Properties

Label 650.2.w.e.293.1
Level $650$
Weight $2$
Character 650.293
Analytic conductor $5.190$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(193,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.1
Root \(1.55227i\) of defining polynomial
Character \(\chi\) \(=\) 650.293
Dual form 650.2.w.e.457.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-2.89657 + 0.776134i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.776134 + 2.89657i) q^{6} +(1.10671 - 0.638961i) q^{7} -1.00000 q^{8} +(5.18966 - 2.99625i) q^{9} +(-0.228853 - 0.854091i) q^{11} +(2.12044 + 2.12044i) q^{12} +(1.42488 + 3.31205i) q^{13} -1.27792i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.160684 + 0.599680i) q^{17} -5.99250i q^{18} +(-3.26251 - 0.874187i) q^{19} +(-2.70975 + 2.70975i) q^{21} +(-0.854091 - 0.228853i) q^{22} +(-2.16292 - 8.07211i) q^{23} +(2.89657 - 0.776134i) q^{24} +(3.58077 + 0.422042i) q^{26} +(-6.34541 + 6.34541i) q^{27} +(-1.10671 - 0.638961i) q^{28} +(-5.53601 - 3.19622i) q^{29} +(-7.30303 - 7.30303i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.32578 + 2.29631i) q^{33} +(0.438997 + 0.438997i) q^{34} +(-5.18966 - 2.99625i) q^{36} +(-7.93494 - 4.58124i) q^{37} +(-2.38832 + 2.38832i) q^{38} +(-6.69787 - 8.48770i) q^{39} +(8.36236 - 2.24069i) q^{41} +(0.991839 + 3.70159i) q^{42} +(1.97169 + 0.528312i) q^{43} +(-0.625238 + 0.625238i) q^{44} +(-8.07211 - 2.16292i) q^{46} -2.55866i q^{47} +(0.776134 - 2.89657i) q^{48} +(-2.68346 + 4.64788i) q^{49} -1.86173i q^{51} +(2.15588 - 2.89001i) q^{52} +(-2.67655 - 2.67655i) q^{53} +(2.32258 + 8.66799i) q^{54} +(-1.10671 + 0.638961i) q^{56} +10.1286 q^{57} +(-5.53601 + 3.19622i) q^{58} +(0.288254 - 1.07578i) q^{59} +(3.53771 + 6.12749i) q^{61} +(-9.97612 + 2.67309i) q^{62} +(3.82898 - 6.63198i) q^{63} +1.00000 q^{64} +2.65156 q^{66} +(-1.29025 + 2.23477i) q^{67} +(0.599680 - 0.160684i) q^{68} +(12.5301 + 21.7027i) q^{69} +(-1.80066 + 6.72017i) q^{71} +(-5.18966 + 2.99625i) q^{72} -4.86934 q^{73} +(-7.93494 + 4.58124i) q^{74} +(0.874187 + 3.26251i) q^{76} +(-0.799006 - 0.799006i) q^{77} +(-10.6995 + 1.55668i) q^{78} -11.2172i q^{79} +(4.46628 - 7.73583i) q^{81} +(2.24069 - 8.36236i) q^{82} +1.75068i q^{83} +(3.70159 + 0.991839i) q^{84} +(1.44337 - 1.44337i) q^{86} +(18.5161 + 4.96138i) q^{87} +(0.228853 + 0.854091i) q^{88} +(6.08837 - 1.63137i) q^{89} +(3.69321 + 2.75505i) q^{91} +(-5.90920 + 5.90920i) q^{92} +(26.8219 + 15.4856i) q^{93} +(-2.21587 - 1.27933i) q^{94} +(-2.12044 - 2.12044i) q^{96} +(-4.99081 - 8.64434i) q^{97} +(2.68346 + 4.64788i) q^{98} +(-3.74674 - 3.74674i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} - 6 q^{7} - 12 q^{8} + 24 q^{9} + 6 q^{11} + 6 q^{13} - 6 q^{16} - 36 q^{19} - 24 q^{21} - 6 q^{23} + 6 q^{26} + 12 q^{27} + 6 q^{28} - 6 q^{29} - 24 q^{31} + 6 q^{32} - 18 q^{33}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −2.89657 + 0.776134i −1.67234 + 0.448101i −0.965739 0.259516i \(-0.916437\pi\)
−0.706597 + 0.707617i \(0.749770\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −0.776134 + 2.89657i −0.316855 + 1.18252i
\(7\) 1.10671 0.638961i 0.418298 0.241505i −0.276051 0.961143i \(-0.589026\pi\)
0.694349 + 0.719638i \(0.255692\pi\)
\(8\) −1.00000 −0.353553
\(9\) 5.18966 2.99625i 1.72989 0.998750i
\(10\) 0 0
\(11\) −0.228853 0.854091i −0.0690018 0.257518i 0.922805 0.385268i \(-0.125891\pi\)
−0.991806 + 0.127750i \(0.959224\pi\)
\(12\) 2.12044 + 2.12044i 0.612117 + 0.612117i
\(13\) 1.42488 + 3.31205i 0.395192 + 0.918599i
\(14\) 1.27792i 0.341539i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.160684 + 0.599680i −0.0389716 + 0.145444i −0.982670 0.185363i \(-0.940654\pi\)
0.943699 + 0.330806i \(0.107321\pi\)
\(18\) 5.99250i 1.41245i
\(19\) −3.26251 0.874187i −0.748471 0.200552i −0.135631 0.990759i \(-0.543306\pi\)
−0.612840 + 0.790207i \(0.709973\pi\)
\(20\) 0 0
\(21\) −2.70975 + 2.70975i −0.591317 + 0.591317i
\(22\) −0.854091 0.228853i −0.182093 0.0487916i
\(23\) −2.16292 8.07211i −0.450999 1.68315i −0.699591 0.714544i \(-0.746634\pi\)
0.248591 0.968608i \(-0.420032\pi\)
\(24\) 2.89657 0.776134i 0.591260 0.158428i
\(25\) 0 0
\(26\) 3.58077 + 0.422042i 0.702246 + 0.0827693i
\(27\) −6.34541 + 6.34541i −1.22117 + 1.22117i
\(28\) −1.10671 0.638961i −0.209149 0.120752i
\(29\) −5.53601 3.19622i −1.02801 0.593522i −0.111597 0.993754i \(-0.535596\pi\)
−0.916414 + 0.400231i \(0.868930\pi\)
\(30\) 0 0
\(31\) −7.30303 7.30303i −1.31166 1.31166i −0.920190 0.391473i \(-0.871966\pi\)
−0.391473 0.920190i \(-0.628034\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.32578 + 2.29631i 0.230788 + 0.399737i
\(34\) 0.438997 + 0.438997i 0.0752873 + 0.0752873i
\(35\) 0 0
\(36\) −5.18966 2.99625i −0.864943 0.499375i
\(37\) −7.93494 4.58124i −1.30450 0.753151i −0.323325 0.946288i \(-0.604801\pi\)
−0.981172 + 0.193137i \(0.938134\pi\)
\(38\) −2.38832 + 2.38832i −0.387437 + 0.387437i
\(39\) −6.69787 8.48770i −1.07252 1.35912i
\(40\) 0 0
\(41\) 8.36236 2.24069i 1.30598 0.349937i 0.462273 0.886738i \(-0.347034\pi\)
0.843709 + 0.536801i \(0.180367\pi\)
\(42\) 0.991839 + 3.70159i 0.153044 + 0.571168i
\(43\) 1.97169 + 0.528312i 0.300679 + 0.0805668i 0.406005 0.913871i \(-0.366922\pi\)
−0.105325 + 0.994438i \(0.533588\pi\)
\(44\) −0.625238 + 0.625238i −0.0942582 + 0.0942582i
\(45\) 0 0
\(46\) −8.07211 2.16292i −1.19017 0.318905i
\(47\) 2.55866i 0.373219i −0.982434 0.186610i \(-0.940250\pi\)
0.982434 0.186610i \(-0.0597500\pi\)
\(48\) 0.776134 2.89657i 0.112025 0.418084i
\(49\) −2.68346 + 4.64788i −0.383351 + 0.663983i
\(50\) 0 0
\(51\) 1.86173i 0.260694i
\(52\) 2.15588 2.89001i 0.298967 0.400773i
\(53\) −2.67655 2.67655i −0.367653 0.367653i 0.498968 0.866621i \(-0.333713\pi\)
−0.866621 + 0.498968i \(0.833713\pi\)
\(54\) 2.32258 + 8.66799i 0.316063 + 1.17956i
\(55\) 0 0
\(56\) −1.10671 + 0.638961i −0.147891 + 0.0853848i
\(57\) 10.1286 1.34156
\(58\) −5.53601 + 3.19622i −0.726913 + 0.419684i
\(59\) 0.288254 1.07578i 0.0375275 0.140054i −0.944620 0.328165i \(-0.893570\pi\)
0.982148 + 0.188111i \(0.0602364\pi\)
\(60\) 0 0
\(61\) 3.53771 + 6.12749i 0.452957 + 0.784545i 0.998568 0.0534935i \(-0.0170356\pi\)
−0.545611 + 0.838039i \(0.683702\pi\)
\(62\) −9.97612 + 2.67309i −1.26697 + 0.339483i
\(63\) 3.82898 6.63198i 0.482406 0.835551i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.65156 0.326384
\(67\) −1.29025 + 2.23477i −0.157629 + 0.273021i −0.934013 0.357239i \(-0.883718\pi\)
0.776384 + 0.630260i \(0.217052\pi\)
\(68\) 0.599680 0.160684i 0.0727219 0.0194858i
\(69\) 12.5301 + 21.7027i 1.50844 + 2.61270i
\(70\) 0 0
\(71\) −1.80066 + 6.72017i −0.213699 + 0.797537i 0.772921 + 0.634502i \(0.218795\pi\)
−0.986620 + 0.163035i \(0.947872\pi\)
\(72\) −5.18966 + 2.99625i −0.611607 + 0.353111i
\(73\) −4.86934 −0.569913 −0.284957 0.958540i \(-0.591979\pi\)
−0.284957 + 0.958540i \(0.591979\pi\)
\(74\) −7.93494 + 4.58124i −0.922418 + 0.532558i
\(75\) 0 0
\(76\) 0.874187 + 3.26251i 0.100276 + 0.374236i
\(77\) −0.799006 0.799006i −0.0910552 0.0910552i
\(78\) −10.6995 + 1.55668i −1.21148 + 0.176259i
\(79\) 11.2172i 1.26203i −0.775770 0.631015i \(-0.782638\pi\)
0.775770 0.631015i \(-0.217362\pi\)
\(80\) 0 0
\(81\) 4.46628 7.73583i 0.496253 0.859536i
\(82\) 2.24069 8.36236i 0.247443 0.923468i
\(83\) 1.75068i 0.192162i 0.995374 + 0.0960809i \(0.0306307\pi\)
−0.995374 + 0.0960809i \(0.969369\pi\)
\(84\) 3.70159 + 0.991839i 0.403877 + 0.108218i
\(85\) 0 0
\(86\) 1.44337 1.44337i 0.155643 0.155643i
\(87\) 18.5161 + 4.96138i 1.98514 + 0.531916i
\(88\) 0.228853 + 0.854091i 0.0243958 + 0.0910464i
\(89\) 6.08837 1.63137i 0.645366 0.172925i 0.0787333 0.996896i \(-0.474912\pi\)
0.566633 + 0.823970i \(0.308246\pi\)
\(90\) 0 0
\(91\) 3.69321 + 2.75505i 0.387154 + 0.288808i
\(92\) −5.90920 + 5.90920i −0.616076 + 0.616076i
\(93\) 26.8219 + 15.4856i 2.78130 + 1.60578i
\(94\) −2.21587 1.27933i −0.228549 0.131953i
\(95\) 0 0
\(96\) −2.12044 2.12044i −0.216416 0.216416i
\(97\) −4.99081 8.64434i −0.506740 0.877700i −0.999970 0.00780033i \(-0.997517\pi\)
0.493230 0.869899i \(-0.335816\pi\)
\(98\) 2.68346 + 4.64788i 0.271070 + 0.469507i
\(99\) −3.74674 3.74674i −0.376562 0.376562i
\(100\) 0 0
\(101\) 0.911347 + 0.526166i 0.0906824 + 0.0523555i 0.544655 0.838660i \(-0.316660\pi\)
−0.453973 + 0.891015i \(0.649994\pi\)
\(102\) −1.61230 0.930864i −0.159642 0.0921693i
\(103\) 3.37370 3.37370i 0.332420 0.332420i −0.521085 0.853505i \(-0.674472\pi\)
0.853505 + 0.521085i \(0.174472\pi\)
\(104\) −1.42488 3.31205i −0.139721 0.324774i
\(105\) 0 0
\(106\) −3.65624 + 0.979686i −0.355125 + 0.0951555i
\(107\) −3.77105 14.0737i −0.364561 1.36056i −0.868015 0.496538i \(-0.834604\pi\)
0.503454 0.864022i \(-0.332062\pi\)
\(108\) 8.66799 + 2.32258i 0.834077 + 0.223490i
\(109\) 4.33526 4.33526i 0.415243 0.415243i −0.468317 0.883560i \(-0.655140\pi\)
0.883560 + 0.468317i \(0.155140\pi\)
\(110\) 0 0
\(111\) 26.5398 + 7.11131i 2.51904 + 0.674976i
\(112\) 1.27792i 0.120752i
\(113\) 1.53983 5.74674i 0.144855 0.540608i −0.854906 0.518782i \(-0.826386\pi\)
0.999762 0.0218255i \(-0.00694783\pi\)
\(114\) 5.06429 8.77160i 0.474314 0.821536i
\(115\) 0 0
\(116\) 6.39243i 0.593522i
\(117\) 17.3184 + 12.9191i 1.60109 + 1.19437i
\(118\) −0.787525 0.787525i −0.0724975 0.0724975i
\(119\) 0.205342 + 0.766345i 0.0188236 + 0.0702507i
\(120\) 0 0
\(121\) 8.84918 5.10908i 0.804471 0.464462i
\(122\) 7.07542 0.640578
\(123\) −22.4831 + 12.9806i −2.02723 + 1.17042i
\(124\) −2.67309 + 9.97612i −0.240051 + 0.895882i
\(125\) 0 0
\(126\) −3.82898 6.63198i −0.341112 0.590824i
\(127\) −12.5862 + 3.37246i −1.11684 + 0.299257i −0.769606 0.638519i \(-0.779547\pi\)
−0.347238 + 0.937777i \(0.612881\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −6.12117 −0.538939
\(130\) 0 0
\(131\) −5.90639 −0.516044 −0.258022 0.966139i \(-0.583071\pi\)
−0.258022 + 0.966139i \(0.583071\pi\)
\(132\) 1.32578 2.29631i 0.115394 0.199869i
\(133\) −4.16923 + 1.11714i −0.361518 + 0.0968686i
\(134\) 1.29025 + 2.23477i 0.111460 + 0.193055i
\(135\) 0 0
\(136\) 0.160684 0.599680i 0.0137785 0.0514222i
\(137\) 10.6066 6.12370i 0.906179 0.523183i 0.0269793 0.999636i \(-0.491411\pi\)
0.879200 + 0.476453i \(0.158078\pi\)
\(138\) 25.0602 2.13326
\(139\) 0.835876 0.482593i 0.0708980 0.0409330i −0.464132 0.885766i \(-0.653634\pi\)
0.535030 + 0.844833i \(0.320300\pi\)
\(140\) 0 0
\(141\) 1.98586 + 7.41135i 0.167240 + 0.624148i
\(142\) 4.91950 + 4.91950i 0.412836 + 0.412836i
\(143\) 2.50271 1.97495i 0.209287 0.165154i
\(144\) 5.99250i 0.499375i
\(145\) 0 0
\(146\) −2.43467 + 4.21697i −0.201495 + 0.348999i
\(147\) 4.16544 15.5456i 0.343560 1.28218i
\(148\) 9.16248i 0.753151i
\(149\) −3.00429 0.804997i −0.246121 0.0659480i 0.133649 0.991029i \(-0.457330\pi\)
−0.379771 + 0.925081i \(0.623997\pi\)
\(150\) 0 0
\(151\) −10.8684 + 10.8684i −0.884459 + 0.884459i −0.993984 0.109525i \(-0.965067\pi\)
0.109525 + 0.993984i \(0.465067\pi\)
\(152\) 3.26251 + 0.874187i 0.264624 + 0.0709059i
\(153\) 0.962898 + 3.59358i 0.0778457 + 0.290524i
\(154\) −1.09146 + 0.292456i −0.0879526 + 0.0235668i
\(155\) 0 0
\(156\) −4.00163 + 10.0444i −0.320387 + 0.804194i
\(157\) −8.47200 + 8.47200i −0.676139 + 0.676139i −0.959124 0.282985i \(-0.908675\pi\)
0.282985 + 0.959124i \(0.408675\pi\)
\(158\) −9.71436 5.60859i −0.772833 0.446195i
\(159\) 9.83018 + 5.67546i 0.779584 + 0.450093i
\(160\) 0 0
\(161\) −7.55150 7.55150i −0.595141 0.595141i
\(162\) −4.46628 7.73583i −0.350904 0.607784i
\(163\) 10.3979 + 18.0097i 0.814426 + 1.41063i 0.909739 + 0.415180i \(0.136281\pi\)
−0.0953137 + 0.995447i \(0.530385\pi\)
\(164\) −6.12167 6.12167i −0.478022 0.478022i
\(165\) 0 0
\(166\) 1.51613 + 0.875338i 0.117675 + 0.0679394i
\(167\) 10.3056 + 5.94992i 0.797469 + 0.460419i 0.842585 0.538563i \(-0.181033\pi\)
−0.0451166 + 0.998982i \(0.514366\pi\)
\(168\) 2.70975 2.70975i 0.209062 0.209062i
\(169\) −8.93941 + 9.43858i −0.687647 + 0.726045i
\(170\) 0 0
\(171\) −19.5506 + 5.23857i −1.49507 + 0.400603i
\(172\) −0.528312 1.97169i −0.0402834 0.150340i
\(173\) 14.9230 + 3.99861i 1.13457 + 0.304008i 0.776768 0.629787i \(-0.216858\pi\)
0.357807 + 0.933796i \(0.383525\pi\)
\(174\) 13.5547 13.5547i 1.02758 1.02758i
\(175\) 0 0
\(176\) 0.854091 + 0.228853i 0.0643796 + 0.0172504i
\(177\) 3.33979i 0.251034i
\(178\) 1.63137 6.08837i 0.122277 0.456343i
\(179\) −0.946097 + 1.63869i −0.0707146 + 0.122481i −0.899215 0.437508i \(-0.855861\pi\)
0.828500 + 0.559989i \(0.189195\pi\)
\(180\) 0 0
\(181\) 20.4481i 1.51990i −0.649983 0.759949i \(-0.725224\pi\)
0.649983 0.759949i \(-0.274776\pi\)
\(182\) 4.23255 1.82089i 0.313737 0.134973i
\(183\) −15.0030 15.0030i −1.10905 1.10905i
\(184\) 2.16292 + 8.07211i 0.159452 + 0.595084i
\(185\) 0 0
\(186\) 26.8219 15.4856i 1.96667 1.13546i
\(187\) 0.548955 0.0401436
\(188\) −2.21587 + 1.27933i −0.161609 + 0.0933048i
\(189\) −2.96808 + 11.0770i −0.215896 + 0.805734i
\(190\) 0 0
\(191\) −10.1584 17.5949i −0.735039 1.27312i −0.954706 0.297550i \(-0.903830\pi\)
0.219667 0.975575i \(-0.429503\pi\)
\(192\) −2.89657 + 0.776134i −0.209042 + 0.0560126i
\(193\) −1.09527 + 1.89706i −0.0788392 + 0.136553i −0.902749 0.430167i \(-0.858455\pi\)
0.823910 + 0.566720i \(0.191788\pi\)
\(194\) −9.98162 −0.716639
\(195\) 0 0
\(196\) 5.36691 0.383351
\(197\) −0.759889 + 1.31617i −0.0541398 + 0.0937729i −0.891825 0.452380i \(-0.850575\pi\)
0.837685 + 0.546153i \(0.183908\pi\)
\(198\) −5.11814 + 1.37140i −0.363731 + 0.0974613i
\(199\) 3.00272 + 5.20086i 0.212857 + 0.368680i 0.952608 0.304202i \(-0.0983898\pi\)
−0.739750 + 0.672881i \(0.765056\pi\)
\(200\) 0 0
\(201\) 2.00281 7.47458i 0.141267 0.527216i
\(202\) 0.911347 0.526166i 0.0641221 0.0370209i
\(203\) −8.16903 −0.573354
\(204\) −1.61230 + 0.930864i −0.112884 + 0.0651735i
\(205\) 0 0
\(206\) −1.23486 4.60855i −0.0860367 0.321093i
\(207\) −35.4109 35.4109i −2.46123 2.46123i
\(208\) −3.58077 0.422042i −0.248281 0.0292634i
\(209\) 2.98654i 0.206583i
\(210\) 0 0
\(211\) −1.36327 + 2.36126i −0.0938515 + 0.162556i −0.909129 0.416515i \(-0.863251\pi\)
0.815277 + 0.579071i \(0.196585\pi\)
\(212\) −0.979686 + 3.65624i −0.0672851 + 0.251111i
\(213\) 20.8630i 1.42951i
\(214\) −14.0737 3.77105i −0.962061 0.257784i
\(215\) 0 0
\(216\) 6.34541 6.34541i 0.431750 0.431750i
\(217\) −12.7487 3.41601i −0.865439 0.231894i
\(218\) −1.58682 5.92208i −0.107473 0.401094i
\(219\) 14.1044 3.77926i 0.953086 0.255379i
\(220\) 0 0
\(221\) −2.21513 + 0.322281i −0.149006 + 0.0216790i
\(222\) 19.4285 19.4285i 1.30395 1.30395i
\(223\) −6.49152 3.74788i −0.434704 0.250976i 0.266645 0.963795i \(-0.414085\pi\)
−0.701349 + 0.712818i \(0.747418\pi\)
\(224\) 1.10671 + 0.638961i 0.0739454 + 0.0426924i
\(225\) 0 0
\(226\) −4.20691 4.20691i −0.279839 0.279839i
\(227\) 6.65757 + 11.5313i 0.441879 + 0.765356i 0.997829 0.0658594i \(-0.0209789\pi\)
−0.555950 + 0.831215i \(0.687646\pi\)
\(228\) −5.06429 8.77160i −0.335391 0.580914i
\(229\) 2.64090 + 2.64090i 0.174516 + 0.174516i 0.788960 0.614445i \(-0.210620\pi\)
−0.614445 + 0.788960i \(0.710620\pi\)
\(230\) 0 0
\(231\) 2.93451 + 1.69424i 0.193077 + 0.111473i
\(232\) 5.53601 + 3.19622i 0.363457 + 0.209842i
\(233\) 9.50648 9.50648i 0.622790 0.622790i −0.323454 0.946244i \(-0.604844\pi\)
0.946244 + 0.323454i \(0.104844\pi\)
\(234\) 19.8475 8.53861i 1.29747 0.558187i
\(235\) 0 0
\(236\) −1.07578 + 0.288254i −0.0700272 + 0.0187637i
\(237\) 8.70603 + 32.4913i 0.565517 + 2.11054i
\(238\) 0.766345 + 0.205342i 0.0496748 + 0.0133103i
\(239\) −10.5033 + 10.5033i −0.679400 + 0.679400i −0.959864 0.280464i \(-0.909512\pi\)
0.280464 + 0.959864i \(0.409512\pi\)
\(240\) 0 0
\(241\) 1.48479 + 0.397848i 0.0956436 + 0.0256276i 0.306323 0.951927i \(-0.400901\pi\)
−0.210680 + 0.977555i \(0.567568\pi\)
\(242\) 10.2182i 0.656848i
\(243\) 0.0348797 0.130173i 0.00223753 0.00835059i
\(244\) 3.53771 6.12749i 0.226479 0.392273i
\(245\) 0 0
\(246\) 25.9612i 1.65523i
\(247\) −1.75334 12.0512i −0.111562 0.766801i
\(248\) 7.30303 + 7.30303i 0.463743 + 0.463743i
\(249\) −1.35876 5.07096i −0.0861078 0.321359i
\(250\) 0 0
\(251\) −6.82870 + 3.94255i −0.431024 + 0.248852i −0.699783 0.714356i \(-0.746720\pi\)
0.268759 + 0.963207i \(0.413386\pi\)
\(252\) −7.65795 −0.482406
\(253\) −6.39933 + 3.69466i −0.402323 + 0.232281i
\(254\) −3.37246 + 12.5862i −0.211607 + 0.789728i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.30049 0.616415i 0.143501 0.0384509i −0.186354 0.982483i \(-0.559667\pi\)
0.329854 + 0.944032i \(0.393000\pi\)
\(258\) −3.06058 + 5.30109i −0.190544 + 0.330031i
\(259\) −11.7089 −0.727558
\(260\) 0 0
\(261\) −38.3066 −2.37112
\(262\) −2.95320 + 5.11508i −0.182449 + 0.316011i
\(263\) 23.0654 6.18036i 1.42228 0.381098i 0.535985 0.844227i \(-0.319940\pi\)
0.886290 + 0.463130i \(0.153274\pi\)
\(264\) −1.32578 2.29631i −0.0815960 0.141328i
\(265\) 0 0
\(266\) −1.11714 + 4.16923i −0.0684964 + 0.255632i
\(267\) −16.3692 + 9.45078i −1.00178 + 0.578378i
\(268\) 2.58049 0.157629
\(269\) 26.8895 15.5247i 1.63948 0.946555i 0.658470 0.752607i \(-0.271204\pi\)
0.981012 0.193949i \(-0.0621295\pi\)
\(270\) 0 0
\(271\) 2.52048 + 9.40656i 0.153108 + 0.571408i 0.999260 + 0.0384657i \(0.0122470\pi\)
−0.846152 + 0.532942i \(0.821086\pi\)
\(272\) −0.438997 0.438997i −0.0266181 0.0266181i
\(273\) −12.8359 5.11377i −0.776866 0.309499i
\(274\) 12.2474i 0.739892i
\(275\) 0 0
\(276\) 12.5301 21.7027i 0.754222 1.30635i
\(277\) −7.96424 + 29.7230i −0.478525 + 1.78588i 0.129073 + 0.991635i \(0.458800\pi\)
−0.607598 + 0.794245i \(0.707867\pi\)
\(278\) 0.965186i 0.0578880i
\(279\) −59.7819 16.0185i −3.57905 0.959003i
\(280\) 0 0
\(281\) −2.40508 + 2.40508i −0.143475 + 0.143475i −0.775196 0.631721i \(-0.782349\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(282\) 7.41135 + 1.98586i 0.441339 + 0.118256i
\(283\) 3.58042 + 13.3623i 0.212834 + 0.794307i 0.986918 + 0.161224i \(0.0515441\pi\)
−0.774084 + 0.633083i \(0.781789\pi\)
\(284\) 6.72017 1.80066i 0.398769 0.106850i
\(285\) 0 0
\(286\) −0.459007 3.15489i −0.0271416 0.186552i
\(287\) 7.82302 7.82302i 0.461779 0.461779i
\(288\) 5.18966 + 2.99625i 0.305804 + 0.176556i
\(289\) 14.3886 + 8.30728i 0.846390 + 0.488664i
\(290\) 0 0
\(291\) 21.1654 + 21.1654i 1.24074 + 1.24074i
\(292\) 2.43467 + 4.21697i 0.142478 + 0.246780i
\(293\) 2.70877 + 4.69172i 0.158248 + 0.274093i 0.934237 0.356653i \(-0.116082\pi\)
−0.775989 + 0.630746i \(0.782749\pi\)
\(294\) −11.3802 11.3802i −0.663707 0.663707i
\(295\) 0 0
\(296\) 7.93494 + 4.58124i 0.461209 + 0.266279i
\(297\) 6.87172 + 3.96739i 0.398738 + 0.230211i
\(298\) −2.19929 + 2.19929i −0.127402 + 0.127402i
\(299\) 23.6534 18.6655i 1.36791 1.07945i
\(300\) 0 0
\(301\) 2.51966 0.675142i 0.145231 0.0389145i
\(302\) 3.97811 + 14.8465i 0.228915 + 0.854321i
\(303\) −3.04815 0.816751i −0.175112 0.0469211i
\(304\) 2.38832 2.38832i 0.136980 0.136980i
\(305\) 0 0
\(306\) 3.59358 + 0.962898i 0.205432 + 0.0550452i
\(307\) 1.34151i 0.0765638i −0.999267 0.0382819i \(-0.987812\pi\)
0.999267 0.0382819i \(-0.0121885\pi\)
\(308\) −0.292456 + 1.09146i −0.0166643 + 0.0621918i
\(309\) −7.15371 + 12.3906i −0.406960 + 0.704876i
\(310\) 0 0
\(311\) 2.71377i 0.153884i 0.997036 + 0.0769419i \(0.0245156\pi\)
−0.997036 + 0.0769419i \(0.975484\pi\)
\(312\) 6.69787 + 8.48770i 0.379192 + 0.480521i
\(313\) 3.27224 + 3.27224i 0.184958 + 0.184958i 0.793512 0.608554i \(-0.208250\pi\)
−0.608554 + 0.793512i \(0.708250\pi\)
\(314\) 3.10097 + 11.5730i 0.174998 + 0.653100i
\(315\) 0 0
\(316\) −9.71436 + 5.60859i −0.546475 + 0.315508i
\(317\) −3.50975 −0.197127 −0.0985635 0.995131i \(-0.531425\pi\)
−0.0985635 + 0.995131i \(0.531425\pi\)
\(318\) 9.83018 5.67546i 0.551249 0.318264i
\(319\) −1.46293 + 5.45972i −0.0819082 + 0.305686i
\(320\) 0 0
\(321\) 21.8462 + 37.8387i 1.21934 + 2.11195i
\(322\) −10.3155 + 2.76404i −0.574862 + 0.154034i
\(323\) 1.04847 1.81600i 0.0583382 0.101045i
\(324\) −8.93256 −0.496253
\(325\) 0 0
\(326\) 20.7958 1.15177
\(327\) −9.19265 + 15.9221i −0.508355 + 0.880496i
\(328\) −8.36236 + 2.24069i −0.461734 + 0.123721i
\(329\) −1.63489 2.83171i −0.0901342 0.156117i
\(330\) 0 0
\(331\) 2.17420 8.11424i 0.119505 0.445999i −0.880079 0.474827i \(-0.842511\pi\)
0.999584 + 0.0288278i \(0.00917745\pi\)
\(332\) 1.51613 0.875338i 0.0832085 0.0480404i
\(333\) −54.9062 −3.00884
\(334\) 10.3056 5.94992i 0.563895 0.325565i
\(335\) 0 0
\(336\) −0.991839 3.70159i −0.0541092 0.201938i
\(337\) −6.40557 6.40557i −0.348934 0.348934i 0.510779 0.859712i \(-0.329357\pi\)
−0.859712 + 0.510779i \(0.829357\pi\)
\(338\) 3.70435 + 12.4611i 0.201490 + 0.677792i
\(339\) 17.8410i 0.968988i
\(340\) 0 0
\(341\) −4.56613 + 7.90877i −0.247270 + 0.428284i
\(342\) −5.23857 + 19.5506i −0.283269 + 1.05717i
\(343\) 15.8040i 0.853334i
\(344\) −1.97169 0.528312i −0.106306 0.0284847i
\(345\) 0 0
\(346\) 10.9244 10.9244i 0.587299 0.587299i
\(347\) 18.2716 + 4.89586i 0.980871 + 0.262824i 0.713412 0.700745i \(-0.247149\pi\)
0.267460 + 0.963569i \(0.413816\pi\)
\(348\) −4.96138 18.5161i −0.265958 0.992568i
\(349\) −21.6314 + 5.79612i −1.15790 + 0.310259i −0.786128 0.618064i \(-0.787917\pi\)
−0.371775 + 0.928323i \(0.621251\pi\)
\(350\) 0 0
\(351\) −30.0578 11.9749i −1.60437 0.639171i
\(352\) 0.625238 0.625238i 0.0333253 0.0333253i
\(353\) −27.5457 15.9035i −1.46611 0.846459i −0.466828 0.884348i \(-0.654603\pi\)
−0.999282 + 0.0378892i \(0.987937\pi\)
\(354\) 2.89234 + 1.66990i 0.153726 + 0.0887540i
\(355\) 0 0
\(356\) −4.45700 4.45700i −0.236220 0.236220i
\(357\) −1.18957 2.06040i −0.0629588 0.109048i
\(358\) 0.946097 + 1.63869i 0.0500028 + 0.0866073i
\(359\) 8.54852 + 8.54852i 0.451173 + 0.451173i 0.895744 0.444570i \(-0.146644\pi\)
−0.444570 + 0.895744i \(0.646644\pi\)
\(360\) 0 0
\(361\) −6.57472 3.79591i −0.346038 0.199785i
\(362\) −17.7086 10.2241i −0.930743 0.537365i
\(363\) −21.6669 + 21.6669i −1.13722 + 1.13722i
\(364\) 0.539337 4.57594i 0.0282690 0.239844i
\(365\) 0 0
\(366\) −20.4944 + 5.49147i −1.07126 + 0.287044i
\(367\) −0.788653 2.94329i −0.0411674 0.153639i 0.942283 0.334819i \(-0.108675\pi\)
−0.983450 + 0.181180i \(0.942008\pi\)
\(368\) 8.07211 + 2.16292i 0.420788 + 0.112750i
\(369\) 36.6841 36.6841i 1.90970 1.90970i
\(370\) 0 0
\(371\) −4.67239 1.25196i −0.242578 0.0649987i
\(372\) 30.9712i 1.60578i
\(373\) −0.996016 + 3.71718i −0.0515717 + 0.192468i −0.986906 0.161297i \(-0.948432\pi\)
0.935334 + 0.353766i \(0.115099\pi\)
\(374\) 0.274477 0.475409i 0.0141929 0.0245828i
\(375\) 0 0
\(376\) 2.55866i 0.131953i
\(377\) 2.69788 22.8898i 0.138948 1.17888i
\(378\) 8.10894 + 8.10894i 0.417079 + 0.417079i
\(379\) −2.14311 7.99821i −0.110084 0.410841i 0.888788 0.458319i \(-0.151548\pi\)
−0.998872 + 0.0474782i \(0.984882\pi\)
\(380\) 0 0
\(381\) 33.8393 19.5371i 1.73364 1.00092i
\(382\) −20.3169 −1.03950
\(383\) 3.78044 2.18264i 0.193172 0.111528i −0.400295 0.916386i \(-0.631092\pi\)
0.593466 + 0.804859i \(0.297759\pi\)
\(384\) −0.776134 + 2.89657i −0.0396069 + 0.147815i
\(385\) 0 0
\(386\) 1.09527 + 1.89706i 0.0557477 + 0.0965579i
\(387\) 11.8153 3.16591i 0.600607 0.160932i
\(388\) −4.99081 + 8.64434i −0.253370 + 0.438850i
\(389\) 5.85321 0.296770 0.148385 0.988930i \(-0.452593\pi\)
0.148385 + 0.988930i \(0.452593\pi\)
\(390\) 0 0
\(391\) 5.18823 0.262380
\(392\) 2.68346 4.64788i 0.135535 0.234754i
\(393\) 17.1083 4.58415i 0.862998 0.231240i
\(394\) 0.759889 + 1.31617i 0.0382826 + 0.0663075i
\(395\) 0 0
\(396\) −1.37140 + 5.11814i −0.0689156 + 0.257196i
\(397\) −12.0807 + 6.97482i −0.606315 + 0.350056i −0.771522 0.636203i \(-0.780504\pi\)
0.165207 + 0.986259i \(0.447171\pi\)
\(398\) 6.00544 0.301026
\(399\) 11.2094 6.47177i 0.561173 0.323994i
\(400\) 0 0
\(401\) −3.42776 12.7926i −0.171174 0.638830i −0.997172 0.0751566i \(-0.976054\pi\)
0.825998 0.563673i \(-0.190612\pi\)
\(402\) −5.47177 5.47177i −0.272907 0.272907i
\(403\) 13.7821 34.5940i 0.686534 1.72325i
\(404\) 1.05233i 0.0523555i
\(405\) 0 0
\(406\) −4.08452 + 7.07459i −0.202711 + 0.351106i
\(407\) −2.09686 + 7.82560i −0.103938 + 0.387900i
\(408\) 1.86173i 0.0921693i
\(409\) 25.0445 + 6.71066i 1.23837 + 0.331821i 0.817834 0.575454i \(-0.195175\pi\)
0.420538 + 0.907275i \(0.361841\pi\)
\(410\) 0 0
\(411\) −25.9698 + 25.9698i −1.28100 + 1.28100i
\(412\) −4.60855 1.23486i −0.227047 0.0608371i
\(413\) −0.368366 1.37476i −0.0181261 0.0676476i
\(414\) −48.3722 + 12.9613i −2.37736 + 0.637012i
\(415\) 0 0
\(416\) −2.15588 + 2.89001i −0.105701 + 0.141695i
\(417\) −2.04662 + 2.04662i −0.100223 + 0.100223i
\(418\) 2.58642 + 1.49327i 0.126506 + 0.0730383i
\(419\) 17.8637 + 10.3136i 0.872698 + 0.503852i 0.868244 0.496138i \(-0.165249\pi\)
0.00445381 + 0.999990i \(0.498582\pi\)
\(420\) 0 0
\(421\) −21.3596 21.3596i −1.04100 1.04100i −0.999123 0.0418813i \(-0.986665\pi\)
−0.0418813 0.999123i \(-0.513335\pi\)
\(422\) 1.36327 + 2.36126i 0.0663630 + 0.114944i
\(423\) −7.66639 13.2786i −0.372753 0.645627i
\(424\) 2.67655 + 2.67655i 0.129985 + 0.129985i
\(425\) 0 0
\(426\) −18.0679 10.4315i −0.875392 0.505408i
\(427\) 7.83046 + 4.52092i 0.378943 + 0.218783i
\(428\) −10.3027 + 10.3027i −0.498000 + 0.498000i
\(429\) −5.71644 + 7.66303i −0.275992 + 0.369975i
\(430\) 0 0
\(431\) 34.1885 9.16078i 1.64680 0.441259i 0.688087 0.725628i \(-0.258451\pi\)
0.958715 + 0.284369i \(0.0917839\pi\)
\(432\) −2.32258 8.66799i −0.111745 0.417039i
\(433\) −28.8432 7.72850i −1.38611 0.371408i −0.512776 0.858523i \(-0.671383\pi\)
−0.873338 + 0.487114i \(0.838049\pi\)
\(434\) −9.33270 + 9.33270i −0.447984 + 0.447984i
\(435\) 0 0
\(436\) −5.92208 1.58682i −0.283616 0.0759947i
\(437\) 28.2261i 1.35024i
\(438\) 3.77926 14.1044i 0.180580 0.673934i
\(439\) −8.00470 + 13.8645i −0.382043 + 0.661718i −0.991354 0.131213i \(-0.958113\pi\)
0.609311 + 0.792931i \(0.291446\pi\)
\(440\) 0 0
\(441\) 32.1612i 1.53149i
\(442\) −0.828462 + 2.07950i −0.0394059 + 0.0989117i
\(443\) −21.6681 21.6681i −1.02948 1.02948i −0.999552 0.0299327i \(-0.990471\pi\)
−0.0299327 0.999552i \(-0.509529\pi\)
\(444\) −7.11131 26.5398i −0.337488 1.25952i
\(445\) 0 0
\(446\) −6.49152 + 3.74788i −0.307382 + 0.177467i
\(447\) 9.32692 0.441148
\(448\) 1.10671 0.638961i 0.0522873 0.0301881i
\(449\) 2.31771 8.64982i 0.109380 0.408210i −0.889426 0.457080i \(-0.848895\pi\)
0.998805 + 0.0488699i \(0.0155620\pi\)
\(450\) 0 0
\(451\) −3.82750 6.62943i −0.180230 0.312168i
\(452\) −5.74674 + 1.53983i −0.270304 + 0.0724277i
\(453\) 23.0458 39.9164i 1.08278 1.87544i
\(454\) 13.3151 0.624911
\(455\) 0 0
\(456\) −10.1286 −0.474314
\(457\) 12.2784 21.2668i 0.574360 0.994820i −0.421751 0.906712i \(-0.638584\pi\)
0.996111 0.0881087i \(-0.0280823\pi\)
\(458\) 3.60754 0.966636i 0.168569 0.0451679i
\(459\) −2.78561 4.82482i −0.130021 0.225203i
\(460\) 0 0
\(461\) −2.58880 + 9.66155i −0.120573 + 0.449983i −0.999643 0.0267083i \(-0.991497\pi\)
0.879071 + 0.476692i \(0.158164\pi\)
\(462\) 2.93451 1.69424i 0.136526 0.0788232i
\(463\) 27.8834 1.29585 0.647926 0.761703i \(-0.275636\pi\)
0.647926 + 0.761703i \(0.275636\pi\)
\(464\) 5.53601 3.19622i 0.257003 0.148381i
\(465\) 0 0
\(466\) −3.47961 12.9861i −0.161190 0.601569i
\(467\) 22.3548 + 22.3548i 1.03446 + 1.03446i 0.999385 + 0.0350738i \(0.0111666\pi\)
0.0350738 + 0.999385i \(0.488833\pi\)
\(468\) 2.52909 21.4577i 0.116907 0.991884i
\(469\) 3.29767i 0.152272i
\(470\) 0 0
\(471\) 17.9643 31.1151i 0.827752 1.43371i
\(472\) −0.288254 + 1.07578i −0.0132680 + 0.0495167i
\(473\) 1.80491i 0.0829897i
\(474\) 32.4913 + 8.70603i 1.49238 + 0.399881i
\(475\) 0 0
\(476\) 0.561003 0.561003i 0.0257136 0.0257136i
\(477\) −21.9100 5.87077i −1.00319 0.268804i
\(478\) 3.84446 + 14.3477i 0.175842 + 0.656250i
\(479\) −2.16670 + 0.580565i −0.0989990 + 0.0265267i −0.307978 0.951393i \(-0.599652\pi\)
0.208979 + 0.977920i \(0.432986\pi\)
\(480\) 0 0
\(481\) 3.86695 32.8087i 0.176318 1.49595i
\(482\) 1.08694 1.08694i 0.0495088 0.0495088i
\(483\) 27.7344 + 16.0125i 1.26196 + 0.728593i
\(484\) −8.84918 5.10908i −0.402236 0.232231i
\(485\) 0 0
\(486\) −0.0952932 0.0952932i −0.00432259 0.00432259i
\(487\) −11.5045 19.9264i −0.521319 0.902951i −0.999693 0.0247947i \(-0.992107\pi\)
0.478373 0.878157i \(-0.341227\pi\)
\(488\) −3.53771 6.12749i −0.160145 0.277379i
\(489\) −44.0961 44.0961i −1.99410 1.99410i
\(490\) 0 0
\(491\) −2.22242 1.28311i −0.100296 0.0579061i 0.449013 0.893525i \(-0.351776\pi\)
−0.549309 + 0.835619i \(0.685109\pi\)
\(492\) 22.4831 + 12.9806i 1.01362 + 0.585211i
\(493\) 2.80625 2.80625i 0.126387 0.126387i
\(494\) −11.3133 4.50718i −0.509011 0.202787i
\(495\) 0 0
\(496\) 9.97612 2.67309i 0.447941 0.120025i
\(497\) 2.30111 + 8.58785i 0.103219 + 0.385218i
\(498\) −5.07096 1.35876i −0.227235 0.0608874i
\(499\) 6.70967 6.70967i 0.300366 0.300366i −0.540791 0.841157i \(-0.681875\pi\)
0.841157 + 0.540791i \(0.181875\pi\)
\(500\) 0 0
\(501\) −34.4687 9.23587i −1.53995 0.412628i
\(502\) 7.88510i 0.351929i
\(503\) −2.94883 + 11.0052i −0.131482 + 0.490697i −0.999988 0.00498191i \(-0.998414\pi\)
0.868506 + 0.495679i \(0.165081\pi\)
\(504\) −3.82898 + 6.63198i −0.170556 + 0.295412i
\(505\) 0 0
\(506\) 7.38931i 0.328495i
\(507\) 18.5680 34.2777i 0.824636 1.52233i
\(508\) 9.21373 + 9.21373i 0.408793 + 0.408793i
\(509\) −10.3486 38.6216i −0.458695 1.71187i −0.676991 0.735991i \(-0.736716\pi\)
0.218296 0.975883i \(-0.429950\pi\)
\(510\) 0 0
\(511\) −5.38896 + 3.11132i −0.238394 + 0.137637i
\(512\) −1.00000 −0.0441942
\(513\) 26.2490 15.1549i 1.15892 0.669104i
\(514\) 0.616415 2.30049i 0.0271889 0.101470i
\(515\) 0 0
\(516\) 3.06058 + 5.30109i 0.134735 + 0.233367i
\(517\) −2.18533 + 0.585558i −0.0961108 + 0.0257528i
\(518\) −5.85447 + 10.1402i −0.257231 + 0.445537i
\(519\) −46.3290 −2.03362
\(520\) 0 0
\(521\) 20.3944 0.893494 0.446747 0.894660i \(-0.352582\pi\)
0.446747 + 0.894660i \(0.352582\pi\)
\(522\) −19.1533 + 33.1745i −0.838318 + 1.45201i
\(523\) −24.8222 + 6.65109i −1.08540 + 0.290832i −0.756806 0.653640i \(-0.773241\pi\)
−0.328593 + 0.944472i \(0.606574\pi\)
\(524\) 2.95320 + 5.11508i 0.129011 + 0.223453i
\(525\) 0 0
\(526\) 6.18036 23.0654i 0.269477 1.00570i
\(527\) 5.55296 3.20600i 0.241891 0.139656i
\(528\) −2.65156 −0.115394
\(529\) −40.5622 + 23.4186i −1.76358 + 1.01820i
\(530\) 0 0
\(531\) −1.72736 6.44660i −0.0749611 0.279759i
\(532\) 3.05209 + 3.05209i 0.132325 + 0.132325i
\(533\) 19.3367 + 24.5039i 0.837564 + 1.06138i
\(534\) 18.9016i 0.817951i
\(535\) 0 0
\(536\) 1.29025 2.23477i 0.0557302 0.0965275i
\(537\) 1.46859 5.48087i 0.0633746 0.236517i
\(538\) 31.0493i 1.33863i
\(539\) 4.58383 + 1.22823i 0.197440 + 0.0529038i
\(540\) 0 0
\(541\) −19.8508 + 19.8508i −0.853451 + 0.853451i −0.990557 0.137105i \(-0.956220\pi\)
0.137105 + 0.990557i \(0.456220\pi\)
\(542\) 9.40656 + 2.52048i 0.404046 + 0.108264i
\(543\) 15.8705 + 59.2294i 0.681067 + 2.54178i
\(544\) −0.599680 + 0.160684i −0.0257111 + 0.00688926i
\(545\) 0 0
\(546\) −10.8466 + 8.55936i −0.464193 + 0.366307i
\(547\) 22.0342 22.0342i 0.942115 0.942115i −0.0562990 0.998414i \(-0.517930\pi\)
0.998414 + 0.0562990i \(0.0179300\pi\)
\(548\) −10.6066 6.12370i −0.453090 0.261591i
\(549\) 36.7190 + 21.1997i 1.56713 + 0.904782i
\(550\) 0 0
\(551\) 15.2672 + 15.2672i 0.650404 + 0.650404i
\(552\) −12.5301 21.7027i −0.533316 0.923730i
\(553\) −7.16734 12.4142i −0.304786 0.527905i
\(554\) 21.7587 + 21.7587i 0.924439 + 0.924439i
\(555\) 0 0
\(556\) −0.835876 0.482593i −0.0354490 0.0204665i
\(557\) −24.7384 14.2827i −1.04820 0.605179i −0.126055 0.992023i \(-0.540232\pi\)
−0.922145 + 0.386844i \(0.873565\pi\)
\(558\) −43.7634 + 43.7634i −1.85265 + 1.85265i
\(559\) 1.05963 + 7.28312i 0.0448174 + 0.308043i
\(560\) 0 0
\(561\) −1.59009 + 0.426062i −0.0671335 + 0.0179884i
\(562\) 0.880320 + 3.28540i 0.0371340 + 0.138586i
\(563\) −1.87859 0.503366i −0.0791731 0.0212144i 0.219015 0.975721i \(-0.429716\pi\)
−0.298188 + 0.954507i \(0.596382\pi\)
\(564\) 5.42548 5.42548i 0.228454 0.228454i
\(565\) 0 0
\(566\) 13.3623 + 3.58042i 0.561660 + 0.150496i
\(567\) 11.4151i 0.479390i
\(568\) 1.80066 6.72017i 0.0755542 0.281972i
\(569\) −13.6532 + 23.6481i −0.572372 + 0.991378i 0.423949 + 0.905686i \(0.360643\pi\)
−0.996322 + 0.0856922i \(0.972690\pi\)
\(570\) 0 0
\(571\) 34.7539i 1.45441i 0.686423 + 0.727203i \(0.259180\pi\)
−0.686423 + 0.727203i \(0.740820\pi\)
\(572\) −2.96171 1.17993i −0.123836 0.0493354i
\(573\) 43.0807 + 43.0807i 1.79972 + 1.79972i
\(574\) −2.86343 10.6864i −0.119517 0.446044i
\(575\) 0 0
\(576\) 5.18966 2.99625i 0.216236 0.124844i
\(577\) 22.1256 0.921103 0.460551 0.887633i \(-0.347652\pi\)
0.460551 + 0.887633i \(0.347652\pi\)
\(578\) 14.3886 8.30728i 0.598488 0.345537i
\(579\) 1.70015 6.34504i 0.0706558 0.263691i
\(580\) 0 0
\(581\) 1.11861 + 1.93750i 0.0464079 + 0.0803809i
\(582\) 28.9125 7.74707i 1.19846 0.321126i
\(583\) −1.67348 + 2.89856i −0.0693086 + 0.120046i
\(584\) 4.86934 0.201495
\(585\) 0 0
\(586\) 5.41754 0.223796
\(587\) −16.6364 + 28.8151i −0.686657 + 1.18932i 0.286256 + 0.958153i \(0.407589\pi\)
−0.972913 + 0.231172i \(0.925744\pi\)
\(588\) −15.5456 + 4.16544i −0.641091 + 0.171780i
\(589\) 17.4420 + 30.2104i 0.718685 + 1.24480i
\(590\) 0 0
\(591\) 1.17955 4.40214i 0.0485202 0.181080i
\(592\) 7.93494 4.58124i 0.326124 0.188288i
\(593\) −1.18487 −0.0486567 −0.0243283 0.999704i \(-0.507745\pi\)
−0.0243283 + 0.999704i \(0.507745\pi\)
\(594\) 6.87172 3.96739i 0.281950 0.162784i
\(595\) 0 0
\(596\) 0.804997 + 3.00429i 0.0329740 + 0.123061i
\(597\) −12.7342 12.7342i −0.521174 0.521174i
\(598\) −4.33812 29.8172i −0.177399 1.21932i
\(599\) 0.947362i 0.0387082i −0.999813 0.0193541i \(-0.993839\pi\)
0.999813 0.0193541i \(-0.00616098\pi\)
\(600\) 0 0
\(601\) 9.46190 16.3885i 0.385959 0.668500i −0.605943 0.795508i \(-0.707204\pi\)
0.991902 + 0.127008i \(0.0405373\pi\)
\(602\) 0.675142 2.51966i 0.0275167 0.102694i
\(603\) 15.4636i 0.629727i
\(604\) 14.8465 + 3.97811i 0.604096 + 0.161867i
\(605\) 0 0
\(606\) −2.23140 + 2.23140i −0.0906446 + 0.0906446i
\(607\) 18.7294 + 5.01853i 0.760204 + 0.203696i 0.618039 0.786147i \(-0.287927\pi\)
0.142164 + 0.989843i \(0.454594\pi\)
\(608\) −0.874187 3.26251i −0.0354530 0.132312i
\(609\) 23.6622 6.34026i 0.958839 0.256920i
\(610\) 0 0
\(611\) 8.47443 3.64580i 0.342839 0.147493i
\(612\) 2.63069 2.63069i 0.106339 0.106339i
\(613\) 5.86909 + 3.38852i 0.237050 + 0.136861i 0.613820 0.789446i \(-0.289632\pi\)
−0.376770 + 0.926307i \(0.622965\pi\)
\(614\) −1.16178 0.670753i −0.0468856 0.0270694i
\(615\) 0 0
\(616\) 0.799006 + 0.799006i 0.0321929 + 0.0321929i
\(617\) −4.57750 7.92846i −0.184283 0.319188i 0.759052 0.651030i \(-0.225663\pi\)
−0.943335 + 0.331843i \(0.892330\pi\)
\(618\) 7.15371 + 12.3906i 0.287764 + 0.498422i
\(619\) −5.10375 5.10375i −0.205137 0.205137i 0.597060 0.802197i \(-0.296336\pi\)
−0.802197 + 0.597060i \(0.796336\pi\)
\(620\) 0 0
\(621\) 64.9454 + 37.4963i 2.60617 + 1.50467i
\(622\) 2.35019 + 1.35688i 0.0942341 + 0.0544061i
\(623\) 5.69570 5.69570i 0.228193 0.228193i
\(624\) 10.6995 1.55668i 0.428323 0.0623170i
\(625\) 0 0
\(626\) 4.46996 1.19772i 0.178656 0.0478706i
\(627\) −2.31796 8.65073i −0.0925702 0.345477i
\(628\) 11.5730 + 3.10097i 0.461811 + 0.123742i
\(629\) 4.02230 4.02230i 0.160380 0.160380i
\(630\) 0 0
\(631\) 9.61001 + 2.57499i 0.382568 + 0.102509i 0.444978 0.895542i \(-0.353212\pi\)
−0.0624090 + 0.998051i \(0.519878\pi\)
\(632\) 11.2172i 0.446195i
\(633\) 2.11616 7.89762i 0.0841099 0.313902i
\(634\) −1.75487 + 3.03953i −0.0696949 + 0.120715i
\(635\) 0 0
\(636\) 11.3509i 0.450093i
\(637\) −19.2177 2.26506i −0.761431 0.0897451i
\(638\) 3.99679 + 3.99679i 0.158234 + 0.158234i
\(639\) 10.7905 + 40.2706i 0.426865 + 1.59308i
\(640\) 0 0
\(641\) −7.80132 + 4.50409i −0.308134 + 0.177901i −0.646091 0.763260i \(-0.723597\pi\)
0.337957 + 0.941161i \(0.390264\pi\)
\(642\) 43.6924 1.72440
\(643\) 3.34673 1.93223i 0.131982 0.0761998i −0.432555 0.901607i \(-0.642388\pi\)
0.564537 + 0.825408i \(0.309055\pi\)
\(644\) −2.76404 + 10.3155i −0.108918 + 0.406489i
\(645\) 0 0
\(646\) −1.04847 1.81600i −0.0412513 0.0714494i
\(647\) −2.16676 + 0.580581i −0.0851841 + 0.0228250i −0.301159 0.953574i \(-0.597374\pi\)
0.215975 + 0.976399i \(0.430707\pi\)
\(648\) −4.46628 + 7.73583i −0.175452 + 0.303892i
\(649\) −0.984781 −0.0386560
\(650\) 0 0
\(651\) 39.5788 1.55122
\(652\) 10.3979 18.0097i 0.407213 0.705313i
\(653\) 21.0761 5.64733i 0.824773 0.220997i 0.178341 0.983969i \(-0.442927\pi\)
0.646432 + 0.762972i \(0.276260\pi\)
\(654\) 9.19265 + 15.9221i 0.359461 + 0.622605i
\(655\) 0 0
\(656\) −2.24069 + 8.36236i −0.0874842 + 0.326495i
\(657\) −25.2702 + 14.5898i −0.985885 + 0.569201i
\(658\) −3.26977 −0.127469
\(659\) 39.1338 22.5939i 1.52444 0.880134i 0.524856 0.851191i \(-0.324119\pi\)
0.999581 0.0289434i \(-0.00921424\pi\)
\(660\) 0 0
\(661\) −0.707218 2.63937i −0.0275076 0.102660i 0.950807 0.309783i \(-0.100256\pi\)
−0.978315 + 0.207123i \(0.933590\pi\)
\(662\) −5.94003 5.94003i −0.230866 0.230866i
\(663\) 6.16615 2.65275i 0.239473 0.103024i
\(664\) 1.75068i 0.0679394i
\(665\) 0 0
\(666\) −27.4531 + 47.5501i −1.06379 + 1.84253i
\(667\) −13.8263 + 51.6004i −0.535356 + 1.99798i
\(668\) 11.8998i 0.460419i
\(669\) 21.7120 + 5.81771i 0.839434 + 0.224926i
\(670\) 0 0
\(671\) 4.42382 4.42382i 0.170780 0.170780i
\(672\) −3.70159 0.991839i −0.142792 0.0382610i
\(673\) 12.0264 + 44.8831i 0.463583 + 1.73012i 0.661544 + 0.749906i \(0.269901\pi\)
−0.197961 + 0.980210i \(0.563432\pi\)
\(674\) −8.75017 + 2.34460i −0.337044 + 0.0903107i
\(675\) 0 0
\(676\) 12.6438 + 3.02247i 0.486298 + 0.116249i
\(677\) 19.7486 19.7486i 0.758999 0.758999i −0.217141 0.976140i \(-0.569673\pi\)
0.976140 + 0.217141i \(0.0696732\pi\)
\(678\) 15.4507 + 8.92048i 0.593381 + 0.342589i
\(679\) −11.0468 6.37787i −0.423937 0.244760i
\(680\) 0 0
\(681\) −28.2339 28.2339i −1.08193 1.08193i
\(682\) 4.56613 + 7.90877i 0.174846 + 0.302843i
\(683\) −4.76460 8.25253i −0.182312 0.315774i 0.760355 0.649508i \(-0.225025\pi\)
−0.942668 + 0.333733i \(0.891692\pi\)
\(684\) 14.3120 + 14.3120i 0.547234 + 0.547234i
\(685\) 0 0
\(686\) 13.6866 + 7.90198i 0.522558 + 0.301699i
\(687\) −9.69924 5.59986i −0.370049 0.213648i
\(688\) −1.44337 + 1.44337i −0.0550281 + 0.0550281i
\(689\) 5.05111 12.6787i 0.192432 0.483019i
\(690\) 0 0
\(691\) 0.594540 0.159306i 0.0226174 0.00606030i −0.247493 0.968890i \(-0.579607\pi\)
0.270110 + 0.962829i \(0.412940\pi\)
\(692\) −3.99861 14.9230i −0.152004 0.567287i
\(693\) −6.54059 1.75255i −0.248456 0.0665737i
\(694\) 13.3757 13.3757i 0.507736 0.507736i
\(695\) 0 0
\(696\) −18.5161 4.96138i −0.701852 0.188061i
\(697\) 5.37479i 0.203585i
\(698\) −5.79612 + 21.6314i −0.219386 + 0.818761i
\(699\) −20.1579 + 34.9145i −0.762441 + 1.32059i
\(700\) 0 0
\(701\) 18.0552i 0.681935i −0.940075 0.340968i \(-0.889245\pi\)
0.940075 0.340968i \(-0.110755\pi\)
\(702\) −25.3994 + 20.0434i −0.958640 + 0.756489i
\(703\) 21.8830 + 21.8830i 0.825332 + 0.825332i
\(704\) −0.228853 0.854091i −0.00862522 0.0321898i
\(705\) 0 0
\(706\) −27.5457 + 15.9035i −1.03670 + 0.598537i
\(707\) 1.34480 0.0505764
\(708\) 2.89234 1.66990i 0.108701 0.0627585i
\(709\) 5.22810 19.5115i 0.196345 0.732771i −0.795569 0.605863i \(-0.792828\pi\)
0.991914 0.126908i \(-0.0405053\pi\)
\(710\) 0 0
\(711\) −33.6095 58.2133i −1.26045 2.18317i
\(712\) −6.08837 + 1.63137i −0.228171 + 0.0611384i
\(713\) −43.1550 + 74.7467i −1.61617 + 2.79929i
\(714\) −2.37914 −0.0890372
\(715\) 0 0
\(716\) 1.89219 0.0707146
\(717\) 22.2715 38.5754i 0.831745 1.44062i
\(718\) 11.6775 3.12897i 0.435800 0.116772i
\(719\) −8.30123 14.3782i −0.309584 0.536215i 0.668688 0.743543i \(-0.266856\pi\)
−0.978271 + 0.207329i \(0.933523\pi\)
\(720\) 0 0
\(721\) 1.57805 5.88938i 0.0587698 0.219332i
\(722\) −6.57472 + 3.79591i −0.244686 + 0.141269i
\(723\) −4.60957 −0.171432
\(724\) −17.7086 + 10.2241i −0.658135 + 0.379974i
\(725\) 0 0
\(726\) 7.93065 + 29.5976i 0.294334 + 1.09847i
\(727\) 3.52264 + 3.52264i 0.130648 + 0.130648i 0.769407 0.638759i \(-0.220552\pi\)
−0.638759 + 0.769407i \(0.720552\pi\)
\(728\) −3.69321 2.75505i −0.136880 0.102109i
\(729\) 27.2018i 1.00747i
\(730\) 0 0
\(731\) −0.633636 + 1.09749i −0.0234359 + 0.0405922i
\(732\) −5.49147 + 20.4944i −0.202971 + 0.757497i
\(733\) 9.74855i 0.360071i −0.983660 0.180035i \(-0.942379\pi\)
0.983660 0.180035i \(-0.0576213\pi\)
\(734\) −2.94329 0.788653i −0.108639 0.0291097i
\(735\) 0 0
\(736\) 5.90920 5.90920i 0.217816 0.217816i
\(737\) 2.20398 + 0.590554i 0.0811845 + 0.0217533i
\(738\) −13.4273 50.1115i −0.494267 1.84463i
\(739\) −9.31015 + 2.49465i −0.342479 + 0.0917670i −0.425959 0.904742i \(-0.640063\pi\)
0.0834798 + 0.996509i \(0.473397\pi\)
\(740\) 0 0
\(741\) 14.4320 + 33.5464i 0.530174 + 1.23236i
\(742\) −3.42043 + 3.42043i −0.125568 + 0.125568i
\(743\) −46.5667 26.8853i −1.70837 0.986326i −0.936586 0.350439i \(-0.886032\pi\)
−0.771782 0.635888i \(-0.780634\pi\)
\(744\) −26.8219 15.4856i −0.983337 0.567730i
\(745\) 0 0
\(746\) 2.72117 + 2.72117i 0.0996290 + 0.0996290i
\(747\) 5.24547 + 9.08541i 0.191922 + 0.332418i
\(748\) −0.274477 0.475409i −0.0100359 0.0173827i
\(749\) −13.1660 13.1660i −0.481077 0.481077i
\(750\) 0 0
\(751\) 18.9911 + 10.9645i 0.692994 + 0.400100i 0.804733 0.593637i \(-0.202309\pi\)
−0.111739 + 0.993738i \(0.535642\pi\)
\(752\) 2.21587 + 1.27933i 0.0808043 + 0.0466524i
\(753\) 16.7199 16.7199i 0.609305 0.609305i
\(754\) −18.4742 13.7813i −0.672791 0.501886i
\(755\) 0 0
\(756\) 11.0770 2.96808i 0.402867 0.107948i
\(757\) −12.6177 47.0899i −0.458598 1.71151i −0.677290 0.735716i \(-0.736846\pi\)
0.218692 0.975794i \(-0.429821\pi\)
\(758\) −7.99821 2.14311i −0.290508 0.0778414i
\(759\) 15.6686 15.6686i 0.568733 0.568733i
\(760\) 0 0
\(761\) 41.5088 + 11.1222i 1.50469 + 0.403181i 0.914668 0.404206i \(-0.132452\pi\)
0.590023 + 0.807386i \(0.299119\pi\)
\(762\) 39.0743i 1.41551i
\(763\) 2.02783 7.56796i 0.0734123 0.273978i
\(764\) −10.1584 + 17.5949i −0.367520 + 0.636562i
\(765\) 0 0
\(766\) 4.36528i 0.157724i
\(767\) 3.97377 0.578146i 0.143484 0.0208756i
\(768\) 2.12044 + 2.12044i 0.0765147 + 0.0765147i
\(769\) 8.98900 + 33.5474i 0.324152 + 1.20975i 0.915162 + 0.403087i \(0.132063\pi\)
−0.591010 + 0.806664i \(0.701271\pi\)
\(770\) 0 0
\(771\) −6.18511 + 3.57098i −0.222751 + 0.128606i
\(772\) 2.19054 0.0788392
\(773\) 17.9285 10.3510i 0.644843 0.372300i −0.141635 0.989919i \(-0.545236\pi\)
0.786478 + 0.617619i \(0.211903\pi\)
\(774\) 3.16591 11.8153i 0.113796 0.424693i
\(775\) 0 0
\(776\) 4.99081 + 8.64434i 0.179160 + 0.310314i
\(777\) 33.9158 9.08770i 1.21672 0.326020i
\(778\) 2.92660 5.06903i 0.104924 0.181733i
\(779\) −29.2411 −1.04767
\(780\) 0 0
\(781\) 6.15173 0.220126
\(782\) 2.59412 4.49314i 0.0927654 0.160674i
\(783\) 55.4095 14.8469i 1.98017 0.530586i
\(784\) −2.68346 4.64788i −0.0958378 0.165996i
\(785\) 0 0
\(786\) 4.58415 17.1083i 0.163511 0.610232i
\(787\) −18.3969 + 10.6214i −0.655777 + 0.378613i −0.790666 0.612248i \(-0.790266\pi\)
0.134889 + 0.990861i \(0.456932\pi\)
\(788\) 1.51978 0.0541398
\(789\) −62.0139 + 35.8037i −2.20775 + 1.27465i
\(790\) 0 0
\(791\) −1.96779 7.34389i −0.0699665 0.261119i
\(792\) 3.74674 + 3.74674i 0.133135 + 0.133135i
\(793\) −15.2538 + 20.4481i −0.541677 + 0.726132i
\(794\) 13.9496i 0.495054i
\(795\) 0 0
\(796\) 3.00272 5.20086i 0.106429 0.184340i
\(797\) −4.09634 + 15.2878i −0.145100 + 0.541520i 0.854651 + 0.519203i \(0.173771\pi\)
−0.999751 + 0.0223172i \(0.992896\pi\)
\(798\) 12.9435i 0.458196i
\(799\) 1.53438 + 0.411136i 0.0542825 + 0.0145449i
\(800\) 0 0
\(801\) 26.7086 26.7086i 0.943701 0.943701i
\(802\) −12.7926 3.42776i −0.451721 0.121038i
\(803\) 1.11436 + 4.15886i 0.0393250 + 0.146763i
\(804\) −7.47458 + 2.00281i −0.263608 + 0.0706336i
\(805\) 0 0
\(806\) −23.0682 29.2326i −0.812544 1.02967i
\(807\) −65.8381 + 65.8381i −2.31761 + 2.31761i
\(808\) −0.911347 0.526166i −0.0320611 0.0185105i
\(809\) −6.81229 3.93308i −0.239507 0.138280i 0.375443 0.926845i \(-0.377491\pi\)
−0.614950 + 0.788566i \(0.710824\pi\)
\(810\) 0 0
\(811\) −13.1134 13.1134i −0.460475 0.460475i 0.438336 0.898811i \(-0.355568\pi\)
−0.898811 + 0.438336i \(0.855568\pi\)
\(812\) 4.08452 + 7.07459i 0.143338 + 0.248269i
\(813\) −14.6015 25.2905i −0.512097 0.886978i
\(814\) 5.72873 + 5.72873i 0.200792 + 0.200792i
\(815\) 0 0
\(816\) 1.61230 + 0.930864i 0.0564419 + 0.0325868i
\(817\) −5.97080 3.44724i −0.208892 0.120604i
\(818\) 18.3339 18.3339i 0.641028 0.641028i
\(819\) 27.4213 + 3.23198i 0.958179 + 0.112934i
\(820\) 0 0
\(821\) −38.0562 + 10.1971i −1.32817 + 0.355882i −0.852032 0.523489i \(-0.824630\pi\)
−0.476137 + 0.879371i \(0.657963\pi\)
\(822\) 9.50561 + 35.4754i 0.331546 + 1.23735i
\(823\) 11.8543 + 3.17636i 0.413216 + 0.110721i 0.459437 0.888210i \(-0.348051\pi\)
−0.0462212 + 0.998931i \(0.514718\pi\)
\(824\) −3.37370 + 3.37370i −0.117528 + 0.117528i
\(825\) 0 0
\(826\) −1.37476 0.368366i −0.0478341 0.0128171i
\(827\) 33.6098i 1.16873i −0.811492 0.584364i \(-0.801344\pi\)
0.811492 0.584364i \(-0.198656\pi\)
\(828\) −12.9613 + 48.3722i −0.450436 + 1.68105i
\(829\) 13.8019 23.9055i 0.479359 0.830274i −0.520361 0.853946i \(-0.674203\pi\)
0.999720 + 0.0236725i \(0.00753590\pi\)
\(830\) 0 0
\(831\) 92.2760i 3.20102i
\(832\) 1.42488 + 3.31205i 0.0493989 + 0.114825i
\(833\) −2.35606 2.35606i −0.0816325 0.0816325i
\(834\) 0.749113 + 2.79573i 0.0259397 + 0.0968082i
\(835\) 0 0
\(836\) 2.58642 1.49327i 0.0894532 0.0516459i
\(837\) 92.6814 3.20354
\(838\) 17.8637 10.3136i 0.617090 0.356277i
\(839\) 9.37660 34.9939i 0.323716 1.20813i −0.591880 0.806026i \(-0.701614\pi\)
0.915596 0.402099i \(-0.131719\pi\)
\(840\) 0 0
\(841\) 5.93158 + 10.2738i 0.204537 + 0.354269i
\(842\) −29.1778 + 7.81816i −1.00553 + 0.269432i
\(843\) 5.09981 8.83314i 0.175647 0.304229i
\(844\) 2.72654 0.0938515
\(845\) 0 0
\(846\) −15.3328 −0.527152
\(847\) 6.52900 11.3086i 0.224339 0.388567i
\(848\) 3.65624 0.979686i 0.125556 0.0336426i
\(849\) −20.7419 35.9260i −0.711859 1.23298i
\(850\) 0 0
\(851\) −19.8177 + 73.9606i −0.679341 + 2.53534i
\(852\) −18.0679 + 10.4315i −0.618995 + 0.357377i
\(853\) −22.4023 −0.767041 −0.383520 0.923532i \(-0.625288\pi\)
−0.383520 + 0.923532i \(0.625288\pi\)
\(854\) 7.83046 4.52092i 0.267953 0.154703i
\(855\) 0 0
\(856\) 3.77105 + 14.0737i 0.128892 + 0.481031i
\(857\) 31.7108 + 31.7108i 1.08322 + 1.08322i 0.996207 + 0.0870141i \(0.0277325\pi\)
0.0870141 + 0.996207i \(0.472267\pi\)
\(858\) 3.77816 + 8.78210i 0.128984 + 0.299816i
\(859\) 49.9135i 1.70303i −0.524332 0.851514i \(-0.675685\pi\)
0.524332 0.851514i \(-0.324315\pi\)
\(860\) 0 0
\(861\) −16.5882 + 28.7316i −0.565325 + 0.979172i
\(862\) 9.16078 34.1885i 0.312017 1.16447i
\(863\) 24.6850i 0.840288i −0.907457 0.420144i \(-0.861980\pi\)
0.907457 0.420144i \(-0.138020\pi\)
\(864\) −8.66799 2.32258i −0.294891 0.0790158i
\(865\) 0 0
\(866\) −21.1147 + 21.1147i −0.717505 + 0.717505i
\(867\) −48.1252 12.8951i −1.63442 0.437941i
\(868\) 3.41601 + 12.7487i 0.115947 + 0.432719i
\(869\) −9.58049 + 2.56709i −0.324996 + 0.0870824i
\(870\) 0 0
\(871\) −9.24014 1.08908i −0.313090 0.0369020i
\(872\) −4.33526 + 4.33526i −0.146811 + 0.146811i
\(873\) −51.8012 29.9074i −1.75321 1.01221i
\(874\) 24.4446 + 14.1131i 0.826850 + 0.477382i
\(875\) 0 0
\(876\) −10.3251 10.3251i −0.348854 0.348854i
\(877\) 6.52548 + 11.3025i 0.220350 + 0.381657i 0.954914 0.296882i \(-0.0959468\pi\)
−0.734564 + 0.678539i \(0.762613\pi\)
\(878\) 8.00470 + 13.8645i 0.270145 + 0.467906i
\(879\) −11.4875 11.4875i −0.387465 0.387465i
\(880\) 0 0
\(881\) −31.4196 18.1401i −1.05855 0.611156i −0.133522 0.991046i \(-0.542629\pi\)
−0.925032 + 0.379890i \(0.875962\pi\)
\(882\) 27.8524 + 16.0806i 0.937841 + 0.541463i
\(883\) 30.8743 30.8743i 1.03900 1.03900i 0.0397956 0.999208i \(-0.487329\pi\)
0.999208 0.0397956i \(-0.0126707\pi\)
\(884\) 1.38667 + 1.75722i 0.0466387 + 0.0591017i
\(885\) 0 0
\(886\) −29.5992 + 7.93109i −0.994406 + 0.266450i
\(887\) 0.823779 + 3.07438i 0.0276598 + 0.103228i 0.978376 0.206835i \(-0.0663165\pi\)
−0.950716 + 0.310063i \(0.899650\pi\)
\(888\) −26.5398 7.11131i −0.890616 0.238640i
\(889\) −11.7744 + 11.7744i −0.394902 + 0.394902i
\(890\) 0 0
\(891\) −7.62922 2.04424i −0.255589 0.0684848i
\(892\) 7.49576i 0.250976i
\(893\) −2.23675 + 8.34766i −0.0748500 + 0.279344i
\(894\) 4.66346 8.07735i 0.155970 0.270147i
\(895\) 0 0
\(896\) 1.27792i 0.0426924i
\(897\) −54.0267 + 72.4242i −1.80390 + 2.41817i
\(898\) −6.33211 6.33211i −0.211305 0.211305i
\(899\) 17.0876 + 63.7717i 0.569902 + 2.12690i
\(900\) 0 0
\(901\) 2.03515 1.17500i 0.0678008 0.0391448i
\(902\) −7.65501 −0.254884
\(903\) −6.77438 + 3.91119i −0.225437 + 0.130156i
\(904\) −1.53983 + 5.74674i −0.0512141 + 0.191134i
\(905\) 0 0
\(906\) −23.0458 39.9164i −0.765644 1.32614i
\(907\) 36.5384 9.79045i 1.21324 0.325086i 0.405207 0.914225i \(-0.367199\pi\)
0.808032 + 0.589138i \(0.200533\pi\)
\(908\) 6.65757 11.5313i 0.220939 0.382678i
\(909\) 6.30610 0.209160
\(910\) 0 0
\(911\) −3.06450 −0.101531 −0.0507657 0.998711i \(-0.516166\pi\)
−0.0507657 + 0.998711i \(0.516166\pi\)
\(912\) −5.06429 + 8.77160i −0.167695 + 0.290457i
\(913\) 1.49524 0.400648i 0.0494851 0.0132595i
\(914\) −12.2784 21.2668i −0.406134 0.703444i
\(915\) 0 0
\(916\) 0.966636 3.60754i 0.0319386 0.119196i
\(917\) −6.53668 + 3.77395i −0.215860 + 0.124627i
\(918\) −5.57122 −0.183878
\(919\) 33.5898 19.3931i 1.10802 0.639718i 0.169708 0.985494i \(-0.445718\pi\)
0.938317 + 0.345776i \(0.112384\pi\)
\(920\) 0 0
\(921\) 1.04119 + 3.88577i 0.0343083 + 0.128040i
\(922\) 7.07275 + 7.07275i 0.232928 + 0.232928i
\(923\) −24.8233 + 3.61156i −0.817069 + 0.118876i
\(924\) 3.38848i 0.111473i
\(925\) 0 0
\(926\) 13.9417 24.1478i 0.458153 0.793545i
\(927\) 7.39989 27.6168i 0.243044 0.907054i
\(928\) 6.39243i 0.209842i
\(929\) −0.485719 0.130148i −0.0159359 0.00427002i 0.250842 0.968028i \(-0.419292\pi\)
−0.266778 + 0.963758i \(0.585959\pi\)
\(930\) 0 0
\(931\) 12.8179 12.8179i 0.420090 0.420090i
\(932\) −12.9861 3.47961i −0.425374 0.113979i
\(933\) −2.10625 7.86062i −0.0689554 0.257345i
\(934\) 30.5373 8.18244i 0.999210 0.267738i
\(935\) 0 0
\(936\) −17.3184 12.9191i −0.566070 0.422275i
\(937\) 9.95025 9.95025i 0.325061 0.325061i −0.525644 0.850705i \(-0.676176\pi\)
0.850705 + 0.525644i \(0.176176\pi\)
\(938\) 2.85587 + 1.64884i 0.0932473 + 0.0538364i
\(939\) −12.0180 6.93858i −0.392192 0.226432i
\(940\) 0 0
\(941\) 23.7430 + 23.7430i 0.774000 + 0.774000i 0.978803 0.204803i \(-0.0656555\pi\)
−0.204803 + 0.978803i \(0.565655\pi\)
\(942\) −17.9643 31.1151i −0.585309 1.01379i
\(943\) −36.1742 62.6555i −1.17799 2.04034i
\(944\) 0.787525 + 0.787525i 0.0256317 + 0.0256317i
\(945\) 0 0
\(946\) −1.56309 0.902453i −0.0508206 0.0293413i
\(947\) −33.7590 19.4908i −1.09702 0.633365i −0.161583 0.986859i \(-0.551660\pi\)
−0.935437 + 0.353494i \(0.884993\pi\)
\(948\) 23.7853 23.7853i 0.772511 0.772511i
\(949\) −6.93824 16.1275i −0.225225 0.523522i
\(950\) 0 0
\(951\) 10.1662 2.72403i 0.329662 0.0883328i
\(952\) −0.205342 0.766345i −0.00665516 0.0248374i
\(953\) 56.0994 + 15.0318i 1.81724 + 0.486928i 0.996441 0.0842907i \(-0.0268624\pi\)
0.820798 + 0.571219i \(0.193529\pi\)
\(954\) −16.0392 + 16.0392i −0.519290 + 0.519290i
\(955\) 0 0
\(956\) 14.3477 + 3.84446i 0.464039 + 0.124339i
\(957\) 16.9499i 0.547912i
\(958\) −0.580565 + 2.16670i −0.0187572 + 0.0700029i
\(959\) 7.82561 13.5544i 0.252702 0.437693i
\(960\) 0 0
\(961\) 75.6684i 2.44092i
\(962\) −26.4797 19.7532i −0.853739 0.636870i
\(963\) −61.7389 61.7389i −1.98951 1.98951i
\(964\) −0.397848 1.48479i −0.0128138 0.0478218i
\(965\) 0 0
\(966\) 27.7344 16.0125i 0.892340 0.515193i
\(967\) −51.5834 −1.65881 −0.829405 0.558648i \(-0.811320\pi\)
−0.829405 + 0.558648i \(0.811320\pi\)
\(968\) −8.84918 + 5.10908i −0.284423 + 0.164212i
\(969\) −1.62750 + 6.07391i −0.0522828 + 0.195122i
\(970\) 0 0
\(971\) −18.2251 31.5668i −0.584872 1.01303i −0.994891 0.100951i \(-0.967811\pi\)
0.410019 0.912077i \(-0.365522\pi\)
\(972\) −0.130173 + 0.0348797i −0.00417530 + 0.00111877i
\(973\) 0.616716 1.06818i 0.0197710 0.0342444i
\(974\) −23.0090 −0.737257
\(975\) 0 0
\(976\) −7.07542 −0.226479
\(977\) 20.1158 34.8416i 0.643562 1.11468i −0.341070 0.940038i \(-0.610789\pi\)
0.984632 0.174644i \(-0.0558774\pi\)
\(978\) −60.2364 + 16.1403i −1.92615 + 0.516110i
\(979\) −2.78669 4.82668i −0.0890629 0.154261i
\(980\) 0 0
\(981\) 9.50900 35.4881i 0.303599 1.13305i
\(982\) −2.22242 + 1.28311i −0.0709203 + 0.0409458i
\(983\) −22.8830 −0.729856 −0.364928 0.931036i \(-0.618906\pi\)
−0.364928 + 0.931036i \(0.618906\pi\)
\(984\) 22.4831 12.9806i 0.716735 0.413807i
\(985\) 0 0
\(986\) −1.02716 3.83341i −0.0327115 0.122081i
\(987\) 6.93334 + 6.93334i 0.220691 + 0.220691i
\(988\) −9.56000 + 7.54405i −0.304144 + 0.240008i
\(989\) 17.0584i 0.542425i
\(990\) 0 0
\(991\) −2.26574 + 3.92439i −0.0719738 + 0.124662i −0.899766 0.436372i \(-0.856263\pi\)
0.827793 + 0.561034i \(0.189596\pi\)
\(992\) 2.67309 9.97612i 0.0848708 0.316742i
\(993\) 25.1909i 0.799410i
\(994\) 8.58785 + 2.30111i 0.272390 + 0.0729867i
\(995\) 0 0
\(996\) −3.71220 + 3.71220i −0.117626 + 0.117626i
\(997\) 26.6514 + 7.14123i 0.844060 + 0.226165i 0.654838 0.755769i \(-0.272737\pi\)
0.189222 + 0.981934i \(0.439404\pi\)
\(998\) −2.45591 9.16557i −0.0777404 0.290131i
\(999\) 79.4203 21.2806i 2.51275 0.673288i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.e.293.1 12
5.2 odd 4 650.2.t.e.7.3 12
5.3 odd 4 130.2.p.a.7.1 12
5.4 even 2 130.2.s.a.33.3 yes 12
13.2 odd 12 650.2.t.e.93.3 12
65.2 even 12 inner 650.2.w.e.457.1 12
65.28 even 12 130.2.s.a.67.3 yes 12
65.54 odd 12 130.2.p.a.93.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.a.7.1 12 5.3 odd 4
130.2.p.a.93.1 yes 12 65.54 odd 12
130.2.s.a.33.3 yes 12 5.4 even 2
130.2.s.a.67.3 yes 12 65.28 even 12
650.2.t.e.7.3 12 5.2 odd 4
650.2.t.e.93.3 12 13.2 odd 12
650.2.w.e.293.1 12 1.1 even 1 trivial
650.2.w.e.457.1 12 65.2 even 12 inner