Properties

Label 130.2.s.a.33.3
Level $130$
Weight $2$
Character 130.33
Analytic conductor $1.038$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(33,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.33"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 33.3
Root \(-1.55227i\) of defining polynomial
Character \(\chi\) \(=\) 130.33
Dual form 130.2.s.a.67.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(2.89657 - 0.776134i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.709753 + 2.12044i) q^{5} +(-0.776134 + 2.89657i) q^{6} +(-1.10671 + 0.638961i) q^{7} +1.00000 q^{8} +(5.18966 - 2.99625i) q^{9} +(-1.48148 - 1.67488i) q^{10} +(-0.228853 - 0.854091i) q^{11} +(-2.12044 - 2.12044i) q^{12} +(-1.42488 - 3.31205i) q^{13} -1.27792i q^{14} +(-0.410108 + 6.69286i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.160684 - 0.599680i) q^{17} +5.99250i q^{18} +(-3.26251 - 0.874187i) q^{19} +(2.19123 - 0.445554i) q^{20} +(-2.70975 + 2.70975i) q^{21} +(0.854091 + 0.228853i) q^{22} +(2.16292 + 8.07211i) q^{23} +(2.89657 - 0.776134i) q^{24} +(-3.99250 - 3.00997i) q^{25} +(3.58077 + 0.422042i) q^{26} +(6.34541 - 6.34541i) q^{27} +(1.10671 + 0.638961i) q^{28} +(-5.53601 - 3.19622i) q^{29} +(-5.59113 - 3.70159i) q^{30} +(-7.30303 - 7.30303i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.32578 - 2.29631i) q^{33} +(0.438997 + 0.438997i) q^{34} +(-0.569383 - 2.80022i) q^{35} +(-5.18966 - 2.99625i) q^{36} +(7.93494 + 4.58124i) q^{37} +(2.38832 - 2.38832i) q^{38} +(-6.69787 - 8.48770i) q^{39} +(-0.709753 + 2.12044i) q^{40} +(8.36236 - 2.24069i) q^{41} +(-0.991839 - 3.70159i) q^{42} +(-1.97169 - 0.528312i) q^{43} +(-0.625238 + 0.625238i) q^{44} +(2.66998 + 13.1309i) q^{45} +(-8.07211 - 2.16292i) q^{46} +2.55866i q^{47} +(-0.776134 + 2.89657i) q^{48} +(-2.68346 + 4.64788i) q^{49} +(4.60296 - 1.95262i) q^{50} -1.86173i q^{51} +(-2.15588 + 2.89001i) q^{52} +(2.67655 + 2.67655i) q^{53} +(2.32258 + 8.66799i) q^{54} +(1.97348 + 0.120926i) q^{55} +(-1.10671 + 0.638961i) q^{56} -10.1286 q^{57} +(5.53601 - 3.19622i) q^{58} +(0.288254 - 1.07578i) q^{59} +(6.00124 - 2.99126i) q^{60} +(3.53771 + 6.12749i) q^{61} +(9.97612 - 2.67309i) q^{62} +(-3.82898 + 6.63198i) q^{63} +1.00000 q^{64} +(8.03432 - 0.670633i) q^{65} +2.65156 q^{66} +(1.29025 - 2.23477i) q^{67} +(-0.599680 + 0.160684i) q^{68} +(12.5301 + 21.7027i) q^{69} +(2.70975 + 0.907010i) q^{70} +(-1.80066 + 6.72017i) q^{71} +(5.18966 - 2.99625i) q^{72} +4.86934 q^{73} +(-7.93494 + 4.58124i) q^{74} +(-13.9007 - 5.61988i) q^{75} +(0.874187 + 3.26251i) q^{76} +(0.799006 + 0.799006i) q^{77} +(10.6995 - 1.55668i) q^{78} -11.2172i q^{79} +(-1.48148 - 1.67488i) q^{80} +(4.46628 - 7.73583i) q^{81} +(-2.24069 + 8.36236i) q^{82} -1.75068i q^{83} +(3.70159 + 0.991839i) q^{84} +(1.15754 + 0.766345i) q^{85} +(1.44337 - 1.44337i) q^{86} +(-18.5161 - 4.96138i) q^{87} +(-0.228853 - 0.854091i) q^{88} +(6.08837 - 1.63137i) q^{89} +(-12.7067 - 4.25320i) q^{90} +(3.69321 + 2.75505i) q^{91} +(5.90920 - 5.90920i) q^{92} +(-26.8219 - 15.4856i) q^{93} +(-2.21587 - 1.27933i) q^{94} +(4.16923 - 6.29749i) q^{95} +(-2.12044 - 2.12044i) q^{96} +(4.99081 + 8.64434i) q^{97} +(-2.68346 - 4.64788i) q^{98} +(-3.74674 - 3.74674i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} + 6 q^{7} + 12 q^{8} + 24 q^{9} + 6 q^{11} - 6 q^{13} - 6 q^{15} - 6 q^{16} - 36 q^{19} - 24 q^{21} + 6 q^{23} + 12 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} - 18 q^{30}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 2.89657 0.776134i 1.67234 0.448101i 0.706597 0.707617i \(-0.250230\pi\)
0.965739 + 0.259516i \(0.0835629\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.709753 + 2.12044i −0.317411 + 0.948288i
\(6\) −0.776134 + 2.89657i −0.316855 + 1.18252i
\(7\) −1.10671 + 0.638961i −0.418298 + 0.241505i −0.694349 0.719638i \(-0.744308\pi\)
0.276051 + 0.961143i \(0.410974\pi\)
\(8\) 1.00000 0.353553
\(9\) 5.18966 2.99625i 1.72989 0.998750i
\(10\) −1.48148 1.67488i −0.468484 0.529644i
\(11\) −0.228853 0.854091i −0.0690018 0.257518i 0.922805 0.385268i \(-0.125891\pi\)
−0.991806 + 0.127750i \(0.959224\pi\)
\(12\) −2.12044 2.12044i −0.612117 0.612117i
\(13\) −1.42488 3.31205i −0.395192 0.918599i
\(14\) 1.27792i 0.341539i
\(15\) −0.410108 + 6.69286i −0.105889 + 1.72809i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.160684 0.599680i 0.0389716 0.145444i −0.943699 0.330806i \(-0.892679\pi\)
0.982670 + 0.185363i \(0.0593460\pi\)
\(18\) 5.99250i 1.41245i
\(19\) −3.26251 0.874187i −0.748471 0.200552i −0.135631 0.990759i \(-0.543306\pi\)
−0.612840 + 0.790207i \(0.709973\pi\)
\(20\) 2.19123 0.445554i 0.489974 0.0996289i
\(21\) −2.70975 + 2.70975i −0.591317 + 0.591317i
\(22\) 0.854091 + 0.228853i 0.182093 + 0.0487916i
\(23\) 2.16292 + 8.07211i 0.450999 + 1.68315i 0.699591 + 0.714544i \(0.253366\pi\)
−0.248591 + 0.968608i \(0.579968\pi\)
\(24\) 2.89657 0.776134i 0.591260 0.158428i
\(25\) −3.99250 3.00997i −0.798500 0.601995i
\(26\) 3.58077 + 0.422042i 0.702246 + 0.0827693i
\(27\) 6.34541 6.34541i 1.22117 1.22117i
\(28\) 1.10671 + 0.638961i 0.209149 + 0.120752i
\(29\) −5.53601 3.19622i −1.02801 0.593522i −0.111597 0.993754i \(-0.535596\pi\)
−0.916414 + 0.400231i \(0.868930\pi\)
\(30\) −5.59113 3.70159i −1.02080 0.675815i
\(31\) −7.30303 7.30303i −1.31166 1.31166i −0.920190 0.391473i \(-0.871966\pi\)
−0.391473 0.920190i \(-0.628034\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.32578 2.29631i −0.230788 0.399737i
\(34\) 0.438997 + 0.438997i 0.0752873 + 0.0752873i
\(35\) −0.569383 2.80022i −0.0962433 0.473324i
\(36\) −5.18966 2.99625i −0.864943 0.499375i
\(37\) 7.93494 + 4.58124i 1.30450 + 0.753151i 0.981172 0.193137i \(-0.0618661\pi\)
0.323325 + 0.946288i \(0.395199\pi\)
\(38\) 2.38832 2.38832i 0.387437 0.387437i
\(39\) −6.69787 8.48770i −1.07252 1.35912i
\(40\) −0.709753 + 2.12044i −0.112222 + 0.335270i
\(41\) 8.36236 2.24069i 1.30598 0.349937i 0.462273 0.886738i \(-0.347034\pi\)
0.843709 + 0.536801i \(0.180367\pi\)
\(42\) −0.991839 3.70159i −0.153044 0.571168i
\(43\) −1.97169 0.528312i −0.300679 0.0805668i 0.105325 0.994438i \(-0.466412\pi\)
−0.406005 + 0.913871i \(0.633078\pi\)
\(44\) −0.625238 + 0.625238i −0.0942582 + 0.0942582i
\(45\) 2.66998 + 13.1309i 0.398017 + 1.95744i
\(46\) −8.07211 2.16292i −1.19017 0.318905i
\(47\) 2.55866i 0.373219i 0.982434 + 0.186610i \(0.0597500\pi\)
−0.982434 + 0.186610i \(0.940250\pi\)
\(48\) −0.776134 + 2.89657i −0.112025 + 0.418084i
\(49\) −2.68346 + 4.64788i −0.383351 + 0.663983i
\(50\) 4.60296 1.95262i 0.650957 0.276142i
\(51\) 1.86173i 0.260694i
\(52\) −2.15588 + 2.89001i −0.298967 + 0.400773i
\(53\) 2.67655 + 2.67655i 0.367653 + 0.367653i 0.866621 0.498968i \(-0.166287\pi\)
−0.498968 + 0.866621i \(0.666287\pi\)
\(54\) 2.32258 + 8.66799i 0.316063 + 1.17956i
\(55\) 1.97348 + 0.120926i 0.266103 + 0.0163056i
\(56\) −1.10671 + 0.638961i −0.147891 + 0.0853848i
\(57\) −10.1286 −1.34156
\(58\) 5.53601 3.19622i 0.726913 0.419684i
\(59\) 0.288254 1.07578i 0.0375275 0.140054i −0.944620 0.328165i \(-0.893570\pi\)
0.982148 + 0.188111i \(0.0602364\pi\)
\(60\) 6.00124 2.99126i 0.774756 0.386170i
\(61\) 3.53771 + 6.12749i 0.452957 + 0.784545i 0.998568 0.0534935i \(-0.0170356\pi\)
−0.545611 + 0.838039i \(0.683702\pi\)
\(62\) 9.97612 2.67309i 1.26697 0.339483i
\(63\) −3.82898 + 6.63198i −0.482406 + 0.835551i
\(64\) 1.00000 0.125000
\(65\) 8.03432 0.670633i 0.996534 0.0831817i
\(66\) 2.65156 0.326384
\(67\) 1.29025 2.23477i 0.157629 0.273021i −0.776384 0.630260i \(-0.782948\pi\)
0.934013 + 0.357239i \(0.116282\pi\)
\(68\) −0.599680 + 0.160684i −0.0727219 + 0.0194858i
\(69\) 12.5301 + 21.7027i 1.50844 + 2.61270i
\(70\) 2.70975 + 0.907010i 0.323877 + 0.108408i
\(71\) −1.80066 + 6.72017i −0.213699 + 0.797537i 0.772921 + 0.634502i \(0.218795\pi\)
−0.986620 + 0.163035i \(0.947872\pi\)
\(72\) 5.18966 2.99625i 0.611607 0.353111i
\(73\) 4.86934 0.569913 0.284957 0.958540i \(-0.408021\pi\)
0.284957 + 0.958540i \(0.408021\pi\)
\(74\) −7.93494 + 4.58124i −0.922418 + 0.532558i
\(75\) −13.9007 5.61988i −1.60511 0.648928i
\(76\) 0.874187 + 3.26251i 0.100276 + 0.374236i
\(77\) 0.799006 + 0.799006i 0.0910552 + 0.0910552i
\(78\) 10.6995 1.55668i 1.21148 0.176259i
\(79\) 11.2172i 1.26203i −0.775770 0.631015i \(-0.782638\pi\)
0.775770 0.631015i \(-0.217362\pi\)
\(80\) −1.48148 1.67488i −0.165634 0.187258i
\(81\) 4.46628 7.73583i 0.496253 0.859536i
\(82\) −2.24069 + 8.36236i −0.247443 + 0.923468i
\(83\) 1.75068i 0.192162i −0.995374 0.0960809i \(-0.969369\pi\)
0.995374 0.0960809i \(-0.0306307\pi\)
\(84\) 3.70159 + 0.991839i 0.403877 + 0.108218i
\(85\) 1.15754 + 0.766345i 0.125553 + 0.0831218i
\(86\) 1.44337 1.44337i 0.155643 0.155643i
\(87\) −18.5161 4.96138i −1.98514 0.531916i
\(88\) −0.228853 0.854091i −0.0243958 0.0910464i
\(89\) 6.08837 1.63137i 0.645366 0.172925i 0.0787333 0.996896i \(-0.474912\pi\)
0.566633 + 0.823970i \(0.308246\pi\)
\(90\) −12.7067 4.25320i −1.33941 0.448326i
\(91\) 3.69321 + 2.75505i 0.387154 + 0.288808i
\(92\) 5.90920 5.90920i 0.616076 0.616076i
\(93\) −26.8219 15.4856i −2.78130 1.60578i
\(94\) −2.21587 1.27933i −0.228549 0.131953i
\(95\) 4.16923 6.29749i 0.427754 0.646109i
\(96\) −2.12044 2.12044i −0.216416 0.216416i
\(97\) 4.99081 + 8.64434i 0.506740 + 0.877700i 0.999970 + 0.00780033i \(0.00248295\pi\)
−0.493230 + 0.869899i \(0.664184\pi\)
\(98\) −2.68346 4.64788i −0.271070 0.469507i
\(99\) −3.74674 3.74674i −0.376562 0.376562i
\(100\) −0.610463 + 4.96259i −0.0610463 + 0.496259i
\(101\) 0.911347 + 0.526166i 0.0906824 + 0.0523555i 0.544655 0.838660i \(-0.316660\pi\)
−0.453973 + 0.891015i \(0.649994\pi\)
\(102\) 1.61230 + 0.930864i 0.159642 + 0.0921693i
\(103\) −3.37370 + 3.37370i −0.332420 + 0.332420i −0.853505 0.521085i \(-0.825528\pi\)
0.521085 + 0.853505i \(0.325528\pi\)
\(104\) −1.42488 3.31205i −0.139721 0.324774i
\(105\) −3.82260 7.66912i −0.373048 0.748429i
\(106\) −3.65624 + 0.979686i −0.355125 + 0.0951555i
\(107\) 3.77105 + 14.0737i 0.364561 + 1.36056i 0.868015 + 0.496538i \(0.165396\pi\)
−0.503454 + 0.864022i \(0.667938\pi\)
\(108\) −8.66799 2.32258i −0.834077 0.223490i
\(109\) 4.33526 4.33526i 0.415243 0.415243i −0.468317 0.883560i \(-0.655140\pi\)
0.883560 + 0.468317i \(0.155140\pi\)
\(110\) −1.09146 + 1.64862i −0.104067 + 0.157189i
\(111\) 26.5398 + 7.11131i 2.51904 + 0.674976i
\(112\) 1.27792i 0.120752i
\(113\) −1.53983 + 5.74674i −0.144855 + 0.540608i 0.854906 + 0.518782i \(0.173614\pi\)
−0.999762 + 0.0218255i \(0.993052\pi\)
\(114\) 5.06429 8.77160i 0.474314 0.821536i
\(115\) −18.6515 1.14288i −1.73927 0.106574i
\(116\) 6.39243i 0.593522i
\(117\) −17.3184 12.9191i −1.60109 1.19437i
\(118\) 0.787525 + 0.787525i 0.0724975 + 0.0724975i
\(119\) 0.205342 + 0.766345i 0.0188236 + 0.0702507i
\(120\) −0.410108 + 6.69286i −0.0374376 + 0.610971i
\(121\) 8.84918 5.10908i 0.804471 0.464462i
\(122\) −7.07542 −0.640578
\(123\) 22.4831 12.9806i 2.02723 1.17042i
\(124\) −2.67309 + 9.97612i −0.240051 + 0.895882i
\(125\) 9.21615 6.32950i 0.824317 0.566128i
\(126\) −3.82898 6.63198i −0.341112 0.590824i
\(127\) 12.5862 3.37246i 1.11684 0.299257i 0.347238 0.937777i \(-0.387119\pi\)
0.769606 + 0.638519i \(0.220453\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −6.12117 −0.538939
\(130\) −3.43637 + 7.29324i −0.301390 + 0.639659i
\(131\) −5.90639 −0.516044 −0.258022 0.966139i \(-0.583071\pi\)
−0.258022 + 0.966139i \(0.583071\pi\)
\(132\) −1.32578 + 2.29631i −0.115394 + 0.199869i
\(133\) 4.16923 1.11714i 0.361518 0.0968686i
\(134\) 1.29025 + 2.23477i 0.111460 + 0.193055i
\(135\) 8.95136 + 17.9587i 0.770410 + 1.54564i
\(136\) 0.160684 0.599680i 0.0137785 0.0514222i
\(137\) −10.6066 + 6.12370i −0.906179 + 0.523183i −0.879200 0.476453i \(-0.841922\pi\)
−0.0269793 + 0.999636i \(0.508589\pi\)
\(138\) −25.0602 −2.13326
\(139\) 0.835876 0.482593i 0.0708980 0.0409330i −0.464132 0.885766i \(-0.653634\pi\)
0.535030 + 0.844833i \(0.320300\pi\)
\(140\) −2.14037 + 1.89321i −0.180894 + 0.160005i
\(141\) 1.98586 + 7.41135i 0.167240 + 0.624148i
\(142\) −4.91950 4.91950i −0.412836 0.412836i
\(143\) −2.50271 + 1.97495i −0.209287 + 0.165154i
\(144\) 5.99250i 0.499375i
\(145\) 10.7066 9.47023i 0.889132 0.786459i
\(146\) −2.43467 + 4.21697i −0.201495 + 0.348999i
\(147\) −4.16544 + 15.5456i −0.343560 + 1.28218i
\(148\) 9.16248i 0.753151i
\(149\) −3.00429 0.804997i −0.246121 0.0659480i 0.133649 0.991029i \(-0.457330\pi\)
−0.379771 + 0.925081i \(0.623997\pi\)
\(150\) 11.8173 9.22842i 0.964879 0.753497i
\(151\) −10.8684 + 10.8684i −0.884459 + 0.884459i −0.993984 0.109525i \(-0.965067\pi\)
0.109525 + 0.993984i \(0.465067\pi\)
\(152\) −3.26251 0.874187i −0.264624 0.0709059i
\(153\) −0.962898 3.59358i −0.0778457 0.290524i
\(154\) −1.09146 + 0.292456i −0.0879526 + 0.0235668i
\(155\) 20.6690 10.3023i 1.66017 0.827497i
\(156\) −4.00163 + 10.0444i −0.320387 + 0.804194i
\(157\) 8.47200 8.47200i 0.676139 0.676139i −0.282985 0.959124i \(-0.591325\pi\)
0.959124 + 0.282985i \(0.0913248\pi\)
\(158\) 9.71436 + 5.60859i 0.772833 + 0.446195i
\(159\) 9.83018 + 5.67546i 0.779584 + 0.450093i
\(160\) 2.19123 0.445554i 0.173232 0.0352241i
\(161\) −7.55150 7.55150i −0.595141 0.595141i
\(162\) 4.46628 + 7.73583i 0.350904 + 0.607784i
\(163\) −10.3979 18.0097i −0.814426 1.41063i −0.909739 0.415180i \(-0.863719\pi\)
0.0953137 0.995447i \(-0.469615\pi\)
\(164\) −6.12167 6.12167i −0.478022 0.478022i
\(165\) 5.81016 1.18141i 0.452321 0.0919727i
\(166\) 1.51613 + 0.875338i 0.117675 + 0.0679394i
\(167\) −10.3056 5.94992i −0.797469 0.460419i 0.0451166 0.998982i \(-0.485634\pi\)
−0.842585 + 0.538563i \(0.818967\pi\)
\(168\) −2.70975 + 2.70975i −0.209062 + 0.209062i
\(169\) −8.93941 + 9.43858i −0.687647 + 0.726045i
\(170\) −1.24244 + 0.619285i −0.0952911 + 0.0474970i
\(171\) −19.5506 + 5.23857i −1.49507 + 0.400603i
\(172\) 0.528312 + 1.97169i 0.0402834 + 0.150340i
\(173\) −14.9230 3.99861i −1.13457 0.304008i −0.357807 0.933796i \(-0.616475\pi\)
−0.776768 + 0.629787i \(0.783142\pi\)
\(174\) 13.5547 13.5547i 1.02758 1.02758i
\(175\) 6.34181 + 0.780124i 0.479396 + 0.0589719i
\(176\) 0.854091 + 0.228853i 0.0643796 + 0.0172504i
\(177\) 3.33979i 0.251034i
\(178\) −1.63137 + 6.08837i −0.122277 + 0.456343i
\(179\) −0.946097 + 1.63869i −0.0707146 + 0.122481i −0.899215 0.437508i \(-0.855861\pi\)
0.828500 + 0.559989i \(0.189195\pi\)
\(180\) 10.0367 8.87774i 0.748094 0.661708i
\(181\) 20.4481i 1.51990i −0.649983 0.759949i \(-0.725224\pi\)
0.649983 0.759949i \(-0.274776\pi\)
\(182\) −4.23255 + 1.82089i −0.313737 + 0.134973i
\(183\) 15.0030 + 15.0030i 1.10905 + 1.10905i
\(184\) 2.16292 + 8.07211i 0.159452 + 0.595084i
\(185\) −15.3461 + 13.5740i −1.12827 + 0.997980i
\(186\) 26.8219 15.4856i 1.96667 1.13546i
\(187\) −0.548955 −0.0401436
\(188\) 2.21587 1.27933i 0.161609 0.0933048i
\(189\) −2.96808 + 11.0770i −0.215896 + 0.805734i
\(190\) 3.36917 + 6.75941i 0.244425 + 0.490379i
\(191\) −10.1584 17.5949i −0.735039 1.27312i −0.954706 0.297550i \(-0.903830\pi\)
0.219667 0.975575i \(-0.429503\pi\)
\(192\) 2.89657 0.776134i 0.209042 0.0560126i
\(193\) 1.09527 1.89706i 0.0788392 0.136553i −0.823910 0.566720i \(-0.808212\pi\)
0.902749 + 0.430167i \(0.141545\pi\)
\(194\) −9.98162 −0.716639
\(195\) 22.7515 8.17824i 1.62927 0.585656i
\(196\) 5.36691 0.383351
\(197\) 0.759889 1.31617i 0.0541398 0.0937729i −0.837685 0.546153i \(-0.816092\pi\)
0.891825 + 0.452380i \(0.149425\pi\)
\(198\) 5.11814 1.37140i 0.363731 0.0974613i
\(199\) 3.00272 + 5.20086i 0.212857 + 0.368680i 0.952608 0.304202i \(-0.0983898\pi\)
−0.739750 + 0.672881i \(0.765056\pi\)
\(200\) −3.99250 3.00997i −0.282312 0.212837i
\(201\) 2.00281 7.47458i 0.141267 0.527216i
\(202\) −0.911347 + 0.526166i −0.0641221 + 0.0370209i
\(203\) 8.16903 0.573354
\(204\) −1.61230 + 0.930864i −0.112884 + 0.0651735i
\(205\) −1.18398 + 19.3222i −0.0826926 + 1.34952i
\(206\) −1.23486 4.60855i −0.0860367 0.321093i
\(207\) 35.4109 + 35.4109i 2.46123 + 2.46123i
\(208\) 3.58077 + 0.422042i 0.248281 + 0.0292634i
\(209\) 2.98654i 0.206583i
\(210\) 8.55295 + 0.524086i 0.590210 + 0.0361654i
\(211\) −1.36327 + 2.36126i −0.0938515 + 0.162556i −0.909129 0.416515i \(-0.863251\pi\)
0.815277 + 0.579071i \(0.196585\pi\)
\(212\) 0.979686 3.65624i 0.0672851 0.251111i
\(213\) 20.8630i 1.42951i
\(214\) −14.0737 3.77105i −0.962061 0.257784i
\(215\) 2.51966 3.80586i 0.171840 0.259558i
\(216\) 6.34541 6.34541i 0.431750 0.431750i
\(217\) 12.7487 + 3.41601i 0.865439 + 0.231894i
\(218\) 1.58682 + 5.92208i 0.107473 + 0.401094i
\(219\) 14.1044 3.77926i 0.953086 0.255379i
\(220\) −0.882013 1.76954i −0.0594653 0.119303i
\(221\) −2.21513 + 0.322281i −0.149006 + 0.0216790i
\(222\) −19.4285 + 19.4285i −1.30395 + 1.30395i
\(223\) 6.49152 + 3.74788i 0.434704 + 0.250976i 0.701349 0.712818i \(-0.252582\pi\)
−0.266645 + 0.963795i \(0.585915\pi\)
\(224\) 1.10671 + 0.638961i 0.0739454 + 0.0426924i
\(225\) −29.7383 3.65820i −1.98256 0.243880i
\(226\) −4.20691 4.20691i −0.279839 0.279839i
\(227\) −6.65757 11.5313i −0.441879 0.765356i 0.555950 0.831215i \(-0.312354\pi\)
−0.997829 + 0.0658594i \(0.979021\pi\)
\(228\) 5.06429 + 8.77160i 0.335391 + 0.580914i
\(229\) 2.64090 + 2.64090i 0.174516 + 0.174516i 0.788960 0.614445i \(-0.210620\pi\)
−0.614445 + 0.788960i \(0.710620\pi\)
\(230\) 10.3155 15.5813i 0.680186 1.02740i
\(231\) 2.93451 + 1.69424i 0.193077 + 0.111473i
\(232\) −5.53601 3.19622i −0.363457 0.209842i
\(233\) −9.50648 + 9.50648i −0.622790 + 0.622790i −0.946244 0.323454i \(-0.895156\pi\)
0.323454 + 0.946244i \(0.395156\pi\)
\(234\) 19.8475 8.53861i 1.29747 0.558187i
\(235\) −5.42548 1.81602i −0.353919 0.118464i
\(236\) −1.07578 + 0.288254i −0.0700272 + 0.0187637i
\(237\) −8.70603 32.4913i −0.565517 2.11054i
\(238\) −0.766345 0.205342i −0.0496748 0.0133103i
\(239\) −10.5033 + 10.5033i −0.679400 + 0.679400i −0.959864 0.280464i \(-0.909512\pi\)
0.280464 + 0.959864i \(0.409512\pi\)
\(240\) −5.59113 3.70159i −0.360906 0.238937i
\(241\) 1.48479 + 0.397848i 0.0956436 + 0.0256276i 0.306323 0.951927i \(-0.400901\pi\)
−0.210680 + 0.977555i \(0.567568\pi\)
\(242\) 10.2182i 0.656848i
\(243\) −0.0348797 + 0.130173i −0.00223753 + 0.00835059i
\(244\) 3.53771 6.12749i 0.226479 0.392273i
\(245\) −7.95095 8.98895i −0.507968 0.574283i
\(246\) 25.9612i 1.65523i
\(247\) 1.75334 + 12.0512i 0.111562 + 0.766801i
\(248\) −7.30303 7.30303i −0.463743 0.463743i
\(249\) −1.35876 5.07096i −0.0861078 0.321359i
\(250\) 0.873438 + 11.1462i 0.0552411 + 0.704946i
\(251\) −6.82870 + 3.94255i −0.431024 + 0.248852i −0.699783 0.714356i \(-0.746720\pi\)
0.268759 + 0.963207i \(0.413386\pi\)
\(252\) 7.65795 0.482406
\(253\) 6.39933 3.69466i 0.402323 0.232281i
\(254\) −3.37246 + 12.5862i −0.211607 + 0.789728i
\(255\) 3.94768 + 1.32137i 0.247213 + 0.0827473i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.30049 + 0.616415i −0.143501 + 0.0384509i −0.329854 0.944032i \(-0.607000\pi\)
0.186354 + 0.982483i \(0.440333\pi\)
\(258\) 3.06058 5.30109i 0.190544 0.330031i
\(259\) −11.7089 −0.727558
\(260\) −4.59794 6.62261i −0.285152 0.410717i
\(261\) −38.3066 −2.37112
\(262\) 2.95320 5.11508i 0.182449 0.316011i
\(263\) −23.0654 + 6.18036i −1.42228 + 0.381098i −0.886290 0.463130i \(-0.846726\pi\)
−0.535985 + 0.844227i \(0.680060\pi\)
\(264\) −1.32578 2.29631i −0.0815960 0.141328i
\(265\) −7.57515 + 3.77577i −0.465338 + 0.231944i
\(266\) −1.11714 + 4.16923i −0.0684964 + 0.255632i
\(267\) 16.3692 9.45078i 1.00178 0.578378i
\(268\) −2.58049 −0.157629
\(269\) 26.8895 15.5247i 1.63948 0.946555i 0.658470 0.752607i \(-0.271204\pi\)
0.981012 0.193949i \(-0.0621295\pi\)
\(270\) −20.0284 1.22725i −1.21889 0.0746880i
\(271\) 2.52048 + 9.40656i 0.153108 + 0.571408i 0.999260 + 0.0384657i \(0.0122470\pi\)
−0.846152 + 0.532942i \(0.821086\pi\)
\(272\) 0.438997 + 0.438997i 0.0266181 + 0.0266181i
\(273\) 12.8359 + 5.11377i 0.776866 + 0.309499i
\(274\) 12.2474i 0.739892i
\(275\) −1.65710 + 4.09880i −0.0999266 + 0.247167i
\(276\) 12.5301 21.7027i 0.754222 1.30635i
\(277\) 7.96424 29.7230i 0.478525 1.78588i −0.129073 0.991635i \(-0.541200\pi\)
0.607598 0.794245i \(-0.292133\pi\)
\(278\) 0.965186i 0.0578880i
\(279\) −59.7819 16.0185i −3.57905 0.959003i
\(280\) −0.569383 2.80022i −0.0340272 0.167345i
\(281\) −2.40508 + 2.40508i −0.143475 + 0.143475i −0.775196 0.631721i \(-0.782349\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(282\) −7.41135 1.98586i −0.441339 0.118256i
\(283\) −3.58042 13.3623i −0.212834 0.794307i −0.986918 0.161224i \(-0.948456\pi\)
0.774084 0.633083i \(-0.218211\pi\)
\(284\) 6.72017 1.80066i 0.398769 0.106850i
\(285\) 7.18879 21.4770i 0.425827 1.27219i
\(286\) −0.459007 3.15489i −0.0271416 0.186552i
\(287\) −7.82302 + 7.82302i −0.461779 + 0.461779i
\(288\) −5.18966 2.99625i −0.305804 0.176556i
\(289\) 14.3886 + 8.30728i 0.846390 + 0.488664i
\(290\) 2.84817 + 14.0073i 0.167250 + 0.822535i
\(291\) 21.1654 + 21.1654i 1.24074 + 1.24074i
\(292\) −2.43467 4.21697i −0.142478 0.246780i
\(293\) −2.70877 4.69172i −0.158248 0.274093i 0.775989 0.630746i \(-0.217251\pi\)
−0.934237 + 0.356653i \(0.883918\pi\)
\(294\) −11.3802 11.3802i −0.663707 0.663707i
\(295\) 2.07653 + 1.37476i 0.120900 + 0.0800417i
\(296\) 7.93494 + 4.58124i 0.461209 + 0.266279i
\(297\) −6.87172 3.96739i −0.398738 0.230211i
\(298\) 2.19929 2.19929i 0.127402 0.127402i
\(299\) 23.6534 18.6655i 1.36791 1.07945i
\(300\) 2.08339 + 14.8483i 0.120284 + 0.857267i
\(301\) 2.51966 0.675142i 0.145231 0.0389145i
\(302\) −3.97811 14.8465i −0.228915 0.854321i
\(303\) 3.04815 + 0.816751i 0.175112 + 0.0469211i
\(304\) 2.38832 2.38832i 0.136980 0.136980i
\(305\) −15.5039 + 3.15248i −0.887749 + 0.180511i
\(306\) 3.59358 + 0.962898i 0.205432 + 0.0550452i
\(307\) 1.34151i 0.0765638i 0.999267 + 0.0382819i \(0.0121885\pi\)
−0.999267 + 0.0382819i \(0.987812\pi\)
\(308\) 0.292456 1.09146i 0.0166643 0.0621918i
\(309\) −7.15371 + 12.3906i −0.406960 + 0.704876i
\(310\) −1.41246 + 23.0510i −0.0802223 + 1.30921i
\(311\) 2.71377i 0.153884i 0.997036 + 0.0769419i \(0.0245156\pi\)
−0.997036 + 0.0769419i \(0.975484\pi\)
\(312\) −6.69787 8.48770i −0.379192 0.480521i
\(313\) −3.27224 3.27224i −0.184958 0.184958i 0.608554 0.793512i \(-0.291750\pi\)
−0.793512 + 0.608554i \(0.791750\pi\)
\(314\) 3.10097 + 11.5730i 0.174998 + 0.653100i
\(315\) −11.3451 12.8262i −0.639222 0.722673i
\(316\) −9.71436 + 5.60859i −0.546475 + 0.315508i
\(317\) 3.50975 0.197127 0.0985635 0.995131i \(-0.468575\pi\)
0.0985635 + 0.995131i \(0.468575\pi\)
\(318\) −9.83018 + 5.67546i −0.551249 + 0.318264i
\(319\) −1.46293 + 5.45972i −0.0819082 + 0.305686i
\(320\) −0.709753 + 2.12044i −0.0396764 + 0.118536i
\(321\) 21.8462 + 37.8387i 1.21934 + 2.11195i
\(322\) 10.3155 2.76404i 0.574862 0.154034i
\(323\) −1.04847 + 1.81600i −0.0583382 + 0.101045i
\(324\) −8.93256 −0.496253
\(325\) −4.28035 + 17.5122i −0.237431 + 0.971404i
\(326\) 20.7958 1.15177
\(327\) 9.19265 15.9221i 0.508355 0.880496i
\(328\) 8.36236 2.24069i 0.461734 0.123721i
\(329\) −1.63489 2.83171i −0.0901342 0.156117i
\(330\) −1.88195 + 5.62246i −0.103598 + 0.309506i
\(331\) 2.17420 8.11424i 0.119505 0.445999i −0.880079 0.474827i \(-0.842511\pi\)
0.999584 + 0.0288278i \(0.00917745\pi\)
\(332\) −1.51613 + 0.875338i −0.0832085 + 0.0480404i
\(333\) 54.9062 3.00884
\(334\) 10.3056 5.94992i 0.563895 0.325565i
\(335\) 3.82294 + 4.32202i 0.208869 + 0.236137i
\(336\) −0.991839 3.70159i −0.0541092 0.201938i
\(337\) 6.40557 + 6.40557i 0.348934 + 0.348934i 0.859712 0.510779i \(-0.170643\pi\)
−0.510779 + 0.859712i \(0.670643\pi\)
\(338\) −3.70435 12.4611i −0.201490 0.677792i
\(339\) 17.8410i 0.968988i
\(340\) 0.0849052 1.38563i 0.00460463 0.0751463i
\(341\) −4.56613 + 7.90877i −0.247270 + 0.428284i
\(342\) 5.23857 19.5506i 0.283269 1.05717i
\(343\) 15.8040i 0.853334i
\(344\) −1.97169 0.528312i −0.106306 0.0284847i
\(345\) −54.9125 + 11.1656i −2.95639 + 0.601138i
\(346\) 10.9244 10.9244i 0.587299 0.587299i
\(347\) −18.2716 4.89586i −0.980871 0.262824i −0.267460 0.963569i \(-0.586184\pi\)
−0.713412 + 0.700745i \(0.752851\pi\)
\(348\) 4.96138 + 18.5161i 0.265958 + 0.992568i
\(349\) −21.6314 + 5.79612i −1.15790 + 0.310259i −0.786128 0.618064i \(-0.787917\pi\)
−0.371775 + 0.928323i \(0.621251\pi\)
\(350\) −3.84651 + 5.10211i −0.205605 + 0.272719i
\(351\) −30.0578 11.9749i −1.60437 0.639171i
\(352\) −0.625238 + 0.625238i −0.0333253 + 0.0333253i
\(353\) 27.5457 + 15.9035i 1.46611 + 0.846459i 0.999282 0.0378892i \(-0.0120634\pi\)
0.466828 + 0.884348i \(0.345397\pi\)
\(354\) 2.89234 + 1.66990i 0.153726 + 0.0887540i
\(355\) −12.9717 8.58785i −0.688464 0.455796i
\(356\) −4.45700 4.45700i −0.236220 0.236220i
\(357\) 1.18957 + 2.06040i 0.0629588 + 0.109048i
\(358\) −0.946097 1.63869i −0.0500028 0.0866073i
\(359\) 8.54852 + 8.54852i 0.451173 + 0.451173i 0.895744 0.444570i \(-0.146644\pi\)
−0.444570 + 0.895744i \(0.646644\pi\)
\(360\) 2.66998 + 13.1309i 0.140720 + 0.692061i
\(361\) −6.57472 3.79591i −0.346038 0.199785i
\(362\) 17.7086 + 10.2241i 0.930743 + 0.537365i
\(363\) 21.6669 21.6669i 1.13722 1.13722i
\(364\) 0.539337 4.57594i 0.0282690 0.239844i
\(365\) −3.45603 + 10.3251i −0.180897 + 0.540442i
\(366\) −20.4944 + 5.49147i −1.07126 + 0.287044i
\(367\) 0.788653 + 2.94329i 0.0411674 + 0.153639i 0.983450 0.181180i \(-0.0579916\pi\)
−0.942283 + 0.334819i \(0.891325\pi\)
\(368\) −8.07211 2.16292i −0.420788 0.112750i
\(369\) 36.6841 36.6841i 1.90970 1.90970i
\(370\) −4.08238 20.0771i −0.212233 1.04376i
\(371\) −4.67239 1.25196i −0.242578 0.0649987i
\(372\) 30.9712i 1.60578i
\(373\) 0.996016 3.71718i 0.0515717 0.192468i −0.935334 0.353766i \(-0.884901\pi\)
0.986906 + 0.161297i \(0.0515678\pi\)
\(374\) 0.274477 0.475409i 0.0141929 0.0245828i
\(375\) 21.7827 25.4868i 1.12485 1.31613i
\(376\) 2.55866i 0.131953i
\(377\) −2.69788 + 22.8898i −0.138948 + 1.17888i
\(378\) −8.10894 8.10894i −0.417079 0.417079i
\(379\) −2.14311 7.99821i −0.110084 0.410841i 0.888788 0.458319i \(-0.151548\pi\)
−0.998872 + 0.0474782i \(0.984882\pi\)
\(380\) −7.53840 0.461919i −0.386712 0.0236960i
\(381\) 33.8393 19.5371i 1.73364 1.00092i
\(382\) 20.3169 1.03950
\(383\) −3.78044 + 2.18264i −0.193172 + 0.111528i −0.593466 0.804859i \(-0.702241\pi\)
0.400295 + 0.916386i \(0.368908\pi\)
\(384\) −0.776134 + 2.89657i −0.0396069 + 0.147815i
\(385\) −2.26134 + 1.12714i −0.115248 + 0.0574446i
\(386\) 1.09527 + 1.89706i 0.0557477 + 0.0965579i
\(387\) −11.8153 + 3.16591i −0.600607 + 0.160932i
\(388\) 4.99081 8.64434i 0.253370 0.438850i
\(389\) 5.85321 0.296770 0.148385 0.988930i \(-0.452593\pi\)
0.148385 + 0.988930i \(0.452593\pi\)
\(390\) −4.29317 + 23.7925i −0.217393 + 1.20478i
\(391\) 5.18823 0.262380
\(392\) −2.68346 + 4.64788i −0.135535 + 0.234754i
\(393\) −17.1083 + 4.58415i −0.862998 + 0.231240i
\(394\) 0.759889 + 1.31617i 0.0382826 + 0.0663075i
\(395\) 23.7853 + 7.96143i 1.19677 + 0.400583i
\(396\) −1.37140 + 5.11814i −0.0689156 + 0.257196i
\(397\) 12.0807 6.97482i 0.606315 0.350056i −0.165207 0.986259i \(-0.552829\pi\)
0.771522 + 0.636203i \(0.219496\pi\)
\(398\) −6.00544 −0.301026
\(399\) 11.2094 6.47177i 0.561173 0.323994i
\(400\) 4.60296 1.95262i 0.230148 0.0976310i
\(401\) −3.42776 12.7926i −0.171174 0.638830i −0.997172 0.0751566i \(-0.976054\pi\)
0.825998 0.563673i \(-0.190612\pi\)
\(402\) 5.47177 + 5.47177i 0.272907 + 0.272907i
\(403\) −13.7821 + 34.5940i −0.686534 + 1.72325i
\(404\) 1.05233i 0.0523555i
\(405\) 13.2334 + 14.9610i 0.657571 + 0.743418i
\(406\) −4.08452 + 7.07459i −0.202711 + 0.351106i
\(407\) 2.09686 7.82560i 0.103938 0.387900i
\(408\) 1.86173i 0.0921693i
\(409\) 25.0445 + 6.71066i 1.23837 + 0.331821i 0.817834 0.575454i \(-0.195175\pi\)
0.420538 + 0.907275i \(0.361841\pi\)
\(410\) −16.1415 10.6864i −0.797173 0.527766i
\(411\) −25.9698 + 25.9698i −1.28100 + 1.28100i
\(412\) 4.60855 + 1.23486i 0.227047 + 0.0608371i
\(413\) 0.368366 + 1.37476i 0.0181261 + 0.0676476i
\(414\) −48.3722 + 12.9613i −2.37736 + 0.637012i
\(415\) 3.71220 + 1.24255i 0.182225 + 0.0609943i
\(416\) −2.15588 + 2.89001i −0.105701 + 0.141695i
\(417\) 2.04662 2.04662i 0.100223 0.100223i
\(418\) −2.58642 1.49327i −0.126506 0.0730383i
\(419\) 17.8637 + 10.3136i 0.872698 + 0.503852i 0.868244 0.496138i \(-0.165249\pi\)
0.00445381 + 0.999990i \(0.498582\pi\)
\(420\) −4.73035 + 7.14503i −0.230817 + 0.348642i
\(421\) −21.3596 21.3596i −1.04100 1.04100i −0.999123 0.0418813i \(-0.986665\pi\)
−0.0418813 0.999123i \(-0.513335\pi\)
\(422\) −1.36327 2.36126i −0.0663630 0.114944i
\(423\) 7.66639 + 13.2786i 0.372753 + 0.645627i
\(424\) 2.67655 + 2.67655i 0.129985 + 0.129985i
\(425\) −2.44655 + 1.91057i −0.118675 + 0.0926763i
\(426\) −18.0679 10.4315i −0.875392 0.505408i
\(427\) −7.83046 4.52092i −0.378943 0.218783i
\(428\) 10.3027 10.3027i 0.498000 0.498000i
\(429\) −5.71644 + 7.66303i −0.275992 + 0.369975i
\(430\) 2.03614 + 4.08502i 0.0981916 + 0.196997i
\(431\) 34.1885 9.16078i 1.64680 0.441259i 0.688087 0.725628i \(-0.258451\pi\)
0.958715 + 0.284369i \(0.0917839\pi\)
\(432\) 2.32258 + 8.66799i 0.111745 + 0.417039i
\(433\) 28.8432 + 7.72850i 1.38611 + 0.371408i 0.873338 0.487114i \(-0.161951\pi\)
0.512776 + 0.858523i \(0.328617\pi\)
\(434\) −9.33270 + 9.33270i −0.447984 + 0.447984i
\(435\) 23.6622 35.7409i 1.13451 1.71364i
\(436\) −5.92208 1.58682i −0.283616 0.0759947i
\(437\) 28.2261i 1.35024i
\(438\) −3.77926 + 14.1044i −0.180580 + 0.673934i
\(439\) −8.00470 + 13.8645i −0.382043 + 0.661718i −0.991354 0.131213i \(-0.958113\pi\)
0.609311 + 0.792931i \(0.291446\pi\)
\(440\) 1.97348 + 0.120926i 0.0940818 + 0.00576491i
\(441\) 32.1612i 1.53149i
\(442\) 0.828462 2.07950i 0.0394059 0.0989117i
\(443\) 21.6681 + 21.6681i 1.02948 + 1.02948i 0.999552 + 0.0299327i \(0.00952930\pi\)
0.0299327 + 0.999552i \(0.490471\pi\)
\(444\) −7.11131 26.5398i −0.337488 1.25952i
\(445\) −0.862017 + 14.0679i −0.0408635 + 0.666882i
\(446\) −6.49152 + 3.74788i −0.307382 + 0.177467i
\(447\) −9.32692 −0.441148
\(448\) −1.10671 + 0.638961i −0.0522873 + 0.0301881i
\(449\) 2.31771 8.64982i 0.109380 0.408210i −0.889426 0.457080i \(-0.848895\pi\)
0.998805 + 0.0488699i \(0.0155620\pi\)
\(450\) 18.0373 23.9251i 0.850285 1.12784i
\(451\) −3.82750 6.62943i −0.180230 0.312168i
\(452\) 5.74674 1.53983i 0.270304 0.0724277i
\(453\) −23.0458 + 39.9164i −1.08278 + 1.87544i
\(454\) 13.3151 0.624911
\(455\) −8.46318 + 5.87582i −0.396760 + 0.275462i
\(456\) −10.1286 −0.474314
\(457\) −12.2784 + 21.2668i −0.574360 + 0.994820i 0.421751 + 0.906712i \(0.361416\pi\)
−0.996111 + 0.0881087i \(0.971918\pi\)
\(458\) −3.60754 + 0.966636i −0.168569 + 0.0451679i
\(459\) −2.78561 4.82482i −0.130021 0.225203i
\(460\) 8.33601 + 16.7242i 0.388668 + 0.779768i
\(461\) −2.58880 + 9.66155i −0.120573 + 0.449983i −0.999643 0.0267083i \(-0.991497\pi\)
0.879071 + 0.476692i \(0.158164\pi\)
\(462\) −2.93451 + 1.69424i −0.136526 + 0.0788232i
\(463\) −27.8834 −1.29585 −0.647926 0.761703i \(-0.724364\pi\)
−0.647926 + 0.761703i \(0.724364\pi\)
\(464\) 5.53601 3.19622i 0.257003 0.148381i
\(465\) 51.8731 45.8831i 2.40556 2.12778i
\(466\) −3.47961 12.9861i −0.161190 0.601569i
\(467\) −22.3548 22.3548i −1.03446 1.03446i −0.999385 0.0350738i \(-0.988833\pi\)
−0.0350738 0.999385i \(-0.511167\pi\)
\(468\) −2.52909 + 21.4577i −0.116907 + 0.991884i
\(469\) 3.29767i 0.152272i
\(470\) 4.28546 3.79059i 0.197673 0.174847i
\(471\) 17.9643 31.1151i 0.827752 1.43371i
\(472\) 0.288254 1.07578i 0.0132680 0.0495167i
\(473\) 1.80491i 0.0829897i
\(474\) 32.4913 + 8.70603i 1.49238 + 0.399881i
\(475\) 10.3943 + 13.3103i 0.476923 + 0.610717i
\(476\) 0.561003 0.561003i 0.0257136 0.0257136i
\(477\) 21.9100 + 5.87077i 1.00319 + 0.268804i
\(478\) −3.84446 14.3477i −0.175842 0.656250i
\(479\) −2.16670 + 0.580565i −0.0989990 + 0.0265267i −0.307978 0.951393i \(-0.599652\pi\)
0.208979 + 0.977920i \(0.432986\pi\)
\(480\) 6.00124 2.99126i 0.273918 0.136532i
\(481\) 3.86695 32.8087i 0.176318 1.49595i
\(482\) −1.08694 + 1.08694i −0.0495088 + 0.0495088i
\(483\) −27.7344 16.0125i −1.26196 0.728593i
\(484\) −8.84918 5.10908i −0.402236 0.232231i
\(485\) −21.8720 + 4.44735i −0.993157 + 0.201944i
\(486\) −0.0952932 0.0952932i −0.00432259 0.00432259i
\(487\) 11.5045 + 19.9264i 0.521319 + 0.902951i 0.999693 + 0.0247947i \(0.00789322\pi\)
−0.478373 + 0.878157i \(0.658773\pi\)
\(488\) 3.53771 + 6.12749i 0.160145 + 0.277379i
\(489\) −44.0961 44.0961i −1.99410 1.99410i
\(490\) 11.7601 2.39125i 0.531269 0.108026i
\(491\) −2.22242 1.28311i −0.100296 0.0579061i 0.449013 0.893525i \(-0.351776\pi\)
−0.549309 + 0.835619i \(0.685109\pi\)
\(492\) −22.4831 12.9806i −1.01362 0.585211i
\(493\) −2.80625 + 2.80625i −0.126387 + 0.126387i
\(494\) −11.3133 4.50718i −0.509011 0.202787i
\(495\) 10.6040 5.28546i 0.476614 0.237564i
\(496\) 9.97612 2.67309i 0.447941 0.120025i
\(497\) −2.30111 8.58785i −0.103219 0.385218i
\(498\) 5.07096 + 1.35876i 0.227235 + 0.0608874i
\(499\) 6.70967 6.70967i 0.300366 0.300366i −0.540791 0.841157i \(-0.681875\pi\)
0.841157 + 0.540791i \(0.181875\pi\)
\(500\) −10.0896 4.81667i −0.451220 0.215408i
\(501\) −34.4687 9.23587i −1.53995 0.412628i
\(502\) 7.88510i 0.351929i
\(503\) 2.94883 11.0052i 0.131482 0.490697i −0.868506 0.495679i \(-0.834919\pi\)
0.999988 + 0.00498191i \(0.00158580\pi\)
\(504\) −3.82898 + 6.63198i −0.170556 + 0.295412i
\(505\) −1.76253 + 1.55900i −0.0784317 + 0.0693748i
\(506\) 7.38931i 0.328495i
\(507\) −18.5680 + 34.2777i −0.824636 + 1.52233i
\(508\) −9.21373 9.21373i −0.408793 0.408793i
\(509\) −10.3486 38.6216i −0.458695 1.71187i −0.676991 0.735991i \(-0.736716\pi\)
0.218296 0.975883i \(-0.429950\pi\)
\(510\) −3.11818 + 2.75810i −0.138075 + 0.122131i
\(511\) −5.38896 + 3.11132i −0.238394 + 0.137637i
\(512\) 1.00000 0.0441942
\(513\) −26.2490 + 15.1549i −1.15892 + 0.669104i
\(514\) 0.616415 2.30049i 0.0271889 0.101470i
\(515\) −4.75922 9.54820i −0.209716 0.420744i
\(516\) 3.06058 + 5.30109i 0.134735 + 0.233367i
\(517\) 2.18533 0.585558i 0.0961108 0.0257528i
\(518\) 5.85447 10.1402i 0.257231 0.445537i
\(519\) −46.3290 −2.03362
\(520\) 8.03432 0.670633i 0.352328 0.0294092i
\(521\) 20.3944 0.893494 0.446747 0.894660i \(-0.352582\pi\)
0.446747 + 0.894660i \(0.352582\pi\)
\(522\) 19.1533 33.1745i 0.838318 1.45201i
\(523\) 24.8222 6.65109i 1.08540 0.290832i 0.328593 0.944472i \(-0.393426\pi\)
0.756806 + 0.653640i \(0.226759\pi\)
\(524\) 2.95320 + 5.11508i 0.129011 + 0.223453i
\(525\) 18.9750 2.66241i 0.828136 0.116197i
\(526\) 6.18036 23.0654i 0.269477 1.00570i
\(527\) −5.55296 + 3.20600i −0.241891 + 0.139656i
\(528\) 2.65156 0.115394
\(529\) −40.5622 + 23.4186i −1.76358 + 1.01820i
\(530\) 0.517665 8.44816i 0.0224859 0.366964i
\(531\) −1.72736 6.44660i −0.0749611 0.279759i
\(532\) −3.05209 3.05209i −0.132325 0.132325i
\(533\) −19.3367 24.5039i −0.837564 1.06138i
\(534\) 18.9016i 0.817951i
\(535\) −32.5190 1.99262i −1.40592 0.0861484i
\(536\) 1.29025 2.23477i 0.0557302 0.0965275i
\(537\) −1.46859 + 5.48087i −0.0633746 + 0.236517i
\(538\) 31.0493i 1.33863i
\(539\) 4.58383 + 1.22823i 0.197440 + 0.0529038i
\(540\) 11.0770 16.7315i 0.476679 0.720007i
\(541\) −19.8508 + 19.8508i −0.853451 + 0.853451i −0.990557 0.137105i \(-0.956220\pi\)
0.137105 + 0.990557i \(0.456220\pi\)
\(542\) −9.40656 2.52048i −0.404046 0.108264i
\(543\) −15.8705 59.2294i −0.681067 2.54178i
\(544\) −0.599680 + 0.160684i −0.0257111 + 0.00688926i
\(545\) 6.11568 + 12.2696i 0.261967 + 0.525573i
\(546\) −10.8466 + 8.55936i −0.464193 + 0.366307i
\(547\) −22.0342 + 22.0342i −0.942115 + 0.942115i −0.998414 0.0562990i \(-0.982070\pi\)
0.0562990 + 0.998414i \(0.482070\pi\)
\(548\) 10.6066 + 6.12370i 0.453090 + 0.261591i
\(549\) 36.7190 + 21.1997i 1.56713 + 0.904782i
\(550\) −2.72112 3.48449i −0.116029 0.148579i
\(551\) 15.2672 + 15.2672i 0.650404 + 0.650404i
\(552\) 12.5301 + 21.7027i 0.533316 + 0.923730i
\(553\) 7.16734 + 12.4142i 0.304786 + 0.527905i
\(554\) 21.7587 + 21.7587i 0.924439 + 0.924439i
\(555\) −33.9158 + 51.2286i −1.43964 + 2.17453i
\(556\) −0.835876 0.482593i −0.0354490 0.0204665i
\(557\) 24.7384 + 14.2827i 1.04820 + 0.605179i 0.922145 0.386844i \(-0.126435\pi\)
0.126055 + 0.992023i \(0.459768\pi\)
\(558\) 43.7634 43.7634i 1.85265 1.85265i
\(559\) 1.05963 + 7.28312i 0.0448174 + 0.308043i
\(560\) 2.70975 + 0.907010i 0.114508 + 0.0383282i
\(561\) −1.59009 + 0.426062i −0.0671335 + 0.0179884i
\(562\) −0.880320 3.28540i −0.0371340 0.138586i
\(563\) 1.87859 + 0.503366i 0.0791731 + 0.0212144i 0.298188 0.954507i \(-0.403618\pi\)
−0.219015 + 0.975721i \(0.570284\pi\)
\(564\) 5.42548 5.42548i 0.228454 0.228454i
\(565\) −11.0927 7.34389i −0.466673 0.308960i
\(566\) 13.3623 + 3.58042i 0.561660 + 0.150496i
\(567\) 11.4151i 0.479390i
\(568\) −1.80066 + 6.72017i −0.0755542 + 0.281972i
\(569\) −13.6532 + 23.6481i −0.572372 + 0.991378i 0.423949 + 0.905686i \(0.360643\pi\)
−0.996322 + 0.0856922i \(0.972690\pi\)
\(570\) 15.0052 + 16.9642i 0.628500 + 0.710551i
\(571\) 34.7539i 1.45441i 0.686423 + 0.727203i \(0.259180\pi\)
−0.686423 + 0.727203i \(0.740820\pi\)
\(572\) 2.96171 + 1.17993i 0.123836 + 0.0493354i
\(573\) −43.0807 43.0807i −1.79972 1.79972i
\(574\) −2.86343 10.6864i −0.119517 0.446044i
\(575\) 15.6614 38.7382i 0.653126 1.61550i
\(576\) 5.18966 2.99625i 0.216236 0.124844i
\(577\) −22.1256 −0.921103 −0.460551 0.887633i \(-0.652348\pi\)
−0.460551 + 0.887633i \(0.652348\pi\)
\(578\) −14.3886 + 8.30728i −0.598488 + 0.345537i
\(579\) 1.70015 6.34504i 0.0706558 0.263691i
\(580\) −13.5547 4.53705i −0.562830 0.188391i
\(581\) 1.11861 + 1.93750i 0.0464079 + 0.0803809i
\(582\) −28.9125 + 7.74707i −1.19846 + 0.321126i
\(583\) 1.67348 2.89856i 0.0693086 0.120046i
\(584\) 4.86934 0.201495
\(585\) 39.6860 27.5532i 1.64081 1.13918i
\(586\) 5.41754 0.223796
\(587\) 16.6364 28.8151i 0.686657 1.18932i −0.286256 0.958153i \(-0.592411\pi\)
0.972913 0.231172i \(-0.0742559\pi\)
\(588\) 15.5456 4.16544i 0.641091 0.171780i
\(589\) 17.4420 + 30.2104i 0.718685 + 1.24480i
\(590\) −2.22884 + 1.11095i −0.0917601 + 0.0457370i
\(591\) 1.17955 4.40214i 0.0485202 0.181080i
\(592\) −7.93494 + 4.58124i −0.326124 + 0.188288i
\(593\) 1.18487 0.0486567 0.0243283 0.999704i \(-0.492255\pi\)
0.0243283 + 0.999704i \(0.492255\pi\)
\(594\) 6.87172 3.96739i 0.281950 0.162784i
\(595\) −1.77073 0.108502i −0.0725928 0.00444816i
\(596\) 0.804997 + 3.00429i 0.0329740 + 0.123061i
\(597\) 12.7342 + 12.7342i 0.521174 + 0.521174i
\(598\) 4.33812 + 29.8172i 0.177399 + 1.21932i
\(599\) 0.947362i 0.0387082i −0.999813 0.0193541i \(-0.993839\pi\)
0.999813 0.0193541i \(-0.00616098\pi\)
\(600\) −13.9007 5.61988i −0.567494 0.229431i
\(601\) 9.46190 16.3885i 0.385959 0.668500i −0.605943 0.795508i \(-0.707204\pi\)
0.991902 + 0.127008i \(0.0405373\pi\)
\(602\) −0.675142 + 2.51966i −0.0275167 + 0.102694i
\(603\) 15.4636i 0.629727i
\(604\) 14.8465 + 3.97811i 0.604096 + 0.161867i
\(605\) 4.55274 + 22.3903i 0.185095 + 0.910296i
\(606\) −2.23140 + 2.23140i −0.0906446 + 0.0906446i
\(607\) −18.7294 5.01853i −0.760204 0.203696i −0.142164 0.989843i \(-0.545406\pi\)
−0.618039 + 0.786147i \(0.712073\pi\)
\(608\) 0.874187 + 3.26251i 0.0354530 + 0.132312i
\(609\) 23.6622 6.34026i 0.958839 0.256920i
\(610\) 5.02180 15.0030i 0.203327 0.607453i
\(611\) 8.47443 3.64580i 0.342839 0.147493i
\(612\) −2.63069 + 2.63069i −0.106339 + 0.106339i
\(613\) −5.86909 3.38852i −0.237050 0.136861i 0.376770 0.926307i \(-0.377035\pi\)
−0.613820 + 0.789446i \(0.710368\pi\)
\(614\) −1.16178 0.670753i −0.0468856 0.0270694i
\(615\) 11.5671 + 56.8870i 0.466432 + 2.29391i
\(616\) 0.799006 + 0.799006i 0.0321929 + 0.0321929i
\(617\) 4.57750 + 7.92846i 0.184283 + 0.319188i 0.943335 0.331843i \(-0.107670\pi\)
−0.759052 + 0.651030i \(0.774337\pi\)
\(618\) −7.15371 12.3906i −0.287764 0.498422i
\(619\) −5.10375 5.10375i −0.205137 0.205137i 0.597060 0.802197i \(-0.296336\pi\)
−0.802197 + 0.597060i \(0.796336\pi\)
\(620\) −19.2565 12.7487i −0.773359 0.512000i
\(621\) 64.9454 + 37.4963i 2.60617 + 1.50467i
\(622\) −2.35019 1.35688i −0.0942341 0.0544061i
\(623\) −5.69570 + 5.69570i −0.228193 + 0.228193i
\(624\) 10.6995 1.55668i 0.428323 0.0623170i
\(625\) 6.88012 + 24.0346i 0.275205 + 0.961386i
\(626\) 4.46996 1.19772i 0.178656 0.0478706i
\(627\) 2.31796 + 8.65073i 0.0925702 + 0.345477i
\(628\) −11.5730 3.10097i −0.461811 0.123742i
\(629\) 4.02230 4.02230i 0.160380 0.160380i
\(630\) 16.7803 3.41203i 0.668544 0.135939i
\(631\) 9.61001 + 2.57499i 0.382568 + 0.102509i 0.444978 0.895542i \(-0.353212\pi\)
−0.0624090 + 0.998051i \(0.519878\pi\)
\(632\) 11.2172i 0.446195i
\(633\) −2.11616 + 7.89762i −0.0841099 + 0.313902i
\(634\) −1.75487 + 3.03953i −0.0696949 + 0.120715i
\(635\) −1.78200 + 29.0818i −0.0707167 + 1.15408i
\(636\) 11.3509i 0.450093i
\(637\) 19.2177 + 2.26506i 0.761431 + 0.0897451i
\(638\) −3.99679 3.99679i −0.158234 0.158234i
\(639\) 10.7905 + 40.2706i 0.426865 + 1.59308i
\(640\) −1.48148 1.67488i −0.0585604 0.0662055i
\(641\) −7.80132 + 4.50409i −0.308134 + 0.177901i −0.646091 0.763260i \(-0.723597\pi\)
0.337957 + 0.941161i \(0.390264\pi\)
\(642\) −43.6924 −1.72440
\(643\) −3.34673 + 1.93223i −0.131982 + 0.0761998i −0.564537 0.825408i \(-0.690945\pi\)
0.432555 + 0.901607i \(0.357612\pi\)
\(644\) −2.76404 + 10.3155i −0.108918 + 0.406489i
\(645\) 4.34452 12.9795i 0.171065 0.511069i
\(646\) −1.04847 1.81600i −0.0412513 0.0714494i
\(647\) 2.16676 0.580581i 0.0851841 0.0228250i −0.215975 0.976399i \(-0.569293\pi\)
0.301159 + 0.953574i \(0.402626\pi\)
\(648\) 4.46628 7.73583i 0.175452 0.303892i
\(649\) −0.984781 −0.0386560
\(650\) −13.0259 12.4630i −0.510917 0.488840i
\(651\) 39.5788 1.55122
\(652\) −10.3979 + 18.0097i −0.407213 + 0.705313i
\(653\) −21.0761 + 5.64733i −0.824773 + 0.220997i −0.646432 0.762972i \(-0.723740\pi\)
−0.178341 + 0.983969i \(0.557073\pi\)
\(654\) 9.19265 + 15.9221i 0.359461 + 0.622605i
\(655\) 4.19208 12.5241i 0.163798 0.489358i
\(656\) −2.24069 + 8.36236i −0.0874842 + 0.326495i
\(657\) 25.2702 14.5898i 0.985885 0.569201i
\(658\) 3.26977 0.127469
\(659\) 39.1338 22.5939i 1.52444 0.880134i 0.524856 0.851191i \(-0.324119\pi\)
0.999581 0.0289434i \(-0.00921424\pi\)
\(660\) −3.92821 4.44104i −0.152906 0.172867i
\(661\) −0.707218 2.63937i −0.0275076 0.102660i 0.950807 0.309783i \(-0.100256\pi\)
−0.978315 + 0.207123i \(0.933590\pi\)
\(662\) 5.94003 + 5.94003i 0.230866 + 0.230866i
\(663\) −6.16615 + 2.65275i −0.239473 + 0.103024i
\(664\) 1.75068i 0.0679394i
\(665\) −0.590297 + 9.63349i −0.0228907 + 0.373571i
\(666\) −27.4531 + 47.5501i −1.06379 + 1.84253i
\(667\) 13.8263 51.6004i 0.535356 1.99798i
\(668\) 11.8998i 0.460419i
\(669\) 21.7120 + 5.81771i 0.839434 + 0.224926i
\(670\) −5.65445 + 1.14975i −0.218450 + 0.0444187i
\(671\) 4.42382 4.42382i 0.170780 0.170780i
\(672\) 3.70159 + 0.991839i 0.142792 + 0.0382610i
\(673\) −12.0264 44.8831i −0.463583 1.73012i −0.661544 0.749906i \(-0.730099\pi\)
0.197961 0.980210i \(-0.436568\pi\)
\(674\) −8.75017 + 2.34460i −0.337044 + 0.0903107i
\(675\) −44.4335 + 6.23454i −1.71025 + 0.239967i
\(676\) 12.6438 + 3.02247i 0.486298 + 0.116249i
\(677\) −19.7486 + 19.7486i −0.758999 + 0.758999i −0.976140 0.217141i \(-0.930327\pi\)
0.217141 + 0.976140i \(0.430327\pi\)
\(678\) −15.4507 8.92048i −0.593381 0.342589i
\(679\) −11.0468 6.37787i −0.423937 0.244760i
\(680\) 1.15754 + 0.766345i 0.0443896 + 0.0293880i
\(681\) −28.2339 28.2339i −1.08193 1.08193i
\(682\) −4.56613 7.90877i −0.174846 0.302843i
\(683\) 4.76460 + 8.25253i 0.182312 + 0.315774i 0.942668 0.333733i \(-0.108308\pi\)
−0.760355 + 0.649508i \(0.774975\pi\)
\(684\) 14.3120 + 14.3120i 0.547234 + 0.547234i
\(685\) −5.45687 26.8368i −0.208496 1.02538i
\(686\) 13.6866 + 7.90198i 0.522558 + 0.301699i
\(687\) 9.69924 + 5.59986i 0.370049 + 0.213648i
\(688\) 1.44337 1.44337i 0.0550281 0.0550281i
\(689\) 5.05111 12.6787i 0.192432 0.483019i
\(690\) 17.7865 53.1385i 0.677122 2.02295i
\(691\) 0.594540 0.159306i 0.0226174 0.00606030i −0.247493 0.968890i \(-0.579607\pi\)
0.270110 + 0.962829i \(0.412940\pi\)
\(692\) 3.99861 + 14.9230i 0.152004 + 0.567287i
\(693\) 6.54059 + 1.75255i 0.248456 + 0.0665737i
\(694\) 13.3757 13.3757i 0.507736 0.507736i
\(695\) 0.430042 + 2.11494i 0.0163124 + 0.0802244i
\(696\) −18.5161 4.96138i −0.701852 0.188061i
\(697\) 5.37479i 0.203585i
\(698\) 5.79612 21.6314i 0.219386 0.818761i
\(699\) −20.1579 + 34.9145i −0.762441 + 1.32059i
\(700\) −2.49530 5.88223i −0.0943134 0.222327i
\(701\) 18.0552i 0.681935i −0.940075 0.340968i \(-0.889245\pi\)
0.940075 0.340968i \(-0.110755\pi\)
\(702\) 25.3994 20.0434i 0.958640 0.756489i
\(703\) −21.8830 21.8830i −0.825332 0.825332i
\(704\) −0.228853 0.854091i −0.00862522 0.0321898i
\(705\) −17.1248 1.04933i −0.644956 0.0395200i
\(706\) −27.5457 + 15.9035i −1.03670 + 0.598537i
\(707\) −1.34480 −0.0505764
\(708\) −2.89234 + 1.66990i −0.108701 + 0.0627585i
\(709\) 5.22810 19.5115i 0.196345 0.732771i −0.795569 0.605863i \(-0.792828\pi\)
0.991914 0.126908i \(-0.0405053\pi\)
\(710\) 13.9231 6.93986i 0.522526 0.260448i
\(711\) −33.6095 58.2133i −1.26045 2.18317i
\(712\) 6.08837 1.63137i 0.228171 0.0611384i
\(713\) 43.1550 74.7467i 1.61617 2.79929i
\(714\) −2.37914 −0.0890372
\(715\) −2.41146 6.70856i −0.0901835 0.250886i
\(716\) 1.89219 0.0707146
\(717\) −22.2715 + 38.5754i −0.831745 + 1.44062i
\(718\) −11.6775 + 3.12897i −0.435800 + 0.116772i
\(719\) −8.30123 14.3782i −0.309584 0.536215i 0.668688 0.743543i \(-0.266856\pi\)
−0.978271 + 0.207329i \(0.933523\pi\)
\(720\) −12.7067 4.25320i −0.473551 0.158507i
\(721\) 1.57805 5.88938i 0.0587698 0.219332i
\(722\) 6.57472 3.79591i 0.244686 0.141269i
\(723\) 4.60957 0.171432
\(724\) −17.7086 + 10.2241i −0.658135 + 0.379974i
\(725\) 12.4820 + 29.4241i 0.463569 + 1.09278i
\(726\) 7.93065 + 29.5976i 0.294334 + 1.09847i
\(727\) −3.52264 3.52264i −0.130648 0.130648i 0.638759 0.769407i \(-0.279448\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(728\) 3.69321 + 2.75505i 0.136880 + 0.102109i
\(729\) 27.2018i 1.00747i
\(730\) −7.21381 8.15557i −0.266995 0.301851i
\(731\) −0.633636 + 1.09749i −0.0234359 + 0.0405922i
\(732\) 5.49147 20.4944i 0.202971 0.757497i
\(733\) 9.74855i 0.360071i 0.983660 + 0.180035i \(0.0576213\pi\)
−0.983660 + 0.180035i \(0.942379\pi\)
\(734\) −2.94329 0.788653i −0.108639 0.0291097i
\(735\) −30.0071 19.8661i −1.10683 0.732773i
\(736\) 5.90920 5.90920i 0.217816 0.217816i
\(737\) −2.20398 0.590554i −0.0811845 0.0217533i
\(738\) 13.4273 + 50.1115i 0.494267 + 1.84463i
\(739\) −9.31015 + 2.49465i −0.342479 + 0.0917670i −0.425959 0.904742i \(-0.640063\pi\)
0.0834798 + 0.996509i \(0.473397\pi\)
\(740\) 19.4285 + 6.50310i 0.714204 + 0.239059i
\(741\) 14.4320 + 33.5464i 0.530174 + 1.23236i
\(742\) 3.42043 3.42043i 0.125568 0.125568i
\(743\) 46.5667 + 26.8853i 1.70837 + 0.986326i 0.936586 + 0.350439i \(0.113968\pi\)
0.771782 + 0.635888i \(0.219366\pi\)
\(744\) −26.8219 15.4856i −0.983337 0.567730i
\(745\) 3.83925 5.79906i 0.140659 0.212461i
\(746\) 2.72117 + 2.72117i 0.0996290 + 0.0996290i
\(747\) −5.24547 9.08541i −0.191922 0.332418i
\(748\) 0.274477 + 0.475409i 0.0100359 + 0.0173827i
\(749\) −13.1660 13.1660i −0.481077 0.481077i
\(750\) 11.1809 + 31.6078i 0.408268 + 1.15415i
\(751\) 18.9911 + 10.9645i 0.692994 + 0.400100i 0.804733 0.593637i \(-0.202309\pi\)
−0.111739 + 0.993738i \(0.535642\pi\)
\(752\) −2.21587 1.27933i −0.0808043 0.0466524i
\(753\) −16.7199 + 16.7199i −0.609305 + 0.609305i
\(754\) −18.4742 13.7813i −0.672791 0.501886i
\(755\) −15.3319 30.7597i −0.557984 1.11946i
\(756\) 11.0770 2.96808i 0.402867 0.107948i
\(757\) 12.6177 + 47.0899i 0.458598 + 1.71151i 0.677290 + 0.735716i \(0.263154\pi\)
−0.218692 + 0.975794i \(0.570179\pi\)
\(758\) 7.99821 + 2.14311i 0.290508 + 0.0778414i
\(759\) 15.6686 15.6686i 0.568733 0.568733i
\(760\) 4.16923 6.29749i 0.151234 0.228434i
\(761\) 41.5088 + 11.1222i 1.50469 + 0.403181i 0.914668 0.404206i \(-0.132452\pi\)
0.590023 + 0.807386i \(0.299119\pi\)
\(762\) 39.0743i 1.41551i
\(763\) −2.02783 + 7.56796i −0.0734123 + 0.273978i
\(764\) −10.1584 + 17.5949i −0.367520 + 0.636562i
\(765\) 8.30339 + 0.508794i 0.300210 + 0.0183955i
\(766\) 4.36528i 0.157724i
\(767\) −3.97377 + 0.578146i −0.143484 + 0.0208756i
\(768\) −2.12044 2.12044i −0.0765147 0.0765147i
\(769\) 8.98900 + 33.5474i 0.324152 + 1.20975i 0.915162 + 0.403087i \(0.132063\pi\)
−0.591010 + 0.806664i \(0.701271\pi\)
\(770\) 0.154534 2.52195i 0.00556901 0.0908847i
\(771\) −6.18511 + 3.57098i −0.222751 + 0.128606i
\(772\) −2.19054 −0.0788392
\(773\) −17.9285 + 10.3510i −0.644843 + 0.372300i −0.786478 0.617619i \(-0.788097\pi\)
0.141635 + 0.989919i \(0.454764\pi\)
\(774\) 3.16591 11.8153i 0.113796 0.424693i
\(775\) 7.17542 + 51.1393i 0.257749 + 1.83698i
\(776\) 4.99081 + 8.64434i 0.179160 + 0.310314i
\(777\) −33.9158 + 9.08770i −1.21672 + 0.326020i
\(778\) −2.92660 + 5.06903i −0.104924 + 0.181733i
\(779\) −29.2411 −1.04767
\(780\) −18.4583 15.6142i −0.660913 0.559079i
\(781\) 6.15173 0.220126
\(782\) −2.59412 + 4.49314i −0.0927654 + 0.160674i
\(783\) −55.4095 + 14.8469i −1.98017 + 0.530586i
\(784\) −2.68346 4.64788i −0.0958378 0.165996i
\(785\) 11.9513 + 23.9774i 0.426560 + 0.855788i
\(786\) 4.58415 17.1083i 0.163511 0.610232i
\(787\) 18.3969 10.6214i 0.655777 0.378613i −0.134889 0.990861i \(-0.543068\pi\)
0.790666 + 0.612248i \(0.209734\pi\)
\(788\) −1.51978 −0.0541398
\(789\) −62.0139 + 35.8037i −2.20775 + 1.27465i
\(790\) −18.7875 + 16.6180i −0.668428 + 0.591241i
\(791\) −1.96779 7.34389i −0.0699665 0.261119i
\(792\) −3.74674 3.74674i −0.133135 0.133135i
\(793\) 15.2538 20.4481i 0.541677 0.726132i
\(794\) 13.9496i 0.495054i
\(795\) −19.0115 + 16.8161i −0.674267 + 0.596406i
\(796\) 3.00272 5.20086i 0.106429 0.184340i
\(797\) 4.09634 15.2878i 0.145100 0.541520i −0.854651 0.519203i \(-0.826229\pi\)
0.999751 0.0223172i \(-0.00710438\pi\)
\(798\) 12.9435i 0.458196i
\(799\) 1.53438 + 0.411136i 0.0542825 + 0.0145449i
\(800\) −0.610463 + 4.96259i −0.0215831 + 0.175454i
\(801\) 26.7086 26.7086i 0.943701 0.943701i
\(802\) 12.7926 + 3.42776i 0.451721 + 0.121038i
\(803\) −1.11436 4.15886i −0.0393250 0.146763i
\(804\) −7.47458 + 2.00281i −0.263608 + 0.0706336i
\(805\) 21.3722 10.6528i 0.753270 0.375461i
\(806\) −23.0682 29.2326i −0.812544 1.02967i
\(807\) 65.8381 65.8381i 2.31761 2.31761i
\(808\) 0.911347 + 0.526166i 0.0320611 + 0.0185105i
\(809\) −6.81229 3.93308i −0.239507 0.138280i 0.375443 0.926845i \(-0.377491\pi\)
−0.614950 + 0.788566i \(0.710824\pi\)
\(810\) −19.5733 + 3.97994i −0.687735 + 0.139841i
\(811\) −13.1134 13.1134i −0.460475 0.460475i 0.438336 0.898811i \(-0.355568\pi\)
−0.898811 + 0.438336i \(0.855568\pi\)
\(812\) −4.08452 7.07459i −0.143338 0.248269i
\(813\) 14.6015 + 25.2905i 0.512097 + 0.886978i
\(814\) 5.72873 + 5.72873i 0.200792 + 0.200792i
\(815\) 45.5683 9.26564i 1.59619 0.324561i
\(816\) 1.61230 + 0.930864i 0.0564419 + 0.0325868i
\(817\) 5.97080 + 3.44724i 0.208892 + 0.120604i
\(818\) −18.3339 + 18.3339i −0.641028 + 0.641028i
\(819\) 27.4213 + 3.23198i 0.958179 + 0.112934i
\(820\) 17.3255 8.63574i 0.605033 0.301573i
\(821\) −38.0562 + 10.1971i −1.32817 + 0.355882i −0.852032 0.523489i \(-0.824630\pi\)
−0.476137 + 0.879371i \(0.657963\pi\)
\(822\) −9.50561 35.4754i −0.331546 1.23735i
\(823\) −11.8543 3.17636i −0.413216 0.110721i 0.0462212 0.998931i \(-0.485282\pi\)
−0.459437 + 0.888210i \(0.651949\pi\)
\(824\) −3.37370 + 3.37370i −0.117528 + 0.117528i
\(825\) −1.61868 + 13.1586i −0.0563551 + 0.458123i
\(826\) −1.37476 0.368366i −0.0478341 0.0128171i
\(827\) 33.6098i 1.16873i 0.811492 + 0.584364i \(0.198656\pi\)
−0.811492 + 0.584364i \(0.801344\pi\)
\(828\) 12.9613 48.3722i 0.450436 1.68105i
\(829\) 13.8019 23.9055i 0.479359 0.830274i −0.520361 0.853946i \(-0.674203\pi\)
0.999720 + 0.0236725i \(0.00753590\pi\)
\(830\) −2.93218 + 2.59358i −0.101777 + 0.0900246i
\(831\) 92.2760i 3.20102i
\(832\) −1.42488 3.31205i −0.0493989 0.114825i
\(833\) 2.35606 + 2.35606i 0.0816325 + 0.0816325i
\(834\) 0.749113 + 2.79573i 0.0259397 + 0.0968082i
\(835\) 19.9308 17.6293i 0.689735 0.610088i
\(836\) 2.58642 1.49327i 0.0894532 0.0516459i
\(837\) −92.6814 −3.20354
\(838\) −17.8637 + 10.3136i −0.617090 + 0.356277i
\(839\) 9.37660 34.9939i 0.323716 1.20813i −0.591880 0.806026i \(-0.701614\pi\)
0.915596 0.402099i \(-0.131719\pi\)
\(840\) −3.82260 7.66912i −0.131892 0.264610i
\(841\) 5.93158 + 10.2738i 0.204537 + 0.354269i
\(842\) 29.1778 7.81816i 1.00553 0.269432i
\(843\) −5.09981 + 8.83314i −0.175647 + 0.304229i
\(844\) 2.72654 0.0938515
\(845\) −13.6691 25.6545i −0.470233 0.882543i
\(846\) −15.3328 −0.527152
\(847\) −6.52900 + 11.3086i −0.224339 + 0.388567i
\(848\) −3.65624 + 0.979686i −0.125556 + 0.0336426i
\(849\) −20.7419 35.9260i −0.711859 1.23298i
\(850\) −0.431326 3.07406i −0.0147944 0.105439i
\(851\) −19.8177 + 73.9606i −0.679341 + 2.53534i
\(852\) 18.0679 10.4315i 0.618995 0.357377i
\(853\) 22.4023 0.767041 0.383520 0.923532i \(-0.374712\pi\)
0.383520 + 0.923532i \(0.374712\pi\)
\(854\) 7.83046 4.52092i 0.267953 0.154703i
\(855\) 2.76805 45.1739i 0.0946654 1.54491i
\(856\) 3.77105 + 14.0737i 0.128892 + 0.481031i
\(857\) −31.7108 31.7108i −1.08322 1.08322i −0.996207 0.0870141i \(-0.972267\pi\)
−0.0870141 0.996207i \(-0.527733\pi\)
\(858\) −3.77816 8.78210i −0.128984 0.299816i
\(859\) 49.9135i 1.70303i −0.524332 0.851514i \(-0.675685\pi\)
0.524332 0.851514i \(-0.324315\pi\)
\(860\) −4.55581 0.279159i −0.155352 0.00951926i
\(861\) −16.5882 + 28.7316i −0.565325 + 0.979172i
\(862\) −9.16078 + 34.1885i −0.312017 + 1.16447i
\(863\) 24.6850i 0.840288i 0.907457 + 0.420144i \(0.138020\pi\)
−0.907457 + 0.420144i \(0.861980\pi\)
\(864\) −8.66799 2.32258i −0.294891 0.0790158i
\(865\) 19.0704 28.8052i 0.648414 0.979408i
\(866\) −21.1147 + 21.1147i −0.717505 + 0.717505i
\(867\) 48.1252 + 12.8951i 1.63442 + 0.437941i
\(868\) −3.41601 12.7487i −0.115947 0.432719i
\(869\) −9.58049 + 2.56709i −0.324996 + 0.0870824i
\(870\) 19.1214 + 38.3625i 0.648278 + 1.30061i
\(871\) −9.24014 1.08908i −0.313090 0.0369020i
\(872\) 4.33526 4.33526i 0.146811 0.146811i
\(873\) 51.8012 + 29.9074i 1.75321 + 1.01221i
\(874\) 24.4446 + 14.1131i 0.826850 + 0.477382i
\(875\) −6.15532 + 12.8937i −0.208088 + 0.435887i
\(876\) −10.3251 10.3251i −0.348854 0.348854i
\(877\) −6.52548 11.3025i −0.220350 0.381657i 0.734564 0.678539i \(-0.237387\pi\)
−0.954914 + 0.296882i \(0.904053\pi\)
\(878\) −8.00470 13.8645i −0.270145 0.467906i
\(879\) −11.4875 11.4875i −0.387465 0.387465i
\(880\) −1.09146 + 1.64862i −0.0367932 + 0.0555749i
\(881\) −31.4196 18.1401i −1.05855 0.611156i −0.133522 0.991046i \(-0.542629\pi\)
−0.925032 + 0.379890i \(0.875962\pi\)
\(882\) −27.8524 16.0806i −0.937841 0.541463i
\(883\) −30.8743 + 30.8743i −1.03900 + 1.03900i −0.0397956 + 0.999208i \(0.512671\pi\)
−0.999208 + 0.0397956i \(0.987329\pi\)
\(884\) 1.38667 + 1.75722i 0.0466387 + 0.0591017i
\(885\) 7.08182 + 2.37043i 0.238053 + 0.0796811i
\(886\) −29.5992 + 7.93109i −0.994406 + 0.266450i
\(887\) −0.823779 3.07438i −0.0276598 0.103228i 0.950716 0.310063i \(-0.100350\pi\)
−0.978376 + 0.206835i \(0.933684\pi\)
\(888\) 26.5398 + 7.11131i 0.890616 + 0.238640i
\(889\) −11.7744 + 11.7744i −0.394902 + 0.394902i
\(890\) −11.7521 7.78047i −0.393932 0.260802i
\(891\) −7.62922 2.04424i −0.255589 0.0684848i
\(892\) 7.49576i 0.250976i
\(893\) 2.23675 8.34766i 0.0748500 0.279344i
\(894\) 4.66346 8.07735i 0.155970 0.270147i
\(895\) −2.80324 3.16920i −0.0937019 0.105935i
\(896\) 1.27792i 0.0426924i
\(897\) 54.0267 72.4242i 1.80390 2.41817i
\(898\) 6.33211 + 6.33211i 0.211305 + 0.211305i
\(899\) 17.0876 + 63.7717i 0.569902 + 2.12690i
\(900\) 11.7011 + 27.5833i 0.390036 + 0.919442i
\(901\) 2.03515 1.17500i 0.0678008 0.0391448i
\(902\) 7.65501 0.254884
\(903\) 6.77438 3.91119i 0.225437 0.130156i
\(904\) −1.53983 + 5.74674i −0.0512141 + 0.191134i
\(905\) 43.3589 + 14.5131i 1.44130 + 0.482433i
\(906\) −23.0458 39.9164i −0.765644 1.32614i
\(907\) −36.5384 + 9.79045i −1.21324 + 0.325086i −0.808032 0.589138i \(-0.799467\pi\)
−0.405207 + 0.914225i \(0.632801\pi\)
\(908\) −6.65757 + 11.5313i −0.220939 + 0.382678i
\(909\) 6.30610 0.209160
\(910\) −0.857017 10.2672i −0.0284098 0.340356i
\(911\) −3.06450 −0.101531 −0.0507657 0.998711i \(-0.516166\pi\)
−0.0507657 + 0.998711i \(0.516166\pi\)
\(912\) 5.06429 8.77160i 0.167695 0.290457i
\(913\) −1.49524 + 0.400648i −0.0494851 + 0.0132595i
\(914\) −12.2784 21.2668i −0.406134 0.703444i
\(915\) −42.4613 + 21.1644i −1.40373 + 0.699675i
\(916\) 0.966636 3.60754i 0.0319386 0.119196i
\(917\) 6.53668 3.77395i 0.215860 0.124627i
\(918\) 5.57122 0.183878
\(919\) 33.5898 19.3931i 1.10802 0.639718i 0.169708 0.985494i \(-0.445718\pi\)
0.938317 + 0.345776i \(0.112384\pi\)
\(920\) −18.6515 1.14288i −0.614923 0.0376797i
\(921\) 1.04119 + 3.88577i 0.0343083 + 0.128040i
\(922\) −7.07275 7.07275i −0.232928 0.232928i
\(923\) 24.8233 3.61156i 0.817069 0.118876i
\(924\) 3.38848i 0.111473i
\(925\) −17.8908 42.1746i −0.588247 1.38669i
\(926\) 13.9417 24.1478i 0.458153 0.793545i
\(927\) −7.39989 + 27.6168i −0.243044 + 0.907054i
\(928\) 6.39243i 0.209842i
\(929\) −0.485719 0.130148i −0.0159359 0.00427002i 0.250842 0.968028i \(-0.419292\pi\)
−0.266778 + 0.963758i \(0.585959\pi\)
\(930\) 13.7993 + 67.8650i 0.452498 + 2.22538i
\(931\) 12.8179 12.8179i 0.420090 0.420090i
\(932\) 12.9861 + 3.47961i 0.425374 + 0.113979i
\(933\) 2.10625 + 7.86062i 0.0689554 + 0.257345i
\(934\) 30.5373 8.18244i 0.999210 0.267738i
\(935\) 0.389622 1.16402i 0.0127420 0.0380676i
\(936\) −17.3184 12.9191i −0.566070 0.422275i
\(937\) −9.95025 + 9.95025i −0.325061 + 0.325061i −0.850705 0.525644i \(-0.823824\pi\)
0.525644 + 0.850705i \(0.323824\pi\)
\(938\) −2.85587 1.64884i −0.0932473 0.0538364i
\(939\) −12.0180 6.93858i −0.392192 0.226432i
\(940\) 1.14002 + 5.60661i 0.0371834 + 0.182868i
\(941\) 23.7430 + 23.7430i 0.774000 + 0.774000i 0.978803 0.204803i \(-0.0656555\pi\)
−0.204803 + 0.978803i \(0.565655\pi\)
\(942\) 17.9643 + 31.1151i 0.585309 + 1.01379i
\(943\) 36.1742 + 62.6555i 1.17799 + 2.04034i
\(944\) 0.787525 + 0.787525i 0.0256317 + 0.0256317i
\(945\) −21.3815 14.1556i −0.695540 0.460481i
\(946\) −1.56309 0.902453i −0.0508206 0.0293413i
\(947\) 33.7590 + 19.4908i 1.09702 + 0.633365i 0.935437 0.353494i \(-0.115007\pi\)
0.161583 + 0.986859i \(0.448340\pi\)
\(948\) −23.7853 + 23.7853i −0.772511 + 0.772511i
\(949\) −6.93824 16.1275i −0.225225 0.523522i
\(950\) −16.7242 + 2.34659i −0.542604 + 0.0761335i
\(951\) 10.1662 2.72403i 0.329662 0.0883328i
\(952\) 0.205342 + 0.766345i 0.00665516 + 0.0248374i
\(953\) −56.0994 15.0318i −1.81724 0.486928i −0.820798 0.571219i \(-0.806471\pi\)
−0.996441 + 0.0842907i \(0.973138\pi\)
\(954\) −16.0392 + 16.0392i −0.519290 + 0.519290i
\(955\) 44.5189 9.05226i 1.44060 0.292924i
\(956\) 14.3477 + 3.84446i 0.464039 + 0.124339i
\(957\) 16.9499i 0.547912i
\(958\) 0.580565 2.16670i 0.0187572 0.0700029i
\(959\) 7.82561 13.5544i 0.252702 0.437693i
\(960\) −0.410108 + 6.69286i −0.0132362 + 0.216011i
\(961\) 75.6684i 2.44092i
\(962\) 26.4797 + 19.7532i 0.853739 + 0.636870i
\(963\) 61.7389 + 61.7389i 1.98951 + 1.98951i
\(964\) −0.397848 1.48479i −0.0128138 0.0478218i
\(965\) 3.24523 + 3.66889i 0.104468 + 0.118106i
\(966\) 27.7344 16.0125i 0.892340 0.515193i
\(967\) 51.5834 1.65881 0.829405 0.558648i \(-0.188680\pi\)
0.829405 + 0.558648i \(0.188680\pi\)
\(968\) 8.84918 5.10908i 0.284423 0.164212i
\(969\) −1.62750 + 6.07391i −0.0522828 + 0.195122i
\(970\) 7.08449 21.1654i 0.227469 0.679580i
\(971\) −18.2251 31.5668i −0.584872 1.01303i −0.994891 0.100951i \(-0.967811\pi\)
0.410019 0.912077i \(-0.365522\pi\)
\(972\) 0.130173 0.0348797i 0.00417530 0.00111877i
\(973\) −0.616716 + 1.06818i −0.0197710 + 0.0342444i
\(974\) −23.0090 −0.737257
\(975\) 1.19351 + 54.0476i 0.0382229 + 1.73091i
\(976\) −7.07542 −0.226479
\(977\) −20.1158 + 34.8416i −0.643562 + 1.11468i 0.341070 + 0.940038i \(0.389211\pi\)
−0.984632 + 0.174644i \(0.944123\pi\)
\(978\) 60.2364 16.1403i 1.92615 0.516110i
\(979\) −2.78669 4.82668i −0.0890629 0.154261i
\(980\) −3.80918 + 11.3802i −0.121680 + 0.363527i
\(981\) 9.50900 35.4881i 0.303599 1.13305i
\(982\) 2.22242 1.28311i 0.0709203 0.0409458i
\(983\) 22.8830 0.729856 0.364928 0.931036i \(-0.381094\pi\)
0.364928 + 0.931036i \(0.381094\pi\)
\(984\) 22.4831 12.9806i 0.716735 0.413807i
\(985\) 2.25151 + 2.54545i 0.0717391 + 0.0811047i
\(986\) −1.02716 3.83341i −0.0327115 0.122081i
\(987\) −6.93334 6.93334i −0.220691 0.220691i
\(988\) 9.56000 7.54405i 0.304144 0.240008i
\(989\) 17.0584i 0.542425i
\(990\) −0.724647 + 11.8261i −0.0230308 + 0.375857i
\(991\) −2.26574 + 3.92439i −0.0719738 + 0.124662i −0.899766 0.436372i \(-0.856263\pi\)
0.827793 + 0.561034i \(0.189596\pi\)
\(992\) −2.67309 + 9.97612i −0.0848708 + 0.316742i
\(993\) 25.1909i 0.799410i
\(994\) 8.58785 + 2.30111i 0.272390 + 0.0729867i
\(995\) −13.1593 + 2.67575i −0.417178 + 0.0848269i
\(996\) −3.71220 + 3.71220i −0.117626 + 0.117626i
\(997\) −26.6514 7.14123i −0.844060 0.226165i −0.189222 0.981934i \(-0.560596\pi\)
−0.654838 + 0.755769i \(0.727263\pi\)
\(998\) 2.45591 + 9.16557i 0.0777404 + 0.290131i
\(999\) 79.4203 21.2806i 2.51275 0.673288i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.s.a.33.3 yes 12
5.2 odd 4 130.2.p.a.7.1 12
5.3 odd 4 650.2.t.e.7.3 12
5.4 even 2 650.2.w.e.293.1 12
13.2 odd 12 130.2.p.a.93.1 yes 12
65.2 even 12 inner 130.2.s.a.67.3 yes 12
65.28 even 12 650.2.w.e.457.1 12
65.54 odd 12 650.2.t.e.93.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.a.7.1 12 5.2 odd 4
130.2.p.a.93.1 yes 12 13.2 odd 12
130.2.s.a.33.3 yes 12 1.1 even 1 trivial
130.2.s.a.67.3 yes 12 65.2 even 12 inner
650.2.t.e.7.3 12 5.3 odd 4
650.2.t.e.93.3 12 65.54 odd 12
650.2.w.e.293.1 12 5.4 even 2
650.2.w.e.457.1 12 65.28 even 12