Properties

Label 650.2.o.g.549.3
Level $650$
Weight $2$
Character 650.549
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(399,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.399"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,28,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 549.3
Root \(-2.15988 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 650.549
Dual form 650.2.o.g.399.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-2.73861 + 1.58114i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.58114 + 2.73861i) q^{6} +(0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +(3.50000 - 6.06218i) q^{9} +(-1.08114 - 1.87259i) q^{11} +3.16228i q^{12} +(1.87259 + 3.08114i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(4.47066 + 2.58114i) q^{17} -7.00000i q^{18} +(-0.918861 + 1.59151i) q^{19} -3.16228 q^{21} +(-1.87259 - 1.08114i) q^{22} +(-5.19615 + 3.00000i) q^{23} +(1.58114 + 2.73861i) q^{24} +(3.16228 + 1.73205i) q^{26} +12.6491i q^{27} +(0.866025 - 0.500000i) q^{28} +(5.16228 + 8.94133i) q^{29} +7.16228 q^{31} +(-0.866025 - 0.500000i) q^{32} +(5.92164 + 3.41886i) q^{33} +5.16228 q^{34} +(-3.50000 - 6.06218i) q^{36} +(-0.140537 + 0.0811388i) q^{37} +1.83772i q^{38} +(-10.0000 - 5.47723i) q^{39} +(5.16228 + 8.94133i) q^{41} +(-2.73861 + 1.58114i) q^{42} +(1.73205 + 1.00000i) q^{43} -2.16228 q^{44} +(-3.00000 + 5.19615i) q^{46} -3.00000i q^{47} +(2.73861 + 1.58114i) q^{48} +(-3.00000 - 5.19615i) q^{49} -16.3246 q^{51} +(3.60464 - 0.0811388i) q^{52} +2.16228i q^{53} +(6.32456 + 10.9545i) q^{54} +(0.500000 - 0.866025i) q^{56} -5.81139i q^{57} +(8.94133 + 5.16228i) q^{58} +(-5.16228 + 8.94133i) q^{59} +(3.74342 - 6.48379i) q^{61} +(6.20271 - 3.58114i) q^{62} +(6.06218 - 3.50000i) q^{63} -1.00000 q^{64} +6.83772 q^{66} +(-2.01312 + 1.16228i) q^{67} +(4.47066 - 2.58114i) q^{68} +(9.48683 - 16.4317i) q^{69} +(2.16228 - 3.74517i) q^{71} +(-6.06218 - 3.50000i) q^{72} -2.83772i q^{73} +(-0.0811388 + 0.140537i) q^{74} +(0.918861 + 1.59151i) q^{76} -2.16228i q^{77} +(-11.3989 + 0.256584i) q^{78} +13.4868 q^{79} +(-9.50000 - 16.4545i) q^{81} +(8.94133 + 5.16228i) q^{82} -9.48683i q^{83} +(-1.58114 + 2.73861i) q^{84} +2.00000 q^{86} +(-28.2750 - 16.3246i) q^{87} +(-1.87259 + 1.08114i) q^{88} +(-3.66228 - 6.34325i) q^{89} +(0.0811388 + 3.60464i) q^{91} +6.00000i q^{92} +(-19.6147 + 11.3246i) q^{93} +(-1.50000 - 2.59808i) q^{94} +3.16228 q^{96} +(6.48379 + 3.74342i) q^{97} +(-5.19615 - 3.00000i) q^{98} -15.1359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 28 q^{9} + 4 q^{11} + 8 q^{14} - 4 q^{16} - 20 q^{19} + 16 q^{29} + 32 q^{31} + 16 q^{34} - 28 q^{36} - 80 q^{39} + 16 q^{41} + 8 q^{44} - 24 q^{46} - 24 q^{49} - 80 q^{51} + 4 q^{56} - 16 q^{59}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −2.73861 + 1.58114i −1.58114 + 0.912871i −0.586445 + 0.809989i \(0.699473\pi\)
−0.994694 + 0.102882i \(0.967194\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.58114 + 2.73861i −0.645497 + 1.11803i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i 0.654654 0.755929i \(-0.272814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 3.50000 6.06218i 1.16667 2.02073i
\(10\) 0 0
\(11\) −1.08114 1.87259i −0.325976 0.564606i 0.655734 0.754992i \(-0.272359\pi\)
−0.981709 + 0.190386i \(0.939026\pi\)
\(12\) 3.16228i 0.912871i
\(13\) 1.87259 + 3.08114i 0.519362 + 0.854554i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.47066 + 2.58114i 1.08430 + 0.626018i 0.932052 0.362325i \(-0.118017\pi\)
0.152243 + 0.988343i \(0.451350\pi\)
\(18\) 7.00000i 1.64992i
\(19\) −0.918861 + 1.59151i −0.210801 + 0.365118i −0.951966 0.306205i \(-0.900941\pi\)
0.741164 + 0.671324i \(0.234274\pi\)
\(20\) 0 0
\(21\) −3.16228 −0.690066
\(22\) −1.87259 1.08114i −0.399237 0.230500i
\(23\) −5.19615 + 3.00000i −1.08347 + 0.625543i −0.931831 0.362892i \(-0.881789\pi\)
−0.151642 + 0.988436i \(0.548456\pi\)
\(24\) 1.58114 + 2.73861i 0.322749 + 0.559017i
\(25\) 0 0
\(26\) 3.16228 + 1.73205i 0.620174 + 0.339683i
\(27\) 12.6491i 2.43432i
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) 5.16228 + 8.94133i 0.958611 + 1.66036i 0.725880 + 0.687822i \(0.241433\pi\)
0.232731 + 0.972541i \(0.425234\pi\)
\(30\) 0 0
\(31\) 7.16228 1.28638 0.643192 0.765705i \(-0.277610\pi\)
0.643192 + 0.765705i \(0.277610\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 5.92164 + 3.41886i 1.03083 + 0.595147i
\(34\) 5.16228 0.885323
\(35\) 0 0
\(36\) −3.50000 6.06218i −0.583333 1.01036i
\(37\) −0.140537 + 0.0811388i −0.0231041 + 0.0133391i −0.511508 0.859279i \(-0.670913\pi\)
0.488403 + 0.872618i \(0.337579\pi\)
\(38\) 1.83772i 0.298118i
\(39\) −10.0000 5.47723i −1.60128 0.877058i
\(40\) 0 0
\(41\) 5.16228 + 8.94133i 0.806212 + 1.39640i 0.915470 + 0.402387i \(0.131819\pi\)
−0.109257 + 0.994014i \(0.534847\pi\)
\(42\) −2.73861 + 1.58114i −0.422577 + 0.243975i
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) −2.16228 −0.325976
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) 3.00000i 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) 2.73861 + 1.58114i 0.395285 + 0.228218i
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) 0 0
\(51\) −16.3246 −2.28589
\(52\) 3.60464 0.0811388i 0.499873 0.0112519i
\(53\) 2.16228i 0.297012i 0.988912 + 0.148506i \(0.0474464\pi\)
−0.988912 + 0.148506i \(0.952554\pi\)
\(54\) 6.32456 + 10.9545i 0.860663 + 1.49071i
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 5.81139i 0.769737i
\(58\) 8.94133 + 5.16228i 1.17405 + 0.677840i
\(59\) −5.16228 + 8.94133i −0.672071 + 1.16406i 0.305244 + 0.952274i \(0.401262\pi\)
−0.977316 + 0.211788i \(0.932071\pi\)
\(60\) 0 0
\(61\) 3.74342 6.48379i 0.479295 0.830164i −0.520423 0.853909i \(-0.674226\pi\)
0.999718 + 0.0237449i \(0.00755894\pi\)
\(62\) 6.20271 3.58114i 0.787746 0.454805i
\(63\) 6.06218 3.50000i 0.763763 0.440959i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 6.83772 0.841665
\(67\) −2.01312 + 1.16228i −0.245942 + 0.141995i −0.617905 0.786253i \(-0.712018\pi\)
0.371963 + 0.928248i \(0.378685\pi\)
\(68\) 4.47066 2.58114i 0.542148 0.313009i
\(69\) 9.48683 16.4317i 1.14208 1.97814i
\(70\) 0 0
\(71\) 2.16228 3.74517i 0.256615 0.444470i −0.708718 0.705492i \(-0.750726\pi\)
0.965333 + 0.261022i \(0.0840594\pi\)
\(72\) −6.06218 3.50000i −0.714435 0.412479i
\(73\) 2.83772i 0.332130i −0.986115 0.166065i \(-0.946894\pi\)
0.986115 0.166065i \(-0.0531062\pi\)
\(74\) −0.0811388 + 0.140537i −0.00943220 + 0.0163370i
\(75\) 0 0
\(76\) 0.918861 + 1.59151i 0.105401 + 0.182559i
\(77\) 2.16228i 0.246414i
\(78\) −11.3989 + 0.256584i −1.29067 + 0.0290524i
\(79\) 13.4868 1.51739 0.758694 0.651448i \(-0.225838\pi\)
0.758694 + 0.651448i \(0.225838\pi\)
\(80\) 0 0
\(81\) −9.50000 16.4545i −1.05556 1.82828i
\(82\) 8.94133 + 5.16228i 0.987404 + 0.570078i
\(83\) 9.48683i 1.04132i −0.853766 0.520658i \(-0.825687\pi\)
0.853766 0.520658i \(-0.174313\pi\)
\(84\) −1.58114 + 2.73861i −0.172516 + 0.298807i
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −28.2750 16.3246i −3.03139 1.75018i
\(88\) −1.87259 + 1.08114i −0.199618 + 0.115250i
\(89\) −3.66228 6.34325i −0.388201 0.672383i 0.604007 0.796979i \(-0.293570\pi\)
−0.992208 + 0.124596i \(0.960237\pi\)
\(90\) 0 0
\(91\) 0.0811388 + 3.60464i 0.00850566 + 0.377869i
\(92\) 6.00000i 0.625543i
\(93\) −19.6147 + 11.3246i −2.03395 + 1.17430i
\(94\) −1.50000 2.59808i −0.154713 0.267971i
\(95\) 0 0
\(96\) 3.16228 0.322749
\(97\) 6.48379 + 3.74342i 0.658329 + 0.380086i 0.791640 0.610988i \(-0.209228\pi\)
−0.133311 + 0.991074i \(0.542561\pi\)
\(98\) −5.19615 3.00000i −0.524891 0.303046i
\(99\) −15.1359 −1.52122
\(100\) 0 0
\(101\) 5.58114 + 9.66682i 0.555344 + 0.961884i 0.997877 + 0.0651317i \(0.0207468\pi\)
−0.442533 + 0.896752i \(0.645920\pi\)
\(102\) −14.1375 + 8.16228i −1.39982 + 0.808186i
\(103\) 0.675445i 0.0665535i −0.999446 0.0332768i \(-0.989406\pi\)
0.999446 0.0332768i \(-0.0105943\pi\)
\(104\) 3.08114 1.87259i 0.302131 0.183622i
\(105\) 0 0
\(106\) 1.08114 + 1.87259i 0.105009 + 0.181882i
\(107\) −3.01969 + 1.74342i −0.291924 + 0.168542i −0.638809 0.769365i \(-0.720573\pi\)
0.346885 + 0.937908i \(0.387239\pi\)
\(108\) 10.9545 + 6.32456i 1.05409 + 0.608581i
\(109\) −10.6491 −1.02000 −0.510000 0.860174i \(-0.670355\pi\)
−0.510000 + 0.860174i \(0.670355\pi\)
\(110\) 0 0
\(111\) 0.256584 0.444416i 0.0243538 0.0421821i
\(112\) 1.00000i 0.0944911i
\(113\) −7.49035 4.32456i −0.704633 0.406820i 0.104438 0.994531i \(-0.466696\pi\)
−0.809071 + 0.587711i \(0.800029\pi\)
\(114\) −2.90569 5.03281i −0.272143 0.471366i
\(115\) 0 0
\(116\) 10.3246 0.958611
\(117\) 25.2325 0.567972i 2.33274 0.0525090i
\(118\) 10.3246i 0.950452i
\(119\) 2.58114 + 4.47066i 0.236613 + 0.409825i
\(120\) 0 0
\(121\) 3.16228 5.47723i 0.287480 0.497930i
\(122\) 7.48683i 0.677826i
\(123\) −28.2750 16.3246i −2.54947 1.47194i
\(124\) 3.58114 6.20271i 0.321596 0.557020i
\(125\) 0 0
\(126\) 3.50000 6.06218i 0.311805 0.540062i
\(127\) 2.87915 1.66228i 0.255483 0.147503i −0.366789 0.930304i \(-0.619543\pi\)
0.622272 + 0.782801i \(0.286210\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −6.32456 −0.556846
\(130\) 0 0
\(131\) −10.8114 −0.944595 −0.472298 0.881439i \(-0.656575\pi\)
−0.472298 + 0.881439i \(0.656575\pi\)
\(132\) 5.92164 3.41886i 0.515413 0.297574i
\(133\) −1.59151 + 0.918861i −0.138002 + 0.0796754i
\(134\) −1.16228 + 2.01312i −0.100405 + 0.173907i
\(135\) 0 0
\(136\) 2.58114 4.47066i 0.221331 0.383356i
\(137\) −13.4120 7.74342i −1.14586 0.661565i −0.197988 0.980204i \(-0.563441\pi\)
−0.947876 + 0.318640i \(0.896774\pi\)
\(138\) 18.9737i 1.61515i
\(139\) −6.08114 + 10.5328i −0.515795 + 0.893384i 0.484036 + 0.875048i \(0.339170\pi\)
−0.999832 + 0.0183361i \(0.994163\pi\)
\(140\) 0 0
\(141\) 4.74342 + 8.21584i 0.399468 + 0.691898i
\(142\) 4.32456i 0.362909i
\(143\) 3.74517 6.83772i 0.313187 0.571799i
\(144\) −7.00000 −0.583333
\(145\) 0 0
\(146\) −1.41886 2.45754i −0.117426 0.203387i
\(147\) 16.4317 + 9.48683i 1.35526 + 0.782461i
\(148\) 0.162278i 0.0133391i
\(149\) 8.16228 14.1375i 0.668680 1.15819i −0.309594 0.950869i \(-0.600193\pi\)
0.978273 0.207319i \(-0.0664736\pi\)
\(150\) 0 0
\(151\) −4.83772 −0.393688 −0.196844 0.980435i \(-0.563069\pi\)
−0.196844 + 0.980435i \(0.563069\pi\)
\(152\) 1.59151 + 0.918861i 0.129089 + 0.0745295i
\(153\) 31.2946 18.0680i 2.53002 1.46071i
\(154\) −1.08114 1.87259i −0.0871206 0.150897i
\(155\) 0 0
\(156\) −9.74342 + 5.92164i −0.780098 + 0.474111i
\(157\) 12.1623i 0.970655i −0.874332 0.485328i \(-0.838700\pi\)
0.874332 0.485328i \(-0.161300\pi\)
\(158\) 11.6799 6.74342i 0.929206 0.536477i
\(159\) −3.41886 5.92164i −0.271133 0.469617i
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) −16.4545 9.50000i −1.29279 0.746390i
\(163\) 15.1440 + 8.74342i 1.18617 + 0.684837i 0.957434 0.288651i \(-0.0932066\pi\)
0.228738 + 0.973488i \(0.426540\pi\)
\(164\) 10.3246 0.806212
\(165\) 0 0
\(166\) −4.74342 8.21584i −0.368161 0.637673i
\(167\) 11.5394 6.66228i 0.892946 0.515543i 0.0180409 0.999837i \(-0.494257\pi\)
0.874905 + 0.484295i \(0.160924\pi\)
\(168\) 3.16228i 0.243975i
\(169\) −5.98683 + 11.5394i −0.460526 + 0.887646i
\(170\) 0 0
\(171\) 6.43203 + 11.1406i 0.491869 + 0.851943i
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) 1.87259 + 1.08114i 0.142370 + 0.0821975i 0.569493 0.821996i \(-0.307140\pi\)
−0.427123 + 0.904194i \(0.640473\pi\)
\(174\) −32.6491 −2.47512
\(175\) 0 0
\(176\) −1.08114 + 1.87259i −0.0814939 + 0.141152i
\(177\) 32.6491i 2.45406i
\(178\) −6.34325 3.66228i −0.475447 0.274499i
\(179\) 11.1623 + 19.3336i 0.834308 + 1.44506i 0.894593 + 0.446882i \(0.147466\pi\)
−0.0602850 + 0.998181i \(0.519201\pi\)
\(180\) 0 0
\(181\) 9.81139 0.729275 0.364637 0.931150i \(-0.381193\pi\)
0.364637 + 0.931150i \(0.381193\pi\)
\(182\) 1.87259 + 3.08114i 0.138805 + 0.228389i
\(183\) 23.6754i 1.75014i
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 0 0
\(186\) −11.3246 + 19.6147i −0.830357 + 1.43822i
\(187\) 11.1623i 0.816267i
\(188\) −2.59808 1.50000i −0.189484 0.109399i
\(189\) −6.32456 + 10.9545i −0.460044 + 0.796819i
\(190\) 0 0
\(191\) −4.74342 + 8.21584i −0.343222 + 0.594477i −0.985029 0.172389i \(-0.944852\pi\)
0.641807 + 0.766866i \(0.278185\pi\)
\(192\) 2.73861 1.58114i 0.197642 0.114109i
\(193\) 3.46410 2.00000i 0.249351 0.143963i −0.370116 0.928986i \(-0.620682\pi\)
0.619467 + 0.785022i \(0.287349\pi\)
\(194\) 7.48683 0.537523
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −16.0101 + 9.24342i −1.14067 + 0.658566i −0.946596 0.322421i \(-0.895503\pi\)
−0.194074 + 0.980987i \(0.562170\pi\)
\(198\) −13.1081 + 7.56797i −0.931553 + 0.537832i
\(199\) −0.675445 + 1.16990i −0.0478810 + 0.0829323i −0.888973 0.457960i \(-0.848580\pi\)
0.841092 + 0.540893i \(0.181913\pi\)
\(200\) 0 0
\(201\) 3.67544 6.36606i 0.259246 0.449027i
\(202\) 9.66682 + 5.58114i 0.680155 + 0.392688i
\(203\) 10.3246i 0.724642i
\(204\) −8.16228 + 14.1375i −0.571474 + 0.989822i
\(205\) 0 0
\(206\) −0.337722 0.584952i −0.0235302 0.0407556i
\(207\) 42.0000i 2.91920i
\(208\) 1.73205 3.16228i 0.120096 0.219265i
\(209\) 3.97367 0.274864
\(210\) 0 0
\(211\) −5.91886 10.2518i −0.407471 0.705761i 0.587134 0.809489i \(-0.300256\pi\)
−0.994606 + 0.103729i \(0.966923\pi\)
\(212\) 1.87259 + 1.08114i 0.128610 + 0.0742529i
\(213\) 13.6754i 0.937026i
\(214\) −1.74342 + 3.01969i −0.119177 + 0.206421i
\(215\) 0 0
\(216\) 12.6491 0.860663
\(217\) 6.20271 + 3.58114i 0.421068 + 0.243104i
\(218\) −9.22240 + 5.32456i −0.624620 + 0.360624i
\(219\) 4.48683 + 7.77142i 0.303192 + 0.525144i
\(220\) 0 0
\(221\) 0.418861 + 18.6081i 0.0281757 + 1.25172i
\(222\) 0.513167i 0.0344415i
\(223\) −2.87915 + 1.66228i −0.192802 + 0.111314i −0.593294 0.804986i \(-0.702173\pi\)
0.400492 + 0.916300i \(0.368839\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 0 0
\(226\) −8.64911 −0.575330
\(227\) −8.94133 5.16228i −0.593457 0.342632i 0.173006 0.984921i \(-0.444652\pi\)
−0.766463 + 0.642288i \(0.777985\pi\)
\(228\) −5.03281 2.90569i −0.333306 0.192434i
\(229\) −2.83772 −0.187522 −0.0937610 0.995595i \(-0.529889\pi\)
−0.0937610 + 0.995595i \(0.529889\pi\)
\(230\) 0 0
\(231\) 3.41886 + 5.92164i 0.224945 + 0.389615i
\(232\) 8.94133 5.16228i 0.587027 0.338920i
\(233\) 9.48683i 0.621503i −0.950491 0.310752i \(-0.899419\pi\)
0.950491 0.310752i \(-0.100581\pi\)
\(234\) 21.5680 13.1081i 1.40994 0.856904i
\(235\) 0 0
\(236\) 5.16228 + 8.94133i 0.336036 + 0.582031i
\(237\) −36.9352 + 21.3246i −2.39920 + 1.38518i
\(238\) 4.47066 + 2.58114i 0.289790 + 0.167310i
\(239\) −11.1623 −0.722028 −0.361014 0.932560i \(-0.617569\pi\)
−0.361014 + 0.932560i \(0.617569\pi\)
\(240\) 0 0
\(241\) 12.9868 22.4939i 0.836555 1.44896i −0.0562022 0.998419i \(-0.517899\pi\)
0.892758 0.450537i \(-0.148768\pi\)
\(242\) 6.32456i 0.406558i
\(243\) 19.1703 + 11.0680i 1.22977 + 0.710011i
\(244\) −3.74342 6.48379i −0.239648 0.415082i
\(245\) 0 0
\(246\) −32.6491 −2.08163
\(247\) −6.62432 + 0.149111i −0.421496 + 0.00948768i
\(248\) 7.16228i 0.454805i
\(249\) 15.0000 + 25.9808i 0.950586 + 1.64646i
\(250\) 0 0
\(251\) −6.24342 + 10.8139i −0.394081 + 0.682568i −0.992983 0.118254i \(-0.962270\pi\)
0.598902 + 0.800822i \(0.295604\pi\)
\(252\) 7.00000i 0.440959i
\(253\) 11.2355 + 6.48683i 0.706371 + 0.407824i
\(254\) 1.66228 2.87915i 0.104301 0.180654i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) −5.47723 + 3.16228i −0.340997 + 0.196875i
\(259\) −0.162278 −0.0100834
\(260\) 0 0
\(261\) 72.2719 4.47352
\(262\) −9.36294 + 5.40569i −0.578444 + 0.333965i
\(263\) 10.0884 5.82456i 0.622079 0.359157i −0.155599 0.987820i \(-0.549731\pi\)
0.777678 + 0.628663i \(0.216397\pi\)
\(264\) 3.41886 5.92164i 0.210416 0.364452i
\(265\) 0 0
\(266\) −0.918861 + 1.59151i −0.0563390 + 0.0975820i
\(267\) 20.0591 + 11.5811i 1.22760 + 0.708754i
\(268\) 2.32456i 0.141995i
\(269\) 1.25658 2.17647i 0.0766152 0.132702i −0.825172 0.564881i \(-0.808922\pi\)
0.901788 + 0.432180i \(0.142255\pi\)
\(270\) 0 0
\(271\) −3.16228 5.47723i −0.192095 0.332718i 0.753850 0.657047i \(-0.228195\pi\)
−0.945944 + 0.324329i \(0.894861\pi\)
\(272\) 5.16228i 0.313009i
\(273\) −5.92164 9.74342i −0.358394 0.589698i
\(274\) −15.4868 −0.935594
\(275\) 0 0
\(276\) −9.48683 16.4317i −0.571040 0.989071i
\(277\) −1.31044 0.756584i −0.0787368 0.0454587i 0.460115 0.887859i \(-0.347808\pi\)
−0.538851 + 0.842401i \(0.681142\pi\)
\(278\) 12.1623i 0.729445i
\(279\) 25.0680 43.4190i 1.50078 2.59943i
\(280\) 0 0
\(281\) −18.9737 −1.13187 −0.565937 0.824448i \(-0.691485\pi\)
−0.565937 + 0.824448i \(0.691485\pi\)
\(282\) 8.21584 + 4.74342i 0.489246 + 0.282466i
\(283\) 19.0526 11.0000i 1.13256 0.653882i 0.187980 0.982173i \(-0.439806\pi\)
0.944577 + 0.328291i \(0.106473\pi\)
\(284\) −2.16228 3.74517i −0.128308 0.222235i
\(285\) 0 0
\(286\) −0.175445 7.79423i −0.0103743 0.460882i
\(287\) 10.3246i 0.609439i
\(288\) −6.06218 + 3.50000i −0.357217 + 0.206239i
\(289\) 4.82456 + 8.35637i 0.283797 + 0.491551i
\(290\) 0 0
\(291\) −23.6754 −1.38788
\(292\) −2.45754 1.41886i −0.143817 0.0830326i
\(293\) −18.9120 10.9189i −1.10485 0.637887i −0.167361 0.985896i \(-0.553525\pi\)
−0.937491 + 0.348009i \(0.886858\pi\)
\(294\) 18.9737 1.10657
\(295\) 0 0
\(296\) 0.0811388 + 0.140537i 0.00471610 + 0.00816852i
\(297\) 23.6866 13.6754i 1.37443 0.793530i
\(298\) 16.3246i 0.945656i
\(299\) −18.9737 10.3923i −1.09728 0.601003i
\(300\) 0 0
\(301\) 1.00000 + 1.73205i 0.0576390 + 0.0998337i
\(302\) −4.18959 + 2.41886i −0.241084 + 0.139190i
\(303\) −30.5692 17.6491i −1.75615 1.01391i
\(304\) 1.83772 0.105401
\(305\) 0 0
\(306\) 18.0680 31.2946i 1.03288 1.78900i
\(307\) 15.6754i 0.894645i 0.894373 + 0.447322i \(0.147622\pi\)
−0.894373 + 0.447322i \(0.852378\pi\)
\(308\) −1.87259 1.08114i −0.106701 0.0616036i
\(309\) 1.06797 + 1.84978i 0.0607548 + 0.105230i
\(310\) 0 0
\(311\) −3.48683 −0.197720 −0.0988601 0.995101i \(-0.531520\pi\)
−0.0988601 + 0.995101i \(0.531520\pi\)
\(312\) −5.47723 + 10.0000i −0.310087 + 0.566139i
\(313\) 8.32456i 0.470532i 0.971931 + 0.235266i \(0.0755961\pi\)
−0.971931 + 0.235266i \(0.924404\pi\)
\(314\) −6.08114 10.5328i −0.343179 0.594403i
\(315\) 0 0
\(316\) 6.74342 11.6799i 0.379347 0.657048i
\(317\) 12.4868i 0.701330i 0.936501 + 0.350665i \(0.114044\pi\)
−0.936501 + 0.350665i \(0.885956\pi\)
\(318\) −5.92164 3.41886i −0.332069 0.191720i
\(319\) 11.1623 19.3336i 0.624968 1.08248i
\(320\) 0 0
\(321\) 5.51317 9.54909i 0.307715 0.532978i
\(322\) −5.19615 + 3.00000i −0.289570 + 0.167183i
\(323\) −8.21584 + 4.74342i −0.457141 + 0.263931i
\(324\) −19.0000 −1.05556
\(325\) 0 0
\(326\) 17.4868 0.968506
\(327\) 29.1638 16.8377i 1.61276 0.931128i
\(328\) 8.94133 5.16228i 0.493702 0.285039i
\(329\) 1.50000 2.59808i 0.0826977 0.143237i
\(330\) 0 0
\(331\) 12.3246 21.3468i 0.677419 1.17332i −0.298337 0.954461i \(-0.596432\pi\)
0.975756 0.218863i \(-0.0702348\pi\)
\(332\) −8.21584 4.74342i −0.450903 0.260329i
\(333\) 1.13594i 0.0622493i
\(334\) 6.66228 11.5394i 0.364544 0.631408i
\(335\) 0 0
\(336\) 1.58114 + 2.73861i 0.0862582 + 0.149404i
\(337\) 17.4868i 0.952568i 0.879291 + 0.476284i \(0.158017\pi\)
−0.879291 + 0.476284i \(0.841983\pi\)
\(338\) 0.584952 + 12.9868i 0.0318172 + 0.706391i
\(339\) 27.3509 1.48550
\(340\) 0 0
\(341\) −7.74342 13.4120i −0.419330 0.726300i
\(342\) 11.1406 + 6.43203i 0.602415 + 0.347804i
\(343\) 13.0000i 0.701934i
\(344\) 1.00000 1.73205i 0.0539164 0.0933859i
\(345\) 0 0
\(346\) 2.16228 0.116245
\(347\) −2.17647 1.25658i −0.116839 0.0674569i 0.440442 0.897781i \(-0.354822\pi\)
−0.557281 + 0.830324i \(0.688155\pi\)
\(348\) −28.2750 + 16.3246i −1.51570 + 0.875088i
\(349\) 8.74342 + 15.1440i 0.468024 + 0.810642i 0.999332 0.0365368i \(-0.0116326\pi\)
−0.531308 + 0.847179i \(0.678299\pi\)
\(350\) 0 0
\(351\) −38.9737 + 23.6866i −2.08026 + 1.26430i
\(352\) 2.16228i 0.115250i
\(353\) −4.47066 + 2.58114i −0.237949 + 0.137380i −0.614234 0.789124i \(-0.710535\pi\)
0.376284 + 0.926504i \(0.377202\pi\)
\(354\) −16.3246 28.2750i −0.867640 1.50280i
\(355\) 0 0
\(356\) −7.32456 −0.388201
\(357\) −14.1375 8.16228i −0.748235 0.431994i
\(358\) 19.3336 + 11.1623i 1.02181 + 0.589945i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 7.81139 + 13.5297i 0.411126 + 0.712091i
\(362\) 8.49691 4.90569i 0.446588 0.257838i
\(363\) 20.0000i 1.04973i
\(364\) 3.16228 + 1.73205i 0.165748 + 0.0907841i
\(365\) 0 0
\(366\) 11.8377 + 20.5035i 0.618768 + 1.07174i
\(367\) 4.02625 2.32456i 0.210168 0.121341i −0.391221 0.920297i \(-0.627947\pi\)
0.601390 + 0.798956i \(0.294614\pi\)
\(368\) 5.19615 + 3.00000i 0.270868 + 0.156386i
\(369\) 72.2719 3.76232
\(370\) 0 0
\(371\) −1.08114 + 1.87259i −0.0561299 + 0.0972199i
\(372\) 22.6491i 1.17430i
\(373\) −26.5429 15.3246i −1.37434 0.793475i −0.382869 0.923803i \(-0.625064\pi\)
−0.991471 + 0.130327i \(0.958397\pi\)
\(374\) −5.58114 9.66682i −0.288594 0.499859i
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) −17.8827 + 32.6491i −0.921004 + 1.68151i
\(378\) 12.6491i 0.650600i
\(379\) −19.4057 33.6116i −0.996804 1.72651i −0.567590 0.823311i \(-0.692124\pi\)
−0.429214 0.903203i \(-0.641209\pi\)
\(380\) 0 0
\(381\) −5.25658 + 9.10467i −0.269303 + 0.466446i
\(382\) 9.48683i 0.485389i
\(383\) 25.9808 + 15.0000i 1.32755 + 0.766464i 0.984921 0.173005i \(-0.0553476\pi\)
0.342634 + 0.939469i \(0.388681\pi\)
\(384\) 1.58114 2.73861i 0.0806872 0.139754i
\(385\) 0 0
\(386\) 2.00000 3.46410i 0.101797 0.176318i
\(387\) 12.1244 7.00000i 0.616316 0.355830i
\(388\) 6.48379 3.74342i 0.329164 0.190043i
\(389\) −12.8377 −0.650898 −0.325449 0.945560i \(-0.605516\pi\)
−0.325449 + 0.945560i \(0.605516\pi\)
\(390\) 0 0
\(391\) −30.9737 −1.56641
\(392\) −5.19615 + 3.00000i −0.262445 + 0.151523i
\(393\) 29.6082 17.0943i 1.49354 0.862294i
\(394\) −9.24342 + 16.0101i −0.465677 + 0.806576i
\(395\) 0 0
\(396\) −7.56797 + 13.1081i −0.380305 + 0.658707i
\(397\) −33.3306 19.2434i −1.67281 0.965799i −0.966052 0.258348i \(-0.916822\pi\)
−0.706762 0.707452i \(-0.749845\pi\)
\(398\) 1.35089i 0.0677140i
\(399\) 2.90569 5.03281i 0.145467 0.251956i
\(400\) 0 0
\(401\) −10.9868 19.0298i −0.548656 0.950301i −0.998367 0.0571262i \(-0.981806\pi\)
0.449711 0.893174i \(-0.351527\pi\)
\(402\) 7.35089i 0.366629i
\(403\) 13.4120 + 22.0680i 0.668099 + 1.09928i
\(404\) 11.1623 0.555344
\(405\) 0 0
\(406\) 5.16228 + 8.94133i 0.256200 + 0.443751i
\(407\) 0.303879 + 0.175445i 0.0150627 + 0.00869647i
\(408\) 16.3246i 0.808186i
\(409\) −10.8246 + 18.7487i −0.535240 + 0.927063i 0.463912 + 0.885881i \(0.346445\pi\)
−0.999152 + 0.0411812i \(0.986888\pi\)
\(410\) 0 0
\(411\) 48.9737 2.41569
\(412\) −0.584952 0.337722i −0.0288185 0.0166384i
\(413\) −8.94133 + 5.16228i −0.439974 + 0.254019i
\(414\) 21.0000 + 36.3731i 1.03209 + 1.78764i
\(415\) 0 0
\(416\) −0.0811388 3.60464i −0.00397816 0.176732i
\(417\) 38.4605i 1.88342i
\(418\) 3.44130 1.98683i 0.168319 0.0971792i
\(419\) 7.32456 + 12.6865i 0.357828 + 0.619776i 0.987598 0.157006i \(-0.0501841\pi\)
−0.629770 + 0.776782i \(0.716851\pi\)
\(420\) 0 0
\(421\) −3.16228 −0.154120 −0.0770600 0.997026i \(-0.524553\pi\)
−0.0770600 + 0.997026i \(0.524553\pi\)
\(422\) −10.2518 5.91886i −0.499048 0.288126i
\(423\) −18.1865 10.5000i −0.884260 0.510527i
\(424\) 2.16228 0.105009
\(425\) 0 0
\(426\) 6.83772 + 11.8433i 0.331289 + 0.573809i
\(427\) 6.48379 3.74342i 0.313772 0.181157i
\(428\) 3.48683i 0.168542i
\(429\) 0.554805 + 24.6475i 0.0267862 + 1.18999i
\(430\) 0 0
\(431\) −7.74342 13.4120i −0.372987 0.646033i 0.617036 0.786935i \(-0.288333\pi\)
−0.990024 + 0.140902i \(0.955000\pi\)
\(432\) 10.9545 6.32456i 0.527046 0.304290i
\(433\) 5.47723 + 3.16228i 0.263219 + 0.151969i 0.625802 0.779982i \(-0.284772\pi\)
−0.362583 + 0.931951i \(0.618105\pi\)
\(434\) 7.16228 0.343800
\(435\) 0 0
\(436\) −5.32456 + 9.22240i −0.255000 + 0.441673i
\(437\) 11.0263i 0.527461i
\(438\) 7.77142 + 4.48683i 0.371333 + 0.214389i
\(439\) 1.90569 + 3.30076i 0.0909538 + 0.157537i 0.907913 0.419159i \(-0.137675\pi\)
−0.816959 + 0.576696i \(0.804342\pi\)
\(440\) 0 0
\(441\) −42.0000 −2.00000
\(442\) 9.66682 + 15.9057i 0.459804 + 0.756557i
\(443\) 26.6491i 1.26614i −0.774096 0.633069i \(-0.781795\pi\)
0.774096 0.633069i \(-0.218205\pi\)
\(444\) −0.256584 0.444416i −0.0121769 0.0210910i
\(445\) 0 0
\(446\) −1.66228 + 2.87915i −0.0787111 + 0.136332i
\(447\) 51.6228i 2.44167i
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) −1.01317 + 1.75486i −0.0478143 + 0.0828168i −0.888942 0.458020i \(-0.848559\pi\)
0.841128 + 0.540837i \(0.181892\pi\)
\(450\) 0 0
\(451\) 11.1623 19.3336i 0.525611 0.910385i
\(452\) −7.49035 + 4.32456i −0.352316 + 0.203410i
\(453\) 13.2486 7.64911i 0.622476 0.359387i
\(454\) −10.3246 −0.484555
\(455\) 0 0
\(456\) −5.81139 −0.272143
\(457\) 21.1834 12.2302i 0.990918 0.572107i 0.0853696 0.996349i \(-0.472793\pi\)
0.905549 + 0.424242i \(0.139460\pi\)
\(458\) −2.45754 + 1.41886i −0.114833 + 0.0662990i
\(459\) −32.6491 + 56.5499i −1.52393 + 2.63952i
\(460\) 0 0
\(461\) −10.7434 + 18.6081i −0.500371 + 0.866668i 0.499629 + 0.866239i \(0.333470\pi\)
−1.00000 0.000428205i \(0.999864\pi\)
\(462\) 5.92164 + 3.41886i 0.275500 + 0.159060i
\(463\) 12.3246i 0.572771i −0.958115 0.286385i \(-0.907546\pi\)
0.958115 0.286385i \(-0.0924537\pi\)
\(464\) 5.16228 8.94133i 0.239653 0.415091i
\(465\) 0 0
\(466\) −4.74342 8.21584i −0.219735 0.380591i
\(467\) 32.6491i 1.51082i 0.655252 + 0.755410i \(0.272562\pi\)
−0.655252 + 0.755410i \(0.727438\pi\)
\(468\) 12.1244 22.1359i 0.560449 1.02323i
\(469\) −2.32456 −0.107338
\(470\) 0 0
\(471\) 19.2302 + 33.3078i 0.886083 + 1.53474i
\(472\) 8.94133 + 5.16228i 0.411558 + 0.237613i
\(473\) 4.32456i 0.198843i
\(474\) −21.3246 + 36.9352i −0.979469 + 1.69649i
\(475\) 0 0
\(476\) 5.16228 0.236613
\(477\) 13.1081 + 7.56797i 0.600179 + 0.346514i
\(478\) −9.66682 + 5.58114i −0.442150 + 0.255275i
\(479\) −6.06797 10.5100i −0.277253 0.480216i 0.693448 0.720506i \(-0.256091\pi\)
−0.970701 + 0.240291i \(0.922757\pi\)
\(480\) 0 0
\(481\) −0.513167 0.281073i −0.0233984 0.0128158i
\(482\) 25.9737i 1.18307i
\(483\) 16.4317 9.48683i 0.747667 0.431666i
\(484\) −3.16228 5.47723i −0.143740 0.248965i
\(485\) 0 0
\(486\) 22.1359 1.00411
\(487\) 0.866025 + 0.500000i 0.0392434 + 0.0226572i 0.519493 0.854475i \(-0.326121\pi\)
−0.480250 + 0.877132i \(0.659454\pi\)
\(488\) −6.48379 3.74342i −0.293507 0.169457i
\(489\) −55.2982 −2.50067
\(490\) 0 0
\(491\) −8.75658 15.1668i −0.395179 0.684470i 0.597945 0.801537i \(-0.295984\pi\)
−0.993124 + 0.117067i \(0.962651\pi\)
\(492\) −28.2750 + 16.3246i −1.27473 + 0.735968i
\(493\) 53.2982i 2.40043i
\(494\) −5.66228 + 3.44130i −0.254758 + 0.154831i
\(495\) 0 0
\(496\) −3.58114 6.20271i −0.160798 0.278510i
\(497\) 3.74517 2.16228i 0.167994 0.0969914i
\(498\) 25.9808 + 15.0000i 1.16423 + 0.672166i
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) 0 0
\(501\) −21.0680 + 36.4908i −0.941248 + 1.63029i
\(502\) 12.4868i 0.557315i
\(503\) −12.3826 7.14911i −0.552114 0.318763i 0.197860 0.980230i \(-0.436601\pi\)
−0.749974 + 0.661467i \(0.769934\pi\)
\(504\) −3.50000 6.06218i −0.155902 0.270031i
\(505\) 0 0
\(506\) 12.9737 0.576750
\(507\) −1.84978 41.0680i −0.0821517 1.82389i
\(508\) 3.32456i 0.147503i
\(509\) −0.486833 0.843219i −0.0215785 0.0373750i 0.855035 0.518571i \(-0.173536\pi\)
−0.876613 + 0.481196i \(0.840203\pi\)
\(510\) 0 0
\(511\) 1.41886 2.45754i 0.0627667 0.108715i
\(512\) 1.00000i 0.0441942i
\(513\) −20.1312 11.6228i −0.888816 0.513158i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.16228 + 5.47723i −0.139212 + 0.241121i
\(517\) −5.61776 + 3.24342i −0.247069 + 0.142645i
\(518\) −0.140537 + 0.0811388i −0.00617482 + 0.00356504i
\(519\) −6.83772 −0.300143
\(520\) 0 0
\(521\) 22.6754 0.993429 0.496715 0.867914i \(-0.334540\pi\)
0.496715 + 0.867914i \(0.334540\pi\)
\(522\) 62.5893 36.1359i 2.73946 1.58163i
\(523\) 34.0333 19.6491i 1.48817 0.859196i 0.488262 0.872697i \(-0.337631\pi\)
0.999909 + 0.0135017i \(0.00429785\pi\)
\(524\) −5.40569 + 9.36294i −0.236149 + 0.409022i
\(525\) 0 0
\(526\) 5.82456 10.0884i 0.253963 0.439876i
\(527\) 32.0201 + 18.4868i 1.39482 + 0.805299i
\(528\) 6.83772i 0.297574i
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) 36.1359 + 62.5893i 1.56817 + 2.71614i
\(532\) 1.83772i 0.0796754i
\(533\) −17.8827 + 32.6491i −0.774584 + 1.41419i
\(534\) 23.1623 1.00233
\(535\) 0 0
\(536\) 1.16228 + 2.01312i 0.0502027 + 0.0869537i
\(537\) −61.1383 35.2982i −2.63831 1.52323i
\(538\) 2.51317i 0.108350i
\(539\) −6.48683 + 11.2355i −0.279408 + 0.483948i
\(540\) 0 0
\(541\) 26.8377 1.15384 0.576922 0.816799i \(-0.304254\pi\)
0.576922 + 0.816799i \(0.304254\pi\)
\(542\) −5.47723 3.16228i −0.235267 0.135831i
\(543\) −26.8696 + 15.5132i −1.15308 + 0.665734i
\(544\) −2.58114 4.47066i −0.110665 0.191678i
\(545\) 0 0
\(546\) −10.0000 5.47723i −0.427960 0.234404i
\(547\) 6.64911i 0.284295i −0.989845 0.142148i \(-0.954599\pi\)
0.989845 0.142148i \(-0.0454008\pi\)
\(548\) −13.4120 + 7.74342i −0.572932 + 0.330782i
\(549\) −26.2039 45.3865i −1.11836 1.93705i
\(550\) 0 0
\(551\) −18.9737 −0.808305
\(552\) −16.4317 9.48683i −0.699379 0.403786i
\(553\) 11.6799 + 6.74342i 0.496682 + 0.286759i
\(554\) −1.51317 −0.0642883
\(555\) 0 0
\(556\) 6.08114 + 10.5328i 0.257898 + 0.446692i
\(557\) 13.7159 7.91886i 0.581160 0.335533i −0.180434 0.983587i \(-0.557750\pi\)
0.761594 + 0.648054i \(0.224417\pi\)
\(558\) 50.1359i 2.12242i
\(559\) 0.162278 + 7.20928i 0.00686361 + 0.304920i
\(560\) 0 0
\(561\) 17.6491 + 30.5692i 0.745146 + 1.29063i
\(562\) −16.4317 + 9.48683i −0.693128 + 0.400178i
\(563\) −20.7846 12.0000i −0.875967 0.505740i −0.00664037 0.999978i \(-0.502114\pi\)
−0.869326 + 0.494238i \(0.835447\pi\)
\(564\) 9.48683 0.399468
\(565\) 0 0
\(566\) 11.0000 19.0526i 0.462364 0.800839i
\(567\) 19.0000i 0.797925i
\(568\) −3.74517 2.16228i −0.157144 0.0907272i
\(569\) −16.9868 29.4221i −0.712125 1.23344i −0.964058 0.265692i \(-0.914400\pi\)
0.251933 0.967745i \(-0.418934\pi\)
\(570\) 0 0
\(571\) −25.1359 −1.05191 −0.525953 0.850513i \(-0.676291\pi\)
−0.525953 + 0.850513i \(0.676291\pi\)
\(572\) −4.04905 6.66228i −0.169299 0.278564i
\(573\) 30.0000i 1.25327i
\(574\) 5.16228 + 8.94133i 0.215469 + 0.373204i
\(575\) 0 0
\(576\) −3.50000 + 6.06218i −0.145833 + 0.252591i
\(577\) 7.16228i 0.298170i 0.988824 + 0.149085i \(0.0476327\pi\)
−0.988824 + 0.149085i \(0.952367\pi\)
\(578\) 8.35637 + 4.82456i 0.347579 + 0.200675i
\(579\) −6.32456 + 10.9545i −0.262840 + 0.455251i
\(580\) 0 0
\(581\) 4.74342 8.21584i 0.196790 0.340850i
\(582\) −20.5035 + 11.8377i −0.849899 + 0.490689i
\(583\) 4.04905 2.33772i 0.167695 0.0968186i
\(584\) −2.83772 −0.117426
\(585\) 0 0
\(586\) −21.8377 −0.902108
\(587\) 11.2355 6.48683i 0.463740 0.267740i −0.249876 0.968278i \(-0.580390\pi\)
0.713615 + 0.700538i \(0.247056\pi\)
\(588\) 16.4317 9.48683i 0.677631 0.391230i
\(589\) −6.58114 + 11.3989i −0.271171 + 0.469682i
\(590\) 0 0
\(591\) 29.2302 50.6283i 1.20237 2.08257i
\(592\) 0.140537 + 0.0811388i 0.00577602 + 0.00333479i
\(593\) 3.35089i 0.137605i 0.997630 + 0.0688023i \(0.0219178\pi\)
−0.997630 + 0.0688023i \(0.978082\pi\)
\(594\) 13.6754 23.6866i 0.561110 0.971872i
\(595\) 0 0
\(596\) −8.16228 14.1375i −0.334340 0.579094i
\(597\) 4.27189i 0.174837i
\(598\) −21.6278 + 0.486833i −0.884428 + 0.0199081i
\(599\) −43.9473 −1.79564 −0.897820 0.440363i \(-0.854850\pi\)
−0.897820 + 0.440363i \(0.854850\pi\)
\(600\) 0 0
\(601\) −17.1491 29.7031i −0.699527 1.21162i −0.968631 0.248505i \(-0.920061\pi\)
0.269104 0.963111i \(-0.413273\pi\)
\(602\) 1.73205 + 1.00000i 0.0705931 + 0.0407570i
\(603\) 16.2719i 0.662642i
\(604\) −2.41886 + 4.18959i −0.0984221 + 0.170472i
\(605\) 0 0
\(606\) −35.2982 −1.43389
\(607\) −4.33013 2.50000i −0.175754 0.101472i 0.409542 0.912291i \(-0.365689\pi\)
−0.585296 + 0.810819i \(0.699022\pi\)
\(608\) 1.59151 0.918861i 0.0645444 0.0372647i
\(609\) −16.3246 28.2750i −0.661504 1.14576i
\(610\) 0 0
\(611\) 9.24342 5.61776i 0.373949 0.227270i
\(612\) 36.1359i 1.46071i
\(613\) −17.7421 + 10.2434i −0.716597 + 0.413728i −0.813499 0.581566i \(-0.802440\pi\)
0.0969016 + 0.995294i \(0.469107\pi\)
\(614\) 7.83772 + 13.5753i 0.316305 + 0.547856i
\(615\) 0 0
\(616\) −2.16228 −0.0871206
\(617\) 27.6672 + 15.9737i 1.11384 + 0.643076i 0.939821 0.341667i \(-0.110991\pi\)
0.174018 + 0.984742i \(0.444325\pi\)
\(618\) 1.84978 + 1.06797i 0.0744091 + 0.0429601i
\(619\) 29.4605 1.18412 0.592059 0.805895i \(-0.298315\pi\)
0.592059 + 0.805895i \(0.298315\pi\)
\(620\) 0 0
\(621\) −37.9473 65.7267i −1.52277 2.63752i
\(622\) −3.01969 + 1.74342i −0.121078 + 0.0699046i
\(623\) 7.32456i 0.293452i
\(624\) 0.256584 + 11.3989i 0.0102716 + 0.456320i
\(625\) 0 0
\(626\) 4.16228 + 7.20928i 0.166358 + 0.288141i
\(627\) −10.8823 + 6.28292i −0.434598 + 0.250916i
\(628\) −10.5328 6.08114i −0.420306 0.242664i
\(629\) −0.837722 −0.0334022
\(630\) 0 0
\(631\) 7.16228 12.4054i 0.285126 0.493852i −0.687514 0.726171i \(-0.741298\pi\)
0.972640 + 0.232319i \(0.0746313\pi\)
\(632\) 13.4868i 0.536477i
\(633\) 32.4189 + 18.7171i 1.28854 + 0.743937i
\(634\) 6.24342 + 10.8139i 0.247958 + 0.429475i
\(635\) 0 0
\(636\) −6.83772 −0.271133
\(637\) 10.3923 18.9737i 0.411758 0.751764i
\(638\) 22.3246i 0.883838i
\(639\) −15.1359 26.2162i −0.598769 1.03710i
\(640\) 0 0
\(641\) 4.98683 8.63745i 0.196968 0.341159i −0.750576 0.660784i \(-0.770224\pi\)
0.947544 + 0.319626i \(0.103557\pi\)
\(642\) 11.0263i 0.435175i
\(643\) 10.7911 + 6.23025i 0.425560 + 0.245697i 0.697453 0.716630i \(-0.254316\pi\)
−0.271893 + 0.962327i \(0.587650\pi\)
\(644\) −3.00000 + 5.19615i −0.118217 + 0.204757i
\(645\) 0 0
\(646\) −4.74342 + 8.21584i −0.186627 + 0.323248i
\(647\) −13.8336 + 7.98683i −0.543855 + 0.313995i −0.746640 0.665229i \(-0.768334\pi\)
0.202785 + 0.979223i \(0.435001\pi\)
\(648\) −16.4545 + 9.50000i −0.646393 + 0.373195i
\(649\) 22.3246 0.876315
\(650\) 0 0
\(651\) −22.6491 −0.887689
\(652\) 15.1440 8.74342i 0.593086 0.342419i
\(653\) −15.1668 + 8.75658i −0.593525 + 0.342672i −0.766490 0.642256i \(-0.777998\pi\)
0.172965 + 0.984928i \(0.444665\pi\)
\(654\) 16.8377 29.1638i 0.658407 1.14039i
\(655\) 0 0
\(656\) 5.16228 8.94133i 0.201553 0.349100i
\(657\) −17.2028 9.93203i −0.671144 0.387485i
\(658\) 3.00000i 0.116952i
\(659\) 11.6491 20.1769i 0.453785 0.785979i −0.544833 0.838545i \(-0.683407\pi\)
0.998617 + 0.0525663i \(0.0167401\pi\)
\(660\) 0 0
\(661\) 5.41886 + 9.38574i 0.210769 + 0.365063i 0.951956 0.306236i \(-0.0990698\pi\)
−0.741186 + 0.671299i \(0.765736\pi\)
\(662\) 24.6491i 0.958015i
\(663\) −30.5692 50.2982i −1.18721 1.95342i
\(664\) −9.48683 −0.368161
\(665\) 0 0
\(666\) 0.567972 + 0.983756i 0.0220085 + 0.0381198i
\(667\) −53.6480 30.9737i −2.07726 1.19931i
\(668\) 13.3246i 0.515543i
\(669\) 5.25658 9.10467i 0.203231 0.352007i
\(670\) 0 0
\(671\) −16.1886 −0.624954
\(672\) 2.73861 + 1.58114i 0.105644 + 0.0609938i
\(673\) −12.9676 + 7.48683i −0.499863 + 0.288596i −0.728657 0.684879i \(-0.759855\pi\)
0.228794 + 0.973475i \(0.426522\pi\)
\(674\) 8.74342 + 15.1440i 0.336784 + 0.583327i
\(675\) 0 0
\(676\) 7.00000 + 10.9545i 0.269231 + 0.421325i
\(677\) 12.9737i 0.498618i −0.968424 0.249309i \(-0.919796\pi\)
0.968424 0.249309i \(-0.0802036\pi\)
\(678\) 23.6866 13.6754i 0.909677 0.525202i
\(679\) 3.74342 + 6.48379i 0.143659 + 0.248825i
\(680\) 0 0
\(681\) 32.6491 1.25112
\(682\) −13.4120 7.74342i −0.513572 0.296511i
\(683\) 17.0394 + 9.83772i 0.651996 + 0.376430i 0.789220 0.614110i \(-0.210485\pi\)
−0.137225 + 0.990540i \(0.543818\pi\)
\(684\) 12.8641 0.491869
\(685\) 0 0
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) 7.77142 4.48683i 0.296498 0.171183i
\(688\) 2.00000i 0.0762493i
\(689\) −6.66228 + 4.04905i −0.253813 + 0.154257i
\(690\) 0 0
\(691\) 18.5680 + 32.1607i 0.706359 + 1.22345i 0.966199 + 0.257798i \(0.0829969\pi\)
−0.259840 + 0.965652i \(0.583670\pi\)
\(692\) 1.87259 1.08114i 0.0711851 0.0410987i
\(693\) −13.1081 7.56797i −0.497936 0.287483i
\(694\) −2.51317 −0.0953985
\(695\) 0 0
\(696\) −16.3246 + 28.2750i −0.618781 + 1.07176i
\(697\) 53.2982i 2.01881i
\(698\) 15.1440 + 8.74342i 0.573210 + 0.330943i
\(699\) 15.0000 + 25.9808i 0.567352 + 0.982683i
\(700\) 0 0
\(701\) −23.1623 −0.874827 −0.437414 0.899260i \(-0.644105\pi\)
−0.437414 + 0.899260i \(0.644105\pi\)
\(702\) −21.9089 + 40.0000i −0.826898 + 1.50970i
\(703\) 0.298221i 0.0112476i
\(704\) 1.08114 + 1.87259i 0.0407470 + 0.0705758i
\(705\) 0 0
\(706\) −2.58114 + 4.47066i −0.0971424 + 0.168256i
\(707\) 11.1623i 0.419801i
\(708\) −28.2750 16.3246i −1.06264 0.613514i
\(709\) 20.7434 35.9287i 0.779035 1.34933i −0.153463 0.988154i \(-0.549043\pi\)
0.932498 0.361174i \(-0.117624\pi\)
\(710\) 0 0
\(711\) 47.2039 81.7596i 1.77029 3.06622i
\(712\) −6.34325 + 3.66228i −0.237723 + 0.137250i
\(713\) −37.2163 + 21.4868i −1.39376 + 0.804688i
\(714\) −16.3246 −0.610931
\(715\) 0 0
\(716\) 22.3246 0.834308
\(717\) 30.5692 17.6491i 1.14163 0.659118i
\(718\) 5.19615 3.00000i 0.193919 0.111959i
\(719\) 6.00000 10.3923i 0.223762 0.387568i −0.732185 0.681106i \(-0.761499\pi\)
0.955947 + 0.293538i \(0.0948328\pi\)
\(720\) 0 0
\(721\) 0.337722 0.584952i 0.0125774 0.0217848i
\(722\) 13.5297 + 7.81139i 0.503524 + 0.290710i
\(723\) 82.1359i 3.05467i
\(724\) 4.90569 8.49691i 0.182319 0.315785i
\(725\) 0 0
\(726\) 10.0000 + 17.3205i 0.371135 + 0.642824i
\(727\) 20.6754i 0.766810i −0.923580 0.383405i \(-0.874751\pi\)
0.923580 0.383405i \(-0.125249\pi\)
\(728\) 3.60464 0.0811388i 0.133597 0.00300721i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 5.16228 + 8.94133i 0.190934 + 0.330707i
\(732\) 20.5035 + 11.8377i 0.757833 + 0.437535i
\(733\) 8.48683i 0.313468i −0.987641 0.156734i \(-0.949903\pi\)
0.987641 0.156734i \(-0.0500966\pi\)
\(734\) 2.32456 4.02625i 0.0858009 0.148612i
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 4.35293 + 2.51317i 0.160342 + 0.0925737i
\(738\) 62.5893 36.1359i 2.30394 1.33018i
\(739\) −22.4057 38.8078i −0.824207 1.42757i −0.902524 0.430640i \(-0.858288\pi\)
0.0783172 0.996928i \(-0.475045\pi\)
\(740\) 0 0
\(741\) 17.9057 10.8823i 0.657782 0.399772i
\(742\) 2.16228i 0.0793797i
\(743\) 15.5885 9.00000i 0.571885 0.330178i −0.186017 0.982547i \(-0.559558\pi\)
0.757902 + 0.652369i \(0.226225\pi\)
\(744\) 11.3246 + 19.6147i 0.415178 + 0.719110i
\(745\) 0 0
\(746\) −30.6491 −1.12214
\(747\) −57.5109 33.2039i −2.10421 1.21487i
\(748\) −9.66682 5.58114i −0.353454 0.204067i
\(749\) −3.48683 −0.127406
\(750\) 0 0
\(751\) 17.4868 + 30.2881i 0.638104 + 1.10523i 0.985849 + 0.167639i \(0.0536142\pi\)
−0.347745 + 0.937589i \(0.613052\pi\)
\(752\) −2.59808 + 1.50000i −0.0947421 + 0.0546994i
\(753\) 39.4868i 1.43898i
\(754\) 0.837722 + 37.2163i 0.0305080 + 1.35534i
\(755\) 0 0
\(756\) 6.32456 + 10.9545i 0.230022 + 0.398410i
\(757\) 29.5854 17.0811i 1.07530 0.620825i 0.145675 0.989332i \(-0.453465\pi\)
0.929625 + 0.368508i \(0.120131\pi\)
\(758\) −33.6116 19.4057i −1.22083 0.704847i
\(759\) −41.0263 −1.48916
\(760\) 0 0
\(761\) 4.14911 7.18647i 0.150405 0.260509i −0.780971 0.624567i \(-0.785276\pi\)
0.931376 + 0.364058i \(0.118609\pi\)
\(762\) 10.5132i 0.380852i
\(763\) −9.22240 5.32456i −0.333873 0.192762i
\(764\) 4.74342 + 8.21584i 0.171611 + 0.297239i
\(765\) 0 0
\(766\) 30.0000 1.08394
\(767\) −37.2163 + 0.837722i −1.34380 + 0.0302484i
\(768\) 3.16228i 0.114109i
\(769\) 3.16228 + 5.47723i 0.114035 + 0.197514i 0.917393 0.397981i \(-0.130289\pi\)
−0.803359 + 0.595495i \(0.796956\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 41.3831 + 23.8925i 1.48845 + 0.859354i 0.999913 0.0131912i \(-0.00419900\pi\)
0.488533 + 0.872546i \(0.337532\pi\)
\(774\) 7.00000 12.1244i 0.251610 0.435801i
\(775\) 0 0
\(776\) 3.74342 6.48379i 0.134381 0.232754i
\(777\) 0.444416 0.256584i 0.0159433 0.00920488i
\(778\) −11.1178 + 6.41886i −0.398592 + 0.230127i
\(779\) −18.9737 −0.679802
\(780\) 0 0
\(781\) −9.35089 −0.334601
\(782\) −26.8240 + 15.4868i −0.959224 + 0.553808i
\(783\) −113.100 + 65.2982i −4.04186 + 2.33357i
\(784\) −3.00000 + 5.19615i −0.107143 + 0.185577i
\(785\) 0 0
\(786\) 17.0943 29.6082i 0.609734 1.05609i
\(787\) 39.9549 + 23.0680i 1.42424 + 0.822284i 0.996658 0.0816928i \(-0.0260326\pi\)
0.427581 + 0.903977i \(0.359366\pi\)
\(788\) 18.4868i 0.658566i
\(789\) −18.4189 + 31.9024i −0.655729 + 1.13576i
\(790\) 0 0
\(791\) −4.32456 7.49035i −0.153763 0.266326i
\(792\) 15.1359i 0.537832i
\(793\) 26.9873 0.607473i 0.958348 0.0215720i
\(794\) −38.4868 −1.36585
\(795\) 0 0
\(796\) 0.675445 + 1.16990i 0.0239405 + 0.0414662i
\(797\) 11.8433 + 6.83772i 0.419511 + 0.242205i 0.694868 0.719137i \(-0.255463\pi\)
−0.275357 + 0.961342i \(0.588796\pi\)
\(798\) 5.81139i 0.205721i
\(799\) 7.74342 13.4120i 0.273942 0.474482i
\(800\) 0 0
\(801\) −51.2719 −1.81160
\(802\) −19.0298 10.9868i −0.671964 0.387959i
\(803\) −5.31388 + 3.06797i −0.187523 + 0.108266i
\(804\) −3.67544 6.36606i −0.129623 0.224514i
\(805\) 0 0
\(806\) 22.6491 + 12.4054i 0.797781 + 0.436963i
\(807\) 7.94733i 0.279759i
\(808\) 9.66682 5.58114i 0.340077 0.196344i
\(809\) 5.16228 + 8.94133i 0.181496 + 0.314360i 0.942390 0.334516i \(-0.108573\pi\)
−0.760894 + 0.648876i \(0.775239\pi\)
\(810\) 0 0
\(811\) −6.16228 −0.216387 −0.108193 0.994130i \(-0.534507\pi\)
−0.108193 + 0.994130i \(0.534507\pi\)
\(812\) 8.94133 + 5.16228i 0.313779 + 0.181160i
\(813\) 17.3205 + 10.0000i 0.607457 + 0.350715i
\(814\) 0.350889 0.0122987
\(815\) 0 0
\(816\) 8.16228 + 14.1375i 0.285737 + 0.494911i
\(817\) −3.18303 + 1.83772i −0.111360 + 0.0642938i
\(818\) 21.6491i 0.756943i
\(819\) 22.1359 + 12.1244i 0.773492 + 0.423659i
\(820\) 0 0
\(821\) 2.58114 + 4.47066i 0.0900824 + 0.156027i 0.907546 0.419954i \(-0.137954\pi\)
−0.817463 + 0.575981i \(0.804620\pi\)
\(822\) 42.4124 24.4868i 1.47930 0.854076i
\(823\) 40.7032 + 23.5000i 1.41882 + 0.819159i 0.996196 0.0871445i \(-0.0277742\pi\)
0.422628 + 0.906303i \(0.361108\pi\)
\(824\) −0.675445 −0.0235302
\(825\) 0 0
\(826\) −5.16228 + 8.94133i −0.179619 + 0.311109i
\(827\) 51.4868i 1.79037i −0.445692 0.895186i \(-0.647042\pi\)
0.445692 0.895186i \(-0.352958\pi\)
\(828\) 36.3731 + 21.0000i 1.26405 + 0.729800i
\(829\) 16.0000 + 27.7128i 0.555703 + 0.962506i 0.997848 + 0.0655624i \(0.0208842\pi\)
−0.442145 + 0.896943i \(0.645783\pi\)
\(830\) 0 0
\(831\) 4.78505 0.165992
\(832\) −1.87259 3.08114i −0.0649203 0.106819i
\(833\) 30.9737i 1.07317i
\(834\) −19.2302 33.3078i −0.665889 1.15335i
\(835\) 0 0
\(836\) 1.98683 3.44130i 0.0687161 0.119020i
\(837\) 90.5964i 3.13147i
\(838\) 12.6865 + 7.32456i 0.438248 + 0.253023i
\(839\) −11.5811 + 20.0591i −0.399825 + 0.692518i −0.993704 0.112037i \(-0.964263\pi\)
0.593879 + 0.804555i \(0.297596\pi\)
\(840\) 0 0
\(841\) −38.7982 + 67.2005i −1.33787 + 2.31726i
\(842\) −2.73861 + 1.58114i −0.0943788 + 0.0544896i
\(843\) 51.9615 30.0000i 1.78965 1.03325i
\(844\) −11.8377 −0.407471
\(845\) 0 0
\(846\) −21.0000 −0.721995
\(847\) 5.47723 3.16228i 0.188200 0.108657i
\(848\) 1.87259 1.08114i 0.0643049 0.0371265i
\(849\) −34.7851 + 60.2495i −1.19382 + 2.06776i
\(850\) 0 0
\(851\) 0.486833 0.843219i 0.0166884 0.0289052i
\(852\) 11.8433 + 6.83772i 0.405744 + 0.234257i
\(853\) 56.2719i 1.92671i −0.268225 0.963356i \(-0.586437\pi\)
0.268225 0.963356i \(-0.413563\pi\)
\(854\) 3.74342 6.48379i 0.128097 0.221871i
\(855\) 0 0
\(856\) 1.74342 + 3.01969i 0.0595887 + 0.103211i
\(857\) 30.1359i 1.02942i 0.857363 + 0.514712i \(0.172101\pi\)
−0.857363 + 0.514712i \(0.827899\pi\)
\(858\) 12.8042 + 21.0680i 0.437129 + 0.719249i
\(859\) −47.1359 −1.60826 −0.804129 0.594455i \(-0.797368\pi\)
−0.804129 + 0.594455i \(0.797368\pi\)
\(860\) 0 0
\(861\) −16.3246 28.2750i −0.556339 0.963608i
\(862\) −13.4120 7.74342i −0.456814 0.263742i
\(863\) 18.0000i 0.612727i 0.951915 + 0.306364i \(0.0991123\pi\)
−0.951915 + 0.306364i \(0.900888\pi\)
\(864\) 6.32456 10.9545i 0.215166 0.372678i
\(865\) 0 0
\(866\) 6.32456 0.214917
\(867\) −26.4252 15.2566i −0.897446 0.518141i
\(868\) 6.20271 3.58114i 0.210534 0.121552i
\(869\) −14.5811 25.2553i −0.494631 0.856726i
\(870\) 0 0
\(871\) −7.35089 4.02625i −0.249075 0.136424i
\(872\) 10.6491i 0.360624i
\(873\) 45.3865 26.2039i 1.53610 0.886868i
\(874\) −5.51317 9.54909i −0.186486 0.323003i
\(875\) 0 0
\(876\) 8.97367 0.303192
\(877\) 20.5035 + 11.8377i 0.692355 + 0.399731i 0.804494 0.593961i \(-0.202437\pi\)
−0.112139 + 0.993693i \(0.535770\pi\)
\(878\) 3.30076 + 1.90569i 0.111395 + 0.0643141i
\(879\) 69.0569 2.32923
\(880\) 0 0
\(881\) 28.9868 + 50.2067i 0.976591 + 1.69151i 0.674581 + 0.738201i \(0.264324\pi\)
0.302010 + 0.953305i \(0.402342\pi\)
\(882\) −36.3731 + 21.0000i −1.22474 + 0.707107i
\(883\) 35.4868i 1.19423i −0.802157 0.597114i \(-0.796314\pi\)
0.802157 0.597114i \(-0.203686\pi\)
\(884\) 16.3246 + 8.94133i 0.549054 + 0.300729i
\(885\) 0 0
\(886\) −13.3246 23.0788i −0.447647 0.775348i
\(887\) 31.7163 18.3114i 1.06493 0.614836i 0.138136 0.990413i \(-0.455889\pi\)
0.926791 + 0.375577i \(0.122555\pi\)
\(888\) −0.444416 0.256584i −0.0149136 0.00861038i
\(889\) 3.32456 0.111502
\(890\) 0 0
\(891\) −20.5416 + 35.5792i −0.688171 + 1.19195i
\(892\) 3.32456i 0.111314i
\(893\) 4.77454 + 2.75658i 0.159774 + 0.0922455i
\(894\) 25.8114 + 44.7066i 0.863262 + 1.49521i
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 68.3932 1.53950i 2.28358 0.0514024i
\(898\) 2.02633i 0.0676196i
\(899\) 36.9737 + 64.0403i 1.23314 + 2.13586i
\(900\) 0 0
\(901\) −5.58114 + 9.66682i −0.185935 + 0.322048i
\(902\) 22.3246i 0.743326i
\(903\) −5.47723 3.16228i −0.182271 0.105234i
\(904\) −4.32456 + 7.49035i −0.143833 + 0.249125i
\(905\) 0 0
\(906\) 7.64911 13.2486i 0.254125 0.440157i
\(907\) −13.9741 + 8.06797i −0.464004 + 0.267893i −0.713726 0.700425i \(-0.752994\pi\)
0.249723 + 0.968317i \(0.419661\pi\)
\(908\) −8.94133 + 5.16228i −0.296728 + 0.171316i
\(909\) 78.1359 2.59161
\(910\) 0 0
\(911\) −17.2982 −0.573116 −0.286558 0.958063i \(-0.592511\pi\)
−0.286558 + 0.958063i \(0.592511\pi\)
\(912\) −5.03281 + 2.90569i −0.166653 + 0.0962171i
\(913\) −17.7649 + 10.2566i −0.587933 + 0.339443i
\(914\) 12.2302 21.1834i 0.404541 0.700685i
\(915\) 0 0
\(916\) −1.41886 + 2.45754i −0.0468805 + 0.0811994i
\(917\) −9.36294 5.40569i −0.309191 0.178512i
\(918\) 65.2982i 2.15516i
\(919\) −5.83772 + 10.1112i −0.192569 + 0.333539i −0.946101 0.323872i \(-0.895015\pi\)
0.753532 + 0.657411i \(0.228348\pi\)
\(920\) 0 0
\(921\) −24.7851 42.9290i −0.816695 1.41456i
\(922\) 21.4868i 0.707631i
\(923\) 15.5885 0.350889i 0.513100 0.0115497i
\(924\) 6.83772 0.224945
\(925\) 0 0
\(926\) −6.16228 10.6734i −0.202505 0.350749i
\(927\) −4.09467 2.36406i −0.134486 0.0776458i
\(928\) 10.3246i 0.338920i
\(929\) 27.0000 46.7654i 0.885841 1.53432i 0.0410949 0.999155i \(-0.486915\pi\)
0.844746 0.535167i \(-0.179751\pi\)
\(930\) 0 0
\(931\) 11.0263 0.361374
\(932\) −8.21584 4.74342i −0.269119 0.155376i
\(933\) 9.54909 5.51317i 0.312623 0.180493i
\(934\) 16.3246 + 28.2750i 0.534156 + 0.925185i
\(935\) 0 0
\(936\) −0.567972 25.2325i −0.0185647 0.824749i
\(937\) 27.6754i 0.904117i 0.891988 + 0.452059i \(0.149310\pi\)
−0.891988 + 0.452059i \(0.850690\pi\)
\(938\) −2.01312 + 1.16228i −0.0657308 + 0.0379497i
\(939\) −13.1623 22.7977i −0.429535 0.743976i
\(940\) 0 0
\(941\) 22.3246 0.727760 0.363880 0.931446i \(-0.381452\pi\)
0.363880 + 0.931446i \(0.381452\pi\)
\(942\) 33.3078 + 19.2302i 1.08523 + 0.626555i
\(943\) −53.6480 30.9737i −1.74702 1.00864i
\(944\) 10.3246 0.336036
\(945\) 0 0
\(946\) −2.16228 3.74517i −0.0703017 0.121766i
\(947\) −1.56871 + 0.905694i −0.0509762 + 0.0294311i −0.525271 0.850935i \(-0.676036\pi\)
0.474295 + 0.880366i \(0.342703\pi\)
\(948\) 42.6491i 1.38518i
\(949\) 8.74342 5.31388i 0.283823 0.172496i
\(950\) 0 0
\(951\) −19.7434 34.1966i −0.640224 1.10890i
\(952\) 4.47066 2.58114i 0.144895 0.0836552i
\(953\) −2.17647 1.25658i −0.0705027 0.0407047i 0.464334 0.885660i \(-0.346294\pi\)
−0.534837 + 0.844955i \(0.679627\pi\)
\(954\) 15.1359 0.490044
\(955\) 0 0
\(956\) −5.58114 + 9.66682i −0.180507 + 0.312647i
\(957\) 70.5964i 2.28206i
\(958\) −10.5100 6.06797i −0.339564 0.196047i
\(959\) −7.74342 13.4120i −0.250048 0.433096i
\(960\) 0 0
\(961\) 20.2982 0.654781
\(962\) −0.584952 + 0.0131670i −0.0188596 + 0.000424522i
\(963\) 24.4078i 0.786531i
\(964\) −12.9868 22.4939i −0.418278 0.724478i
\(965\) 0 0
\(966\) 9.48683 16.4317i 0.305234 0.528681i
\(967\) 16.6228i 0.534552i −0.963620 0.267276i \(-0.913876\pi\)
0.963620 0.267276i \(-0.0861236\pi\)
\(968\) −5.47723 3.16228i −0.176045 0.101639i
\(969\) 15.0000 25.9808i 0.481869 0.834622i
\(970\) 0 0
\(971\) −29.8925 + 51.7754i −0.959297 + 1.66155i −0.235083 + 0.971975i \(0.575536\pi\)
−0.724214 + 0.689576i \(0.757797\pi\)
\(972\) 19.1703 11.0680i 0.614887 0.355005i
\(973\) −10.5328 + 6.08114i −0.337667 + 0.194952i
\(974\) 1.00000 0.0320421
\(975\) 0 0
\(976\) −7.48683 −0.239648
\(977\) 16.4317 9.48683i 0.525696 0.303511i −0.213566 0.976929i \(-0.568508\pi\)
0.739262 + 0.673418i \(0.235175\pi\)
\(978\) −47.8897 + 27.6491i −1.53134 + 0.884121i
\(979\) −7.91886 + 13.7159i −0.253088 + 0.438361i
\(980\) 0 0
\(981\) −37.2719 + 64.5568i −1.19000 + 2.06114i
\(982\) −15.1668 8.75658i −0.483994 0.279434i
\(983\) 30.3509i 0.968043i −0.875056 0.484022i \(-0.839176\pi\)
0.875056 0.484022i \(-0.160824\pi\)
\(984\) −16.3246 + 28.2750i −0.520408 + 0.901373i
\(985\) 0 0
\(986\) 26.6491 + 46.1576i 0.848681 + 1.46996i
\(987\) 9.48683i 0.301969i
\(988\) −3.18303 + 5.81139i −0.101266 + 0.184885i
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 19.6491 + 34.0333i 0.624175 + 1.08110i 0.988700 + 0.149909i \(0.0478979\pi\)
−0.364525 + 0.931193i \(0.618769\pi\)
\(992\) −6.20271 3.58114i −0.196936 0.113701i
\(993\) 77.9473i 2.47358i
\(994\) 2.16228 3.74517i 0.0685833 0.118790i
\(995\) 0 0
\(996\) 30.0000 0.950586
\(997\) −10.2518 5.91886i −0.324677 0.187452i 0.328798 0.944400i \(-0.393356\pi\)
−0.653475 + 0.756948i \(0.726690\pi\)
\(998\) 19.0526 11.0000i 0.603098 0.348199i
\(999\) −1.02633 1.77766i −0.0324718 0.0562428i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.o.g.549.3 8
5.2 odd 4 650.2.e.h.601.2 4
5.3 odd 4 130.2.e.c.81.1 yes 4
5.4 even 2 inner 650.2.o.g.549.2 8
13.9 even 3 inner 650.2.o.g.399.2 8
15.8 even 4 1170.2.i.q.991.2 4
20.3 even 4 1040.2.q.m.81.2 4
65.3 odd 12 1690.2.a.n.1.2 2
65.8 even 4 1690.2.l.k.361.3 8
65.9 even 6 inner 650.2.o.g.399.3 8
65.18 even 4 1690.2.l.k.361.1 8
65.22 odd 12 650.2.e.h.451.2 4
65.23 odd 12 1690.2.a.k.1.2 2
65.28 even 12 1690.2.d.g.1351.2 4
65.33 even 12 1690.2.l.k.1161.1 8
65.38 odd 4 1690.2.e.m.991.1 4
65.42 odd 12 8450.2.a.bc.1.1 2
65.43 odd 12 1690.2.e.m.191.1 4
65.48 odd 12 130.2.e.c.61.1 4
65.58 even 12 1690.2.l.k.1161.3 8
65.62 odd 12 8450.2.a.bj.1.1 2
65.63 even 12 1690.2.d.g.1351.4 4
195.113 even 12 1170.2.i.q.451.2 4
260.243 even 12 1040.2.q.m.321.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.c.61.1 4 65.48 odd 12
130.2.e.c.81.1 yes 4 5.3 odd 4
650.2.e.h.451.2 4 65.22 odd 12
650.2.e.h.601.2 4 5.2 odd 4
650.2.o.g.399.2 8 13.9 even 3 inner
650.2.o.g.399.3 8 65.9 even 6 inner
650.2.o.g.549.2 8 5.4 even 2 inner
650.2.o.g.549.3 8 1.1 even 1 trivial
1040.2.q.m.81.2 4 20.3 even 4
1040.2.q.m.321.2 4 260.243 even 12
1170.2.i.q.451.2 4 195.113 even 12
1170.2.i.q.991.2 4 15.8 even 4
1690.2.a.k.1.2 2 65.23 odd 12
1690.2.a.n.1.2 2 65.3 odd 12
1690.2.d.g.1351.2 4 65.28 even 12
1690.2.d.g.1351.4 4 65.63 even 12
1690.2.e.m.191.1 4 65.43 odd 12
1690.2.e.m.991.1 4 65.38 odd 4
1690.2.l.k.361.1 8 65.18 even 4
1690.2.l.k.361.3 8 65.8 even 4
1690.2.l.k.1161.1 8 65.33 even 12
1690.2.l.k.1161.3 8 65.58 even 12
8450.2.a.bc.1.1 2 65.42 odd 12
8450.2.a.bj.1.1 2 65.62 odd 12