.580222i
\(344\) 6.14091 1.64545i 0.331096 0.0887168i
\(345\) −2.79982 1.28519i −0.150737 0.0691921i
\(346\) −2.54127 2.54127i −0.136619 0.136619i
\(347\) 12.6705 3.39505i 0.680187 0.182256i 0.0978479 0.995201i \(-0.468804\pi\)
0.582339 + 0.812946i \(0.302137\pi\)
\(348\) 3.37136 12.5821i 0.180724 0.674470i
\(349\) 22.5950 + 6.05431i 1.20948 + 0.324080i 0.806559 0.591154i \(-0.201327\pi\)
0.402924 + 0.915234i \(0.367994\pi\)
\(350\) 0.746251 + 3.95417i 0.0398888 + 0.211359i
\(351\) 29.5664 + 33.1563i 1.57814 + 1.76975i
\(352\) −2.12698 2.12698i −0.113368 0.113368i
\(353\) −20.4439 + 11.8033i −1.08812 + 0.628227i −0.933076 0.359680i \(-0.882886\pi\)
−0.155045 + 0.987907i \(0.549552\pi\)
\(354\) −0.445396 + 0.257149i −0.0236725 + 0.0136673i
\(355\) −21.3567 + 7.91860i −1.13349 + 0.420276i
\(356\) 4.32688 4.32688i 0.229324 0.229324i
\(357\) 9.17881 15.8982i 0.485794 0.841420i
\(358\) 3.40272 5.89368i 0.179839 0.311490i
\(359\) −9.07981 + 9.07981i −0.479214 + 0.479214i −0.904880 0.425666i \(-0.860040\pi\)
0.425666 + 0.904880i \(0.360040\pi\)
\(360\) −6.44889 + 14.0491i −0.339887 + 0.740454i
\(361\) 2.47989 1.43177i 0.130521 0.0753561i
\(362\) 10.0299 5.79075i 0.527159 0.304355i
\(363\) −4.34564 4.34564i −0.228087 0.228087i
\(364\) 2.59177 1.30490i 0.135846 0.0683953i
\(365\) −0.362241 3.87271i −0.0189606 0.202707i
\(366\) 6.80621 + 1.82372i 0.355766 + 0.0953273i
\(367\) 8.65453 32.2992i 0.451763 1.68600i −0.245671 0.969353i \(-0.579008\pi\)
0.697434 0.716649i \(-0.254325\pi\)
\(368\) −0.422668 + 0.113254i −0.0220331 + 0.00590375i
\(369\) 8.25383 + 8.25383i 0.429677 + 0.429677i
\(370\) 0.899595 1.95980i 0.0467677 0.101885i
\(371\) −5.50866 + 1.47604i −0.285995 + 0.0766322i
\(372\) 2.38888i 0.123857i
\(373\) 6.19820 + 23.1320i 0.320931 + 1.19773i 0.918340 + 0.395793i \(0.129530\pi\)
−0.597409 + 0.801937i \(0.703803\pi\)
\(374\) 10.8961 + 18.8726i 0.563424 + 0.975880i
\(375\) 0.633498 + 35.1960i 0.0327137 + 1.81751i
\(376\) 1.72276i 0.0888444i
\(377\) −13.3233 + 6.70799i −0.686184 + 0.345479i
\(378\) −7.01161 + 7.01161i −0.360638 + 0.360638i
\(379\) −1.03686 + 3.86961i −0.0532599 + 0.198769i −0.987429 0.158061i \(-0.949476\pi\)
0.934169 + 0.356830i \(0.116142\pi\)
\(380\) 10.3074 + 1.75378i 0.528757 + 0.0899669i
\(381\) 11.2161 + 6.47562i 0.574618 + 0.331756i
\(382\) −4.65895 −0.238373
\(383\) 22.5091 + 12.9957i 1.15016 + 0.664047i 0.948927 0.315495i \(-0.102171\pi\)
0.201236 + 0.979543i \(0.435504\pi\)
\(384\) 0.814901 + 3.04125i 0.0415852 + 0.155198i
\(385\) −4.16750 3.45455i −0.212395 0.176060i
\(386\) 6.69708 11.5997i 0.340872 0.590408i
\(387\) 42.4538 + 11.3754i 2.15805 + 0.578247i
\(388\) 6.70520 + 11.6138i 0.340405 + 0.589599i
\(389\) 10.8809 0.551682 0.275841 0.961203i \(-0.411044\pi\)
0.275841 + 0.961203i \(0.411044\pi\)
\(390\) 24.2663 7.45046i 1.22877 0.377269i
\(391\) 3.17014 0.160321
\(392\) −3.17615 5.50126i −0.160420 0.277855i
\(393\) 17.9690 + 4.81477i 0.906415 + 0.242873i
\(394\) 11.0122 19.0737i 0.554786 0.960917i
\(395\) 17.2703 1.61541i 0.868963 0.0812801i
\(396\) −5.38218 20.0866i −0.270465 1.00939i
\(397\) 24.0126 + 13.8637i 1.20516 + 0.695799i 0.961698 0.274112i \(-0.0883838\pi\)
0.243461 + 0.969911i \(0.421717\pi\)
\(398\) 11.3872 0.570791
\(399\) 10.2609 + 5.92412i 0.513686 + 0.296577i
\(400\) 3.25966 + 3.79139i 0.162983 + 0.189569i
\(401\) −7.44840 + 27.7978i −0.371955 + 1.38816i 0.485787 + 0.874077i \(0.338533\pi\)
−0.857743 + 0.514079i \(0.828134\pi\)
\(402\) −9.83266 + 9.83266i −0.490408 + 0.490408i
\(403\) 2.04175 1.82069i 0.101707 0.0906949i
\(404\) 10.4220i 0.518513i
\(405\) −32.9287 + 23.3525i −1.63624 + 1.16040i
\(406\) −1.66477 2.88347i −0.0826213 0.143104i
\(407\) 0.750792 + 2.80199i 0.0372154 + 0.138890i
\(408\) 22.8103i 1.12928i
\(409\) −22.9783 + 6.15701i −1.13620 + 0.304444i −0.777423 0.628978i \(-0.783473\pi\)
−0.358779 + 0.933423i \(0.616807\pi\)
\(410\) 3.53998 1.31255i 0.174827 0.0648223i
\(411\) −17.9780 17.9780i −0.886789 0.886789i
\(412\) −16.2977 + 4.36695i −0.802929 + 0.215144i
\(413\) −0.0340242 + 0.126980i −0.00167422 + 0.00624828i
\(414\) −2.92202 0.782952i −0.143609 0.0384800i
\(415\) −34.8299 + 3.25788i −1.70973 + 0.159923i
\(416\) 1.97825 3.01438i 0.0969918 0.147792i
\(417\) 33.9786 + 33.9786i 1.66394 + 1.66394i
\(418\) −12.1806 + 7.03248i −0.595773 + 0.343970i
\(419\) 31.9711 18.4585i 1.56189 0.901757i 0.564823 0.825212i \(-0.308944\pi\)
0.997066 0.0765449i \(-0.0243888\pi\)
\(420\) 1.96980 + 5.31260i 0.0961164 + 0.259228i
\(421\) 10.2278 10.2278i 0.498473 0.498473i −0.412489 0.910962i \(-0.635341\pi\)
0.910962 + 0.412489i \(0.135341\pi\)
\(422\) 1.35943 2.35460i 0.0661758 0.114620i
\(423\) −5.95494 + 10.3143i −0.289539 + 0.501496i
\(424\) −5.01074 + 5.01074i −0.243343 + 0.243343i
\(425\) −15.7016 32.6438i −0.761639 1.58346i
\(426\) −27.7753 + 16.0361i −1.34572 + 0.776950i
\(427\) 1.55980 0.900551i 0.0754840 0.0435807i
\(428\) 7.97603 + 7.97603i 0.385536 + 0.385536i
\(429\) −18.7356 + 28.5486i −0.904565 + 1.37834i
\(430\) 9.07230 10.9446i 0.437505 0.527797i
\(431\) −13.9188 3.72952i −0.670444 0.179645i −0.0924890 0.995714i \(-0.529482\pi\)
−0.577955 + 0.816069i \(0.696149\pi\)
\(432\) −3.18892 + 11.9012i −0.153427 + 0.572598i
\(433\) −10.7032 + 2.86792i −0.514364 + 0.137823i −0.506658 0.862147i \(-0.669119\pi\)
−0.00770546 + 0.999970i \(0.502453\pi\)
\(434\) 0.431773 + 0.431773i 0.0207257 + 0.0207257i
\(435\) −10.1260 27.3100i −0.485504 1.30942i
\(436\) −7.84636 + 2.10242i −0.375772 + 0.100688i
\(437\) 2.04605i 0.0978758i
\(438\) −1.41751 5.29022i −0.0677313 0.252777i
\(439\) −2.21315 3.83328i −0.105628 0.182953i 0.808367 0.588679i \(-0.200352\pi\)
−0.913995 + 0.405727i \(0.867019\pi\)
\(440\) −6.63080 1.12822i −0.316111 0.0537856i
\(441\) 43.9152i 2.09120i
\(442\) −19.4958 + 17.3849i −0.927320 + 0.826917i
\(443\) 8.69869 8.69869i 0.413287 0.413287i −0.469595 0.882882i \(-0.655600\pi\)
0.882882 + 0.469595i \(0.155600\pi\)
\(444\) 0.785868 2.93290i 0.0372957 0.139189i
\(445\) 2.29511 13.4889i 0.108799 0.639437i
\(446\) −23.9414 13.8226i −1.13366 0.654519i
\(447\) −34.9197 −1.65165
\(448\) 0.696972 + 0.402397i 0.0329289 + 0.0190115i
\(449\) −5.78549 21.5917i −0.273034 1.01898i −0.957147 0.289601i \(-0.906477\pi\)
0.684114 0.729376i \(-0.260189\pi\)
\(450\) 6.41037 + 33.9667i 0.302188 + 1.60121i
\(451\) −2.53943 + 4.39842i −0.119577 + 0.207113i
\(452\) 16.7044 + 4.47593i 0.785708 + 0.210530i
\(453\) −24.9453 43.2065i −1.17203 2.03002i
\(454\) 3.45962 0.162368
\(455\) 3.03935 5.73258i 0.142487 0.268748i
\(456\) 14.7221 0.689424
\(457\) −0.643128 1.11393i −0.0300843 0.0521075i 0.850591 0.525827i \(-0.176244\pi\)
−0.880676 + 0.473720i \(0.842911\pi\)
\(458\) 12.1886 + 3.26592i 0.569535 + 0.152606i
\(459\) 44.6314 77.3039i 2.08322 3.60824i
\(460\) −0.624431 + 0.753299i −0.0291142 + 0.0351228i
\(461\) −2.59056 9.66810i −0.120654 0.450288i 0.878993 0.476834i \(-0.158216\pi\)
−0.999648 + 0.0265460i \(0.991549\pi\)
\(462\) −6.60089 3.81103i −0.307101 0.177305i
\(463\) 9.95491 0.462644 0.231322 0.972877i \(-0.425695\pi\)
0.231322 + 0.972877i \(0.425695\pi\)
\(464\) −3.58287 2.06857i −0.166331 0.0960310i
\(465\) 3.09006 + 4.35719i 0.143298 + 0.202060i
\(466\) −0.444830 + 1.66013i −0.0206064 + 0.0769040i
\(467\) −3.56456 + 3.56456i −0.164948 + 0.164948i −0.784755 0.619807i \(-0.787211\pi\)
0.619807 + 0.784755i \(0.287211\pi\)
\(468\) 22.2636 11.2092i 1.02913 0.518147i
\(469\) 3.55437i 0.164125i
\(470\) 2.22842 + 3.14223i 0.102789 + 0.144940i
\(471\) −4.74384 8.21658i −0.218585 0.378600i
\(472\) 0.0422769 + 0.157780i 0.00194595 + 0.00726239i
\(473\) 19.1235i 0.879300i
\(474\) 23.5917 6.32137i 1.08360 0.290350i
\(475\) 21.0687 10.1340i 0.966699 0.464980i
\(476\) −4.12281 4.12281i −0.188969 0.188969i
\(477\) −47.3199 + 12.6793i −2.16663 + 0.580547i
\(478\) 3.87413 14.4584i 0.177199 0.661314i
\(479\) −11.0757 2.96772i −0.506061 0.135599i −0.00324963 0.999995i \(-0.501034\pi\)
−0.502812 + 0.864396i \(0.667701\pi\)
\(480\) 5.42026 + 4.49301i 0.247400 + 0.205077i
\(481\) −3.10568 + 1.56364i −0.141607 + 0.0712959i
\(482\) 19.2134 + 19.2134i 0.875146 + 0.875146i
\(483\) −0.960240 + 0.554395i −0.0436924 + 0.0252258i
\(484\) −1.69040 + 0.975956i −0.0768366 + 0.0443616i
\(485\) 27.2526 + 12.5096i 1.23748 + 0.568032i
\(486\) −14.0564 + 14.0564i −0.637612 + 0.637612i
\(487\) 0.122308 0.211843i 0.00554230 0.00959954i −0.863241 0.504792i \(-0.831569\pi\)
0.868783 + 0.495193i \(0.164902\pi\)
\(488\) 1.11898 1.93813i 0.0506539 0.0877352i
\(489\) −14.7506 + 14.7506i −0.667046 + 0.667046i
\(490\) −12.9091 5.92561i −0.583176 0.267692i
\(491\) −17.4955 + 10.1011i −0.789563 + 0.455854i −0.839809 0.542882i \(-0.817333\pi\)
0.0502457 + 0.998737i \(0.484000\pi\)
\(492\) 4.60390 2.65807i 0.207560 0.119835i
\(493\) 21.1938 + 21.1938i 0.954519 + 0.954519i
\(494\) −11.2205 12.5828i −0.504832 0.566128i
\(495\) −35.7992 29.6750i −1.60906 1.33379i
\(496\) 0.732873 + 0.196373i 0.0329070 + 0.00881740i
\(497\) −2.12178 + 7.91860i −0.0951750 + 0.355198i
\(498\) −47.5786 + 12.7486i −2.13205 + 0.571280i
\(499\) 2.69714 + 2.69714i 0.120740 + 0.120740i 0.764895 0.644155i \(-0.222791\pi\)
−0.644155 + 0.764895i \(0.722791\pi\)
\(500\) 10.8497 + 2.69887i 0.485214 + 0.120697i
\(501\) 25.9821 6.96189i 1.16080 0.311034i
\(502\) 26.3937i 1.17801i
\(503\) 3.06353 + 11.4333i 0.136596 + 0.509784i 0.999986 + 0.00524701i \(0.00167018\pi\)
−0.863390 + 0.504537i \(0.831663\pi\)
\(504\) 2.78188 + 4.81836i 0.123915 + 0.214627i
\(505\) 13.4811 + 19.0092i 0.599899 + 0.845898i
\(506\) 1.31624i 0.0585139i
\(507\) −38.0694 15.0354i −1.69072 0.667747i
\(508\) 2.90863 2.90863i 0.129049 0.129049i
\(509\) −3.40407 + 12.7042i −0.150883 + 0.563102i 0.848540 + 0.529131i \(0.177482\pi\)
−0.999423 + 0.0339709i \(0.989185\pi\)
\(510\) −29.5056 41.6049i −1.30653 1.84230i
\(511\) −1.21238 0.699966i −0.0536324 0.0309647i
\(512\) 1.00000 0.0441942
\(513\) 49.8929 + 28.8057i 2.20283 + 1.27180i
\(514\) 0.525368 + 1.96070i 0.0231730 + 0.0864827i
\(515\) −24.0775 + 29.0465i −1.06098 + 1.27994i
\(516\) 10.0085 17.3352i 0.440598 0.763138i
\(517\) −5.00549 1.34122i −0.220141 0.0589866i
\(518\) −0.388061 0.672141i −0.0170504 0.0295322i
\(519\) −11.3155 −0.496696
\(520\) −0.290932 8.05701i −0.0127582 0.353323i
\(521\) −2.54807 −0.111633 −0.0558165 0.998441i \(-0.517776\pi\)
−0.0558165 + 0.998441i \(0.517776\pi\)
\(522\) −14.3006 24.7693i −0.625919 1.08412i
\(523\) −13.1286 3.51781i −0.574075 0.153823i −0.0399102 0.999203i \(-0.512707\pi\)
−0.534165 + 0.845380i \(0.679374\pi\)
\(524\) 2.95421 5.11684i 0.129055 0.223530i
\(525\) 10.4648 + 7.14195i 0.456721 + 0.311700i
\(526\) 7.33845 + 27.3875i 0.319972 + 1.19415i
\(527\) −4.76035 2.74839i −0.207364 0.119722i
\(528\) −9.47080 −0.412164
\(529\) 19.7528 + 11.4043i 0.858816 + 0.495838i
\(530\) −2.65785 + 15.6209i −0.115450 + 0.678527i
\(531\) −0.292272 + 1.09077i −0.0126835 + 0.0473355i
\(532\) 2.66091 2.66091i 0.115365 0.115365i
\(533\) −5.78070 1.90907i −0.250390 0.0826909i
\(534\) 19.2663i 0.833734i
\(535\) 24.8651 + 4.23074i 1.07501 + 0.182911i
\(536\) 2.20825 + 3.82479i 0.0953817 + 0.165206i
\(537\) −5.54575 20.6970i −0.239317 0.893142i
\(538\) 3.26537i 0.140780i
\(539\) 18.4567 4.94545i 0.794986 0.213016i
\(540\) 9.57804 + 25.8322i 0.412173 + 1.11164i
\(541\) 9.16253 + 9.16253i 0.393928 + 0.393928i 0.876085 0.482157i \(-0.160147\pi\)
−0.482157 + 0.876085i \(0.660147\pi\)
\(542\) −5.31129 + 1.42316i −0.228139 + 0.0611298i
\(543\) 9.43777 35.2222i 0.405014 1.51153i
\(544\) −6.99788 1.87508i −0.300032 0.0803933i
\(545\) −11.5919 + 13.9842i −0.496540 + 0.599015i
\(546\) 2.86502 8.67535i 0.122611 0.371271i
\(547\) −22.6416 22.6416i −0.968085 0.968085i 0.0314209 0.999506i \(-0.489997\pi\)
−0.999506 + 0.0314209i \(0.989997\pi\)
\(548\) −6.99324 + 4.03755i −0.298737 + 0.172476i
\(549\) 13.3988 7.73582i 0.571849 0.330157i
\(550\) −13.5536 + 6.51927i −0.577929 + 0.277983i
\(551\) −13.6787 + 13.6787i −0.582733 + 0.582733i
\(552\) −0.688865 + 1.19315i −0.0293200 + 0.0507838i
\(553\) 3.12149 5.40657i 0.132739 0.229911i
\(554\) −15.1469 + 15.1469i −0.643529 + 0.643529i
\(555\) −2.36038 6.36601i −0.100193 0.270222i
\(556\) 13.2173 7.63102i 0.560539 0.323627i
\(557\) −26.0519 + 15.0411i −1.10386 + 0.637311i −0.937231 0.348709i \(-0.886620\pi\)
−0.166624 + 0.986020i \(0.553287\pi\)
\(558\) 3.70897 + 3.70897i 0.157013 + 0.157013i
\(559\) −22.4442 + 4.65789i −0.949288 + 0.197008i
\(560\) 1.79175 0.167595i 0.0757154 0.00708219i
\(561\) 66.2756 + 17.7585i 2.79816 + 0.749764i
\(562\) −5.73406 + 21.3998i −0.241877 + 0.902696i
\(563\) 23.6201 6.32898i 0.995468 0.266735i 0.275922 0.961180i \(-0.411017\pi\)
0.719546 + 0.694445i \(0.244350\pi\)
\(564\) 3.83546 + 3.83546i 0.161502 + 0.161502i
\(565\) 36.2577 13.4436i 1.52537 0.565576i
\(566\) −8.71344 + 2.33476i −0.366253 + 0.0981373i
\(567\) 14.5293i 0.610174i
\(568\) 2.63643 + 9.83928i 0.110622 + 0.412847i
\(569\) 10.6818 + 18.5014i 0.447805 + 0.775621i 0.998243 0.0592553i \(-0.0188726\pi\)
−0.550438 + 0.834876i \(0.685539\pi\)
\(570\) 26.8523 19.0433i 1.12472 0.797636i
\(571\) 21.6572i 0.906327i −0.891427 0.453163i \(-0.850295\pi\)
0.891427 0.453163i \(-0.149705\pi\)
\(572\) 7.21820 + 8.09462i 0.301808 + 0.338453i
\(573\) −10.3724 + 10.3724i −0.433315 + 0.433315i
\(574\) 0.351697 1.31255i 0.0146795 0.0547848i
\(575\) −0.164523 + 2.18170i −0.00686110 + 0.0909831i
\(576\) 5.98707 + 3.45663i 0.249461 + 0.144026i
\(577\) 10.9211 0.454650 0.227325 0.973819i \(-0.427002\pi\)
0.227325 + 0.973819i \(0.427002\pi\)
\(578\) 30.7320 + 17.7431i 1.27828 + 0.738018i
\(579\) −10.9149 40.7350i −0.453608 1.69289i
\(580\) −9.21072 + 0.861542i −0.382454 + 0.0357736i
\(581\) −6.29527 + 10.9037i −0.261172 + 0.452363i
\(582\) 40.7844 + 10.9282i 1.69057 + 0.452986i
\(583\) −10.6577 18.4598i −0.441399 0.764525i
\(584\) −1.73949 −0.0719806
\(585\) 26.1083 49.2435i 1.07945 2.03597i
\(586\) −10.6978 −0.441920
\(587\) 14.1110 + 24.4409i 0.582423 + 1.00879i 0.995191 + 0.0979498i \(0.0312285\pi\)
−0.412769 + 0.910836i \(0.635438\pi\)
\(588\) −19.3190 5.17650i −0.796700 0.213475i
\(589\) 1.77384 3.07239i 0.0730899 0.126595i
\(590\) 0.281202 + 0.233096i 0.0115769 + 0.00959642i
\(591\) −17.9477 66.9816i −0.738268 2.75526i
\(592\) −0.835172 0.482187i −0.0343253 0.0198177i
\(593\) −28.7595 −1.18101 −0.590506 0.807033i \(-0.701072\pi\)
−0.590506 + 0.807033i \(0.701072\pi\)
\(594\) −32.0964 18.5309i −1.31693 0.760332i
\(595\) −12.8527 2.18687i −0.526911 0.0896528i
\(596\) −2.87051 + 10.7129i −0.117581 + 0.438817i
\(597\) 25.3520 25.3520i 1.03759 1.03759i
\(598\) 1.54479 0.320594i 0.0631714 0.0131101i
\(599\) 7.62284i 0.311461i 0.987800 + 0.155730i \(0.0497731\pi\)
−0.987800 + 0.155730i \(0.950227\pi\)
\(600\) 15.6981 + 1.18381i 0.640872 + 0.0483287i
\(601\) −8.07815 13.9918i −0.329515 0.570736i 0.652901 0.757443i \(-0.273552\pi\)
−0.982416 + 0.186707i \(0.940218\pi\)
\(602\) −1.32425 4.94217i −0.0539724 0.201428i
\(603\) 30.5324i 1.24337i
\(604\) −15.3057 + 4.10116i −0.622781 + 0.166874i
\(605\) −1.82080 + 3.96667i −0.0740260 + 0.161268i
\(606\) 23.2030 + 23.2030i 0.942556 + 0.942556i
\(607\) 32.1964 8.62700i 1.30681 0.350159i 0.462790 0.886468i \(-0.346849\pi\)
0.844022 + 0.536309i \(0.180182\pi\)
\(608\) 1.21020 4.51652i 0.0490800 0.183169i
\(609\) −10.1260 2.71325i −0.410326 0.109946i
\(610\) −0.466047 4.98249i −0.0188697 0.201735i
\(611\) 0.354930 6.20134i 0.0143589 0.250879i
\(612\) −35.4153 35.4153i −1.43158 1.43158i
\(613\) −36.4581 + 21.0491i −1.47253 + 0.850164i −0.999523 0.0308956i \(-0.990164\pi\)
−0.473005 + 0.881060i \(0.656831\pi\)
\(614\) −11.1833 + 6.45668i −0.451321 + 0.260570i
\(615\) 4.95904 10.8034i 0.199968 0.435637i
\(616\) −1.71178 + 1.71178i −0.0689697 + 0.0689697i
\(617\) −6.28781 + 10.8908i −0.253138 + 0.438447i −0.964388 0.264491i \(-0.914796\pi\)
0.711250 + 0.702939i \(0.248129\pi\)
\(618\) −26.5620 + 46.0067i −1.06848 + 1.85066i
\(619\) 8.75232 8.75232i 0.351786 0.351786i −0.508988 0.860774i \(-0.669980\pi\)
0.860774 + 0.508988i \(0.169980\pi\)
\(620\) 1.59074 0.589812i 0.0638856 0.0236874i
\(621\) −4.66911 + 2.69571i −0.187365 + 0.108175i
\(622\) 8.77630 5.06700i 0.351898 0.203168i
\(623\) −3.48225 3.48225i −0.139513 0.139513i
\(624\) −2.30679 11.1154i −0.0923456 0.444970i
\(625\) 23.2804 9.11172i 0.931216 0.364469i
\(626\) −14.2680 3.82311i −0.570266 0.152802i
\(627\) −11.4615 + 42.7751i −0.457730 + 1.70827i
\(628\) −2.91069 + 0.779916i −0.116149 + 0.0311221i
\(629\) 4.94030 + 4.94030i 0.196983 + 0.196983i
\(630\) 11.3067 + 5.19003i 0.450468 + 0.206776i
\(631\) 26.6071 7.12936i 1.05921 0.283815i 0.313159 0.949701i \(-0.398613\pi\)
0.746054 + 0.665886i \(0.231946\pi\)
\(632\) 7.75722i 0.308566i
\(633\) −2.21560 8.26871i −0.0880620 0.328652i
\(634\) 12.2254 + 21.1750i 0.485532 + 0.840966i
\(635\) 1.54283 9.06756i 0.0612252 0.359835i
\(636\) 22.3113i 0.884702i
\(637\) 10.2997 + 20.4570i 0.408088 + 0.810537i
\(638\) 8.79962 8.79962i 0.348380 0.348380i
\(639\) −18.2263 + 68.0216i −0.721022 + 2.69089i
\(640\) 1.82395 1.29352i 0.0720981 0.0511309i
\(641\) 25.0061 + 14.4373i 0.987680 + 0.570237i 0.904580 0.426304i \(-0.140185\pi\)
0.0830998 + 0.996541i \(0.473518\pi\)
\(642\) 35.5148 1.40166
\(643\) −9.27773 5.35650i −0.365878 0.211240i 0.305778 0.952103i \(-0.401083\pi\)
−0.671656 + 0.740863i \(0.734417\pi\)
\(644\) 0.0911459 + 0.340161i 0.00359165 + 0.0134042i
\(645\) −4.16844 44.5647i −0.164132 1.75473i
\(646\) −16.9376 + 29.3369i −0.666403 + 1.15424i
\(647\) −38.4306 10.2974i −1.51086 0.404834i −0.594140 0.804362i \(-0.702508\pi\)
−0.916721 + 0.399527i \(0.869174\pi\)
\(648\) 9.02673 + 15.6348i 0.354604 + 0.614191i
\(649\) −0.491344 −0.0192869
\(650\) −10.9526 14.3193i −0.429595 0.561648i
\(651\) 1.92255 0.0753508
\(652\) 3.31273 + 5.73782i 0.129737 + 0.224710i
\(653\) 45.3569 + 12.1534i 1.77495 + 0.475598i 0.989649 0.143511i \(-0.0458391\pi\)
0.785306 + 0.619108i \(0.212506\pi\)
\(654\) −12.7880 + 22.1495i −0.500050 + 0.866113i
\(655\) −1.23040 13.1542i −0.0480758 0.513977i
\(656\) −0.437002 1.63091i −0.0170621 0.0636765i
\(657\) −10.4144 6.01278i −0.406306 0.234581i
\(658\) 1.38647 0.0540501
\(659\) −27.5684 15.9166i −1.07391 0.620024i −0.144665 0.989481i \(-0.546210\pi\)
−0.929248 + 0.369457i \(0.879544\pi\)
\(660\) −17.2743 + 12.2507i −0.672401 + 0.476857i
\(661\) −1.26555 + 4.72310i −0.0492243 + 0.183707i −0.986161 0.165792i \(-0.946982\pi\)
0.936936 + 0.349500i \(0.113648\pi\)
\(662\) −0.847381 + 0.847381i −0.0329344 + 0.0329344i
\(663\) −4.69948 + 82.1094i −0.182513 + 3.18886i
\(664\) 15.6444i 0.607121i
\(665\) 1.41143 8.29532i 0.0547329 0.321679i
\(666\) −3.33348 5.77376i −0.129170 0.223729i
\(667\) −0.468546 1.74864i −0.0181422 0.0677075i
\(668\) 8.54324i 0.330548i
\(669\) −84.0760 + 22.5281i −3.25057 + 0.870986i
\(670\) 8.97519 + 4.11983i 0.346742 + 0.159163i
\(671\) 4.76011 + 4.76011i 0.183762 + 0.183762i
\(672\) 2.44758 0.655828i 0.0944175 0.0252991i
\(673\) −2.90751 + 10.8510i −0.112076 + 0.418275i −0.999052 0.0435423i \(-0.986136\pi\)
0.886975 + 0.461817i \(0.152802\pi\)
\(674\) 0.490309 + 0.131378i 0.0188860 + 0.00506048i
\(675\) 50.8844 + 34.7273i 1.95854 + 1.33666i
\(676\) −7.74207 + 10.4432i −0.297772 + 0.401661i
\(677\) 12.8047 + 12.8047i 0.492125 + 0.492125i 0.908975 0.416850i \(-0.136866\pi\)
−0.416850 + 0.908975i \(0.636866\pi\)
\(678\) 47.1548 27.2248i 1.81097 1.04556i
\(679\) 9.34669 5.39631i 0.358693 0.207091i
\(680\) −15.1893 + 5.63186i −0.582482 + 0.215972i
\(681\) 7.70233 7.70233i 0.295154 0.295154i
\(682\) −1.14113 + 1.97649i −0.0436960 + 0.0756836i
\(683\) −20.8046 + 36.0346i −0.796064 + 1.37882i 0.126097 + 0.992018i \(0.459755\pi\)
−0.922161 + 0.386806i \(0.873578\pi\)
\(684\) 22.8575 22.8575i 0.873978 0.873978i
\(685\) −7.53269 + 16.4102i −0.287809 + 0.627002i
\(686\) −9.30619 + 5.37293i −0.355312 + 0.205139i
\(687\) 34.4071 19.8650i 1.31271 0.757895i
\(688\) −4.49546 4.49546i −0.171388 0.171388i
\(689\) 19.0693 17.0046i 0.726483 0.647825i
\(690\) 0.286907 + 3.06731i 0.0109223 + 0.116770i
\(691\) −17.8985 4.79589i −0.680891 0.182444i −0.0982353 0.995163i \(-0.531320\pi\)
−0.582656 + 0.812719i \(0.697986\pi\)
\(692\) −0.930169 + 3.47144i −0.0353597 + 0.131964i
\(693\) −16.1656 + 4.33155i −0.614079 + 0.164542i
\(694\) −9.27544 9.27544i −0.352091 0.352091i
\(695\) 14.2369 31.0155i 0.540035 1.17648i
\(696\) −12.5821 + 3.37136i −0.476923 + 0.127791i
\(697\) 12.2324i 0.463334i
\(698\) −6.05431 22.5950i −0.229159 0.855233i
\(699\) 2.70568 + 4.68638i 0.102338 + 0.177255i
\(700\) 3.05129 2.62336i 0.115328 0.0991536i
\(701\) 8.16233i 0.308287i −0.988048 0.154143i \(-0.950738\pi\)
0.988048 0.154143i \(-0.0492618\pi\)
\(702\) 13.9310 42.1834i 0.525791 1.59211i
\(703\) −3.18853 + 3.18853i −0.120258 + 0.120258i
\(704\) −0.778529 + 2.90551i −0.0293419 + 0.109505i
\(705\) 11.9569 + 2.03445i 0.450325 + 0.0766218i
\(706\) 20.4439 + 11.8033i 0.769418 + 0.444223i
\(707\) 8.38755 0.315446
\(708\) 0.445396 + 0.257149i 0.0167390 + 0.00966426i
\(709\) −4.24559 15.8447i −0.159446 0.595062i −0.998683 0.0512963i \(-0.983665\pi\)
0.839237 0.543766i \(-0.183002\pi\)
\(710\) 17.5360 + 14.5361i 0.658116 + 0.545530i
\(711\) 26.8139 46.4430i 1.00560 1.74175i
\(712\) −5.91063 1.58375i −0.221510 0.0593535i
\(713\) 0.166001 + 0.287522i 0.00621679 + 0.0107678i
\(714\) −18.3576 −0.687017
\(715\) 23.6362 + 5.42731i 0.883944 + 0.202970i
\(716\) −6.80543 −0.254331
\(717\) −23.5644 40.8147i −0.880028 1.52425i
\(718\) 12.4033 + 3.32344i 0.462885 + 0.124030i
\(719\) −0.974618 + 1.68809i −0.0363471 + 0.0629550i −0.883627 0.468192i \(-0.844906\pi\)
0.847280 + 0.531147i \(0.178239\pi\)
\(720\) 15.3914 1.43966i 0.573602 0.0536529i
\(721\) 3.51450 + 13.1163i 0.130887 + 0.488476i
\(722\) −2.47989 1.43177i −0.0922920 0.0532848i
\(723\) 85.5514 3.18169
\(724\) −10.0299 5.79075i −0.372757 0.215212i
\(725\) −15.6855 + 13.4857i −0.582545 + 0.500845i
\(726\) −1.59061 + 5.93625i −0.0590332 + 0.220315i
\(727\) 27.9848 27.9848i 1.03790 1.03790i 0.0386462 0.999253i \(-0.487695\pi\)
0.999253 0.0386462i \(-0.0123045\pi\)
\(728\) −2.42596 1.59209i −0.0899121 0.0590067i
\(729\) 8.42862i 0.312171i
\(730\) −3.17275 + 2.25007i −0.117429 + 0.0832787i
\(731\) 23.0294 + 39.8880i 0.851772 + 1.47531i
\(732\) −1.82372 6.80621i −0.0674066 0.251565i
\(733\) 31.6699i 1.16975i −0.811122 0.584877i \(-0.801143\pi\)
0.811122 0.584877i \(-0.198857\pi\)
\(734\) −32.2992 + 8.65453i −1.19218 + 0.319445i
\(735\) −41.9328 + 15.5478i −1.54671 + 0.573489i
\(736\) 0.309415 + 0.309415i 0.0114052 + 0.0114052i
\(737\) −12.8322 + 3.43837i −0.472679 + 0.126654i
\(738\) 3.02111 11.2749i 0.111209 0.415036i
\(739\) 12.8501 + 3.44317i 0.472699 + 0.126659i 0.487301 0.873234i \(-0.337982\pi\)
−0.0146022 + 0.999893i \(0.504648\pi\)
\(740\) −2.14703 + 0.200827i −0.0789265 + 0.00738254i
\(741\) −52.9944 3.03310i −1.94680 0.111424i
\(742\) 4.03262 + 4.03262i 0.148042 + 0.148042i
\(743\) −10.2608 + 5.92409i −0.376433 + 0.217334i −0.676265 0.736658i \(-0.736403\pi\)
0.299832 + 0.953992i \(0.403069\pi\)
\(744\) 2.06883 1.19444i 0.0758469 0.0437902i
\(745\) 8.62167 + 23.2529i 0.315874 + 0.851919i
\(746\) 16.9338 16.9338i 0.619991 0.619991i
\(747\) −54.0770 + 93.6641i −1.97857 + 3.42699i
\(748\) 10.8961 18.8726i 0.398401 0.690051i
\(749\) 6.41906 6.41906i 0.234547 0.234547i
\(750\) 30.1639 18.1466i 1.10143 0.662621i
\(751\) 33.0412 19.0764i 1.20569 0.696106i 0.243876 0.969806i \(-0.421581\pi\)
0.961815 + 0.273700i \(0.0882476\pi\)
\(752\) 1.49195 0.861379i 0.0544059 0.0314112i
\(753\) −58.7617 58.7617i −2.14139 2.14139i
\(754\) 12.4709 + 8.18431i 0.454165 + 0.298055i
\(755\) −22.6120 + 27.2786i −0.822935 + 0.992770i
\(756\) 9.57804 + 2.56643i 0.348350 + 0.0933401i
\(757\) −3.87261 + 14.4528i −0.140752 + 0.525295i 0.859155 + 0.511715i \(0.170990\pi\)
−0.999908 + 0.0135805i \(0.995677\pi\)
\(758\) 3.86961 1.03686i 0.140551 0.0376604i
\(759\) −2.93040 2.93040i −0.106367 0.106367i
\(760\) −3.63487 9.80333i −0.131851 0.355604i
\(761\) 25.4496 6.81919i 0.922546 0.247195i 0.233873 0.972267i \(-0.424860\pi\)
0.688673 + 0.725072i \(0.258193\pi\)
\(762\) 12.9512i 0.469174i
\(763\) 1.69202 + 6.31470i 0.0612552 + 0.228608i
\(764\) 2.32947 + 4.03477i 0.0842774 + 0.145973i
\(765\) −110.406 18.7854i −3.99175 0.679188i
\(766\) 25.9913i 0.939105i
\(767\) −0.119676 0.576663i −0.00432125 0.0208221i
\(768\) 2.22635 2.22635i 0.0803365 0.0803365i
\(769\) 10.5098 39.2231i 0.378993 1.41442i −0.468429 0.883501i \(-0.655180\pi\)
0.847422 0.530920i \(-0.178153\pi\)
\(770\) −0.907983 + 5.33644i −0.0327214 + 0.192312i
\(771\) 5.53486 + 3.19555i 0.199333 + 0.115085i
\(772\) −13.3942 −0.482066
\(773\) 19.8145 + 11.4399i 0.712677 + 0.411464i 0.812052 0.583586i \(-0.198351\pi\)
−0.0993742 + 0.995050i \(0.531684\pi\)
\(774\) −11.3754 42.4538i −0.408882 1.52597i
\(775\) 2.13850 3.13344i 0.0768171 0.112557i
\(776\) 6.70520 11.6138i 0.240703 0.416909i
\(777\) −2.36038 0.632462i −0.0846782 0.0226895i
\(778\) −5.44043 9.42310i −0.195049 0.337835i
\(779\) −7.89491 −0.282865
\(780\) −18.5854 17.2900i −0.665465 0.619081i
\(781\) −30.6407 −1.09641
\(782\) −1.58507 2.74542i −0.0566820 0.0981762i
\(783\) −49.2370 13.1930i −1.75959 0.471480i
\(784\) −3.17615 + 5.50126i −0.113434 + 0.196474i
\(785\) −4.30012 + 5.18757i −0.153478 + 0.185152i
\(786\) −4.81477 17.9690i −0.171737 0.640932i
\(787\) −23.9422 13.8230i −0.853447 0.492738i 0.00836529 0.999965i \(-0.497337\pi\)
−0.861812 + 0.507227i \(0.830671\pi\)
\(788\) −22.0244 −0.784586
\(789\) 77.3120 + 44.6361i 2.75238 + 1.58909i
\(790\) −10.0341 14.1488i −0.356998 0.503392i
\(791\) 3.60220 13.4436i 0.128080 0.477999i
\(792\) −14.7044 + 14.7044i −0.522497 + 0.522497i
\(793\) −4.42726 + 6.74609i −0.157217 + 0.239561i
\(794\) 27.7274i 0.984008i
\(795\) 28.8602 + 40.6948i 1.02356 + 1.44330i
\(796\) −5.69362 9.86164i −0.201805 0.349537i
\(797\) −3.73648 13.9447i −0.132353 0.493948i 0.867642 0.497190i \(-0.165635\pi\)
−0.999995 + 0.00324171i \(0.998968\pi\)
\(798\) 11.8482i 0.419423i
\(799\) −12.0557 + 3.23030i −0.426498 + 0.114280i
\(800\) 1.65361 4.71864i 0.0584638 0.166829i
\(801\) −29.9129 29.9129i −1.05692 1.05692i
\(802\) 27.7978 7.44840i 0.981575 0.263012i
\(803\) 1.35424 5.05410i 0.0477902 0.178355i
\(804\) 13.4317 + 3.59900i 0.473698 + 0.126927i
\(805\) 0.606251 + 0.502539i 0.0213675 + 0.0177122i
\(806\) −2.59764 0.857865i −0.0914979 0.0302170i
\(807\) −7.26985 7.26985i −0.255911 0.255911i
\(808\) 9.02570 5.21099i 0.317523 0.183322i
\(809\) 45.6891 26.3786i 1.60634 0.927423i 0.616165 0.787617i \(-0.288685\pi\)
0.990179 0.139806i \(-0.0446480\pi\)
\(810\) 36.6882 + 16.8408i 1.28909 + 0.591725i
\(811\) 31.7531 31.7531i 1.11500 1.11500i 0.122540 0.992464i \(-0.460896\pi\)
0.992464 0.122540i \(-0.0391038\pi\)
\(812\) −1.66477 + 2.88347i −0.0584221 + 0.101190i
\(813\) −8.65635 + 14.9932i −0.303591 + 0.525836i
\(814\) 2.05120 2.05120i 0.0718946 0.0718946i
\(815\) 13.4643 + 6.18043i 0.471633 + 0.216491i
\(816\) −19.7543 + 11.4052i −0.691539 + 0.399260i
\(817\) −25.7442 + 14.8634i −0.900676 + 0.520006i
\(818\) 16.8213 + 16.8213i 0.588141 + 0.588141i
\(819\) −9.02112 17.9176i −0.315224 0.626091i
\(820\) −2.90669 2.40944i −0.101506 0.0841412i
\(821\) −51.2844 13.7416i −1.78984 0.479586i −0.797520 0.603293i \(-0.793855\pi\)
−0.992319 + 0.123707i \(0.960522\pi\)
\(822\) −6.58040 + 24.5584i −0.229518 + 0.856573i
\(823\) −37.1169 + 9.94545i −1.29381 + 0.346677i −0.839108 0.543965i \(-0.816923\pi\)
−0.454707 + 0.890641i \(0.650256\pi\)
\(824\) 11.9307 + 11.9307i 0.415627 + 0.415627i
\(825\) −15.6610 + 44.6893i −0.545245 + 1.55588i
\(826\) 0.126980 0.0340242i 0.00441820 0.00118385i
\(827\) 51.3144i 1.78438i −0.451664 0.892188i \(-0.649169\pi\)
0.451664 0.892188i \(-0.350831\pi\)
\(828\) 0.782952 + 2.92202i 0.0272095 + 0.101547i
\(829\) −6.20374 10.7452i −0.215465 0.373196i 0.737951 0.674854i \(-0.235793\pi\)
−0.953416 + 0.301658i \(0.902460\pi\)
\(830\) 20.2364 + 28.5347i 0.702415 + 0.990453i
\(831\) 67.4445i 2.33962i
\(832\) −3.59966 0.206024i −0.124796 0.00714261i
\(833\) 32.5416 32.5416i 1.12750 1.12750i
\(834\) 12.4370 46.4157i 0.430660 1.60724i
\(835\) −11.0509 15.5825i −0.382431 0.539254i
\(836\) 12.1806 + 7.03248i 0.421275 + 0.243223i
\(837\) 9.34831 0.323125
\(838\) −31.9711 18.4585i −1.10442 0.637639i
\(839\) −2.61916 9.77485i −0.0904235 0.337465i 0.905862 0.423572i \(-0.139224\pi\)
−0.996286 + 0.0861070i \(0.972557\pi\)
\(840\) 3.61595 4.36220i 0.124762 0.150510i
\(841\) −5.94203 + 10.2919i −0.204898 + 0.354893i
\(842\) −13.9715 3.74364i −0.481488 0.129014i
\(843\) 34.8774 + 60.4094i 1.20124 + 2.08061i
\(844\) −2.71885 −0.0935868
\(845\) −0.612685 + 29.0624i −0.0210770 + 0.999778i
\(846\) 11.9099 0.409470
\(847\) 0.785444 + 1.36043i 0.0269882 + 0.0467449i
\(848\) 6.84480 + 1.83406i 0.235051 + 0.0629818i
\(849\) −14.2012 + 24.5972i −0.487383 + 0.844172i
\(850\) −20.4196 + 29.9199i −0.700385 + 1.02624i
\(851\) −0.109219 0.407610i −0.00374397 0.0139727i
\(852\) 27.7753 + 16.0361i 0.951566 + 0.549387i
\(853\) 16.4655 0.563769 0.281884 0.959448i \(-0.409041\pi\)
0.281884 + 0.959448i \(0.409041\pi\)
\(854\) −1.55980 0.900551i −0.0533752 0.0308162i
\(855\) 12.1243 71.2576i 0.414643 2.43696i
\(856\) 2.91943 10.8955i 0.0997840 0.372399i
\(857\) 26.1677 26.1677i 0.893870 0.893870i −0.101015 0.994885i \(-0.532209\pi\)
0.994885 + 0.101015i \(0.0322089\pi\)
\(858\) 34.0917 + 1.95122i 1.16387 + 0.0666135i
\(859\) 3.70443i 0.126394i −0.998001 0.0631968i \(-0.979870\pi\)
0.998001 0.0631968i \(-0.0201296\pi\)
\(860\) −14.0145 2.38453i −0.477890 0.0813119i
\(861\) −2.13920 3.70520i −0.0729036 0.126273i
\(862\) 3.72952 + 13.9188i 0.127028 + 0.474075i
\(863\) 9.65640i 0.328708i 0.986401 + 0.164354i \(0.0525539\pi\)
−0.986401 + 0.164354i \(0.947446\pi\)
\(864\) 11.9012 3.18892i 0.404888 0.108489i
\(865\) 2.79379 + 7.53493i 0.0949919 + 0.256195i
\(866\) 7.83530 + 7.83530i 0.266254 + 0.266254i
\(867\) 107.923 28.9178i 3.66525 0.982100i
\(868\) 0.158040 0.589812i 0.00536422 0.0200195i
\(869\) 22.5387 + 6.03922i 0.764572 + 0.204867i
\(870\) −18.5882 + 22.4244i −0.630199 + 0.760258i
\(871\) −7.16093 14.2229i −0.242639 0.481925i
\(872\) 5.74393 + 5.74393i 0.194514 + 0.194514i
\(873\) 80.2890 46.3549i 2.71737 1.56887i
\(874\) 1.77193 1.02302i 0.0599364 0.0346043i
\(875\) 2.17203 8.73178i 0.0734282 0.295188i
\(876\) −3.87271 + 3.87271i −0.130847 + 0.130847i
\(877\) 1.65175 2.86091i 0.0557755 0.0966060i −0.836790 0.547525i \(-0.815570\pi\)
0.892565 + 0.450919i \(0.148904\pi\)
\(878\) −2.21315 + 3.83328i −0.0746901 + 0.129367i
\(879\) −23.8169 + 23.8169i −0.803325 + 0.803325i
\(880\) 2.33834 + 6.30655i 0.0788253 + 0.212594i
\(881\) 6.11016 3.52770i 0.205857 0.118851i −0.393528 0.919313i \(-0.628745\pi\)
0.599384 + 0.800461i \(0.295412\pi\)
\(882\) −38.0317 + 21.9576i −1.28059 + 0.739351i
\(883\) 22.1294 + 22.1294i 0.744714 + 0.744714i 0.973481 0.228767i \(-0.0734694\pi\)
−0.228767 + 0.973481i \(0.573469\pi\)
\(884\) 24.8037 + 8.19138i 0.834238 + 0.275506i
\(885\) 1.14501 0.107101i 0.0384890 0.00360015i
\(886\) −11.8826 3.18394i −0.399205 0.106967i
\(887\) −9.59340 + 35.8031i −0.322115 + 1.20215i 0.595066 + 0.803677i \(0.297126\pi\)
−0.917180 + 0.398472i \(0.869541\pi\)
\(888\) −2.93290 + 0.785868i −0.0984217 + 0.0263720i
\(889\) −2.34085 2.34085i −0.0785095 0.0785095i
\(890\) −12.8293 + 4.75684i −0.430040 + 0.159450i
\(891\) −52.4545 + 14.0551i −1.75729 + 0.470865i
\(892\) 27.6452i 0.925630i
\(893\) −2.08488 7.78087i −0.0697677 0.260377i
\(894\) 17.4599 + 30.2414i 0.583945 + 1.01142i
\(895\) −12.4128 + 8.80297i −0.414914 + 0.294251i
\(896\) 0.804795i 0.0268863i
\(897\) 2.72550 4.15301i 0.0910017 0.138665i
\(898\) −15.8062 + 15.8062i −0.527461 + 0.527461i
\(899\) −0.812422 + 3.03200i −0.0270958 + 0.101123i
\(900\) 26.2109 22.5349i 0.873696 0.751164i
\(901\) −44.4601 25.6691i −1.48118 0.855160i
\(902\) 5.07885 0.169107
\(903\) −13.9512 8.05476i −0.464268 0.268046i
\(904\) −4.47593 16.7044i −0.148867 0.555579i
\(905\) −25.7845 + 2.41180i −0.857105 + 0.0801709i
\(906\) −24.9453 + 43.2065i −0.828752 + 1.43544i
\(907\) −34.0294 9.11815i −1.12993 0.302763i −0.355033 0.934854i \(-0.615530\pi\)
−0.774895 + 0.632090i \(0.782197\pi\)
\(908\) −1.72981 2.99612i −0.0574058 0.0994297i
\(909\) 72.0499 2.38975
\(910\) −6.48423 + 0.234140i −0.214950 + 0.00776168i
\(911\) −45.7346 −1.51525 −0.757627 0.652687i \(-0.773642\pi\)
−0.757627 + 0.652687i \(0.773642\pi\)
\(912\) −7.36103 12.7497i −0.243748 0.422184i
\(913\) −45.4550 12.1796i −1.50434 0.403087i
\(914\) −0.643128 + 1.11393i −0.0212728 + 0.0368456i
\(915\) −12.1304 10.0552i −0.401017 0.332414i
\(916\) −3.26592 12.1886i −0.107909 0.402722i
\(917\) −4.11800 2.37753i −0.135988 0.0785130i
\(918\) −89.2629 −2.94611
\(919\) −18.5669 10.7196i −0.612464 0.353606i 0.161465 0.986878i \(-0.448378\pi\)
−0.773929 + 0.633272i \(0.781711\pi\)
\(920\) 0.964592 + 0.164123i 0.0318017 + 0.00541098i
\(921\) −10.5231 + 39.2728i −0.346748 + 1.29408i
\(922\) −7.07754 + 7.07754i −0.233086 + 0.233086i
\(923\) −7.46311 35.9612i −0.245651 1.18368i
\(924\) 7.62205i 0.250747i
\(925\) −3.65631 + 3.14353i −0.120219 + 0.103359i
\(926\) −4.97746 8.62121i −0.163569 0.283310i
\(927\) 30.1899 + 112.670i 0.991566 + 3.70058i
\(928\) 4.13714i 0.135808i
\(929\) −6.50804 + 1.74382i −0.213522 + 0.0572130i −0.363994 0.931401i \(-0.618587\pi\)
0.150472 + 0.988614i \(0.451921\pi\)
\(930\) 2.22841 4.85467i 0.0730725 0.159191i
\(931\) 21.0028 + 21.0028i 0.688338 + 0.688338i
\(932\) 1.66013 0.444830i 0.0543793 0.0145709i
\(933\) 8.25820 30.8200i 0.270361 1.00900i
\(934\) 4.86928 + 1.30472i 0.159328 + 0.0426917i
\(935\) −4.53814 48.5171i −0.148413 1.58668i
\(936\) −20.8392 13.6762i −0.681152 0.447020i
\(937\) −18.4026 18.4026i −0.601188 0.601188i 0.339440 0.940628i \(-0.389763\pi\)
−0.940628 + 0.339440i \(0.889763\pi\)
\(938\) 3.07817 1.77718i 0.100506 0.0580271i
\(939\) −40.2772 + 23.2541i −1.31440 + 0.758868i
\(940\) 1.60704 3.50098i 0.0524158 0.114190i
\(941\) 32.3684 32.3684i 1.05518 1.05518i 0.0567952 0.998386i \(-0.481912\pi\)
0.998386 0.0567952i \(-0.0180882\pi\)
\(942\) −4.74384 + 8.21658i −0.154563 + 0.267710i
\(943\) 0.369414 0.639843i 0.0120298 0.0208362i
\(944\) 0.115503 0.115503i 0.00375929 0.00375929i
\(945\) 20.7896 7.70836i 0.676286 0.250753i
\(946\) 16.5614 9.56175i 0.538459 0.310879i
\(947\) 25.0053 14.4368i 0.812562 0.469133i −0.0352831 0.999377i \(-0.511233\pi\)
0.847845 + 0.530245i \(0.177900\pi\)
\(948\) −17.2703 17.2703i −0.560913 0.560913i
\(949\) 6.26157 + 0.358377i 0.203259 + 0.0116334i
\(950\) −19.3107 13.1790i −0.626520 0.427584i
\(951\) 74.3609 + 19.9249i 2.41132 + 0.646111i
\(952\) −1.50905 + 5.63186i −0.0489087 + 0.182530i
\(953\) −17.0854 + 4.57801i −0.553449 + 0.148296i −0.524695 0.851290i \(-0.675821\pi\)
−0.0287541 + 0.999587i \(0.509154\pi\)
\(954\) 34.6406 + 34.6406i 1.12153 + 1.12153i
\(955\) 9.46791 + 4.34600i 0.306374 + 0.140633i
\(956\) −14.4584 + 3.87413i −0.467620 + 0.125298i
\(957\) 39.1820i 1.26658i
\(958\) 2.96772 + 11.0757i 0.0958828 + 0.357839i
\(959\) 3.24940 + 5.62812i 0.104929 + 0.181742i
\(960\) 1.18093 6.94059i 0.0381142 0.224006i
\(961\) 30.4243i 0.981430i
\(962\) 2.90699 + 1.90777i 0.0937252 + 0.0615091i
\(963\) 55.1404 55.1404i 1.77687 1.77687i
\(964\) 7.03259 26.2460i 0.226504 0.845326i
\(965\) −24.4303 + 17.3256i −0.786439 + 0.557732i
\(966\) 0.960240 + 0.554395i 0.0308952 + 0.0178374i
\(967\) 0.721666 0.0232072 0.0116036 0.999933i \(-0.496306\pi\)
0.0116036 + 0.999933i \(0.496306\pi\)
\(968\) 1.69040 + 0.975956i 0.0543317 + 0.0313684i
\(969\) 27.6050 + 103.023i 0.886800 + 3.30958i
\(970\) −2.79266 29.8563i −0.0896670 0.958627i
\(971\) 15.4150 26.6996i 0.494691 0.856830i −0.505290 0.862950i \(-0.668615\pi\)
0.999981 + 0.00611936i \(0.00194787\pi\)
\(972\) 19.2014 + 5.14501i 0.615886 + 0.165026i
\(973\) −6.14140 10.6372i −0.196884 0.341014i
\(974\) −0.244616 −0.00783799
\(975\) −56.2639 7.49549i −1.80189 0.240048i
\(976\) −2.23796 −0.0716355
\(977\) 9.26370 + 16.0452i 0.296372 + 0.513331i 0.975303 0.220871i \(-0.0708899\pi\)
−0.678931 + 0.734202i \(0.737557\pi\)
\(978\) 20.1497 + 5.39910i 0.644317 + 0.172644i
\(979\) 9.20319 15.9404i 0.294135 0.509457i
\(980\) 1.32284 + 14.1425i 0.0422566 + 0.451764i
\(981\) 14.5346 + 54.2440i 0.464055 + 1.73188i
\(982\) 17.4955 + 10.1011i 0.558305 + 0.322338i
\(983\) −2.90661 −0.0927066 −0.0463533 0.998925i \(-0.514760\pi\)
−0.0463533 + 0.998925i \(0.514760\pi\)
\(984\) −4.60390 2.65807i −0.146767 0.0847360i
\(985\) −40.1714 + 28.4890i −1.27997 + 0.907734i
\(986\) 7.75746 28.9512i 0.247048 0.921995i
\(987\) 3.08676 3.08676i 0.0982526 0.0982526i
\(988\) −5.28681 + 16.0086i −0.168196 + 0.509302i
\(989\) 2.78192i 0.0884599i
\(990\) −7.79967 + 45.8405i −0.247890 + 1.45691i
\(991\) 25.5607 + 44.2724i 0.811961 + 1.40636i 0.911489 + 0.411323i \(0.134933\pi\)
−0.0995281 + 0.995035i \(0.531733\pi\)
\(992\) −0.196373 0.732873i −0.00623484 0.0232687i
\(993\) 3.77313i 0.119737i
\(994\) 7.91860 2.12178i 0.251163 0.0672989i
\(995\) −23.1411 10.6223i −0.733623 0.336751i
\(996\) 34.8299 + 34.8299i 1.10363 + 1.10363i
\(997\) 3.73922 1.00192i 0.118422 0.0317312i −0.199121 0.979975i \(-0.563809\pi\)
0.317543 + 0.948244i \(0.397142\pi\)
\(998\) 0.987220 3.68436i 0.0312499 0.116626i
\(999\) −11.4772 3.07531i −0.363123 0.0972986i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.s.a.67.1 yes 12
5.2 odd 4 650.2.t.e.93.1 12
5.3 odd 4 130.2.p.a.93.3 yes 12
5.4 even 2 650.2.w.e.457.3 12
13.7 odd 12 130.2.p.a.7.3 12
65.7 even 12 650.2.w.e.293.3 12
65.33 even 12 inner 130.2.s.a.33.1 yes 12
65.59 odd 12 650.2.t.e.7.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.a.7.3 12 13.7 odd 12
130.2.p.a.93.3 yes 12 5.3 odd 4
130.2.s.a.33.1 yes 12 65.33 even 12 inner
130.2.s.a.67.1 yes 12 1.1 even 1 trivial
650.2.t.e.7.1 12 65.59 odd 12
650.2.t.e.93.1 12 5.2 odd 4
650.2.w.e.293.3 12 65.7 even 12
650.2.w.e.457.3 12 5.4 even 2