Properties

Label 1690.2.e.m.991.1
Level $1690$
Weight $2$
Character 1690.991
Analytic conductor $13.495$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.1
Root \(-1.58114 - 2.73861i\) of defining polynomial
Character \(\chi\) \(=\) 1690.991
Dual form 1690.2.e.m.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.58114 - 2.73861i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{5} +(1.58114 - 2.73861i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-3.50000 + 6.06218i) q^{9} +(0.500000 + 0.866025i) q^{10} +(1.08114 + 1.87259i) q^{11} +3.16228 q^{12} -1.00000 q^{14} +(-1.58114 - 2.73861i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.58114 - 4.47066i) q^{17} -7.00000 q^{18} +(-0.918861 + 1.59151i) q^{19} +(-0.500000 + 0.866025i) q^{20} +3.16228 q^{21} +(-1.08114 + 1.87259i) q^{22} +(-3.00000 - 5.19615i) q^{23} +(1.58114 + 2.73861i) q^{24} +1.00000 q^{25} +12.6491 q^{27} +(-0.500000 - 0.866025i) q^{28} +(-5.16228 - 8.94133i) q^{29} +(1.58114 - 2.73861i) q^{30} -7.16228 q^{31} +(0.500000 - 0.866025i) q^{32} +(3.41886 - 5.92164i) q^{33} +5.16228 q^{34} +(-0.500000 + 0.866025i) q^{35} +(-3.50000 - 6.06218i) q^{36} +(-0.0811388 - 0.140537i) q^{37} -1.83772 q^{38} -1.00000 q^{40} +(-5.16228 - 8.94133i) q^{41} +(1.58114 + 2.73861i) q^{42} +(-1.00000 + 1.73205i) q^{43} -2.16228 q^{44} +(-3.50000 + 6.06218i) q^{45} +(3.00000 - 5.19615i) q^{46} +3.00000 q^{47} +(-1.58114 + 2.73861i) q^{48} +(3.00000 + 5.19615i) q^{49} +(0.500000 + 0.866025i) q^{50} -16.3246 q^{51} -2.16228 q^{53} +(6.32456 + 10.9545i) q^{54} +(1.08114 + 1.87259i) q^{55} +(0.500000 - 0.866025i) q^{56} +5.81139 q^{57} +(5.16228 - 8.94133i) q^{58} +(-5.16228 + 8.94133i) q^{59} +3.16228 q^{60} +(3.74342 - 6.48379i) q^{61} +(-3.58114 - 6.20271i) q^{62} +(-3.50000 - 6.06218i) q^{63} +1.00000 q^{64} +6.83772 q^{66} +(-1.16228 - 2.01312i) q^{67} +(2.58114 + 4.47066i) q^{68} +(-9.48683 + 16.4317i) q^{69} -1.00000 q^{70} +(-2.16228 + 3.74517i) q^{71} +(3.50000 - 6.06218i) q^{72} -2.83772 q^{73} +(0.0811388 - 0.140537i) q^{74} +(-1.58114 - 2.73861i) q^{75} +(-0.918861 - 1.59151i) q^{76} -2.16228 q^{77} -13.4868 q^{79} +(-0.500000 - 0.866025i) q^{80} +(-9.50000 - 16.4545i) q^{81} +(5.16228 - 8.94133i) q^{82} -9.48683 q^{83} +(-1.58114 + 2.73861i) q^{84} +(2.58114 - 4.47066i) q^{85} -2.00000 q^{86} +(-16.3246 + 28.2750i) q^{87} +(-1.08114 - 1.87259i) q^{88} +(-3.66228 - 6.34325i) q^{89} -7.00000 q^{90} +6.00000 q^{92} +(11.3246 + 19.6147i) q^{93} +(1.50000 + 2.59808i) q^{94} +(-0.918861 + 1.59151i) q^{95} -3.16228 q^{96} +(-3.74342 + 6.48379i) q^{97} +(-3.00000 + 5.19615i) q^{98} -15.1359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} + 4 q^{5} - 2 q^{7} - 4 q^{8} - 14 q^{9} + 2 q^{10} - 2 q^{11} - 4 q^{14} - 2 q^{16} + 4 q^{17} - 28 q^{18} - 10 q^{19} - 2 q^{20} + 2 q^{22} - 12 q^{23} + 4 q^{25} - 2 q^{28} - 8 q^{29}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.58114 2.73861i −0.912871 1.58114i −0.809989 0.586445i \(-0.800527\pi\)
−0.102882 0.994694i \(-0.532806\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.00000 0.447214
\(6\) 1.58114 2.73861i 0.645497 1.11803i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.50000 + 6.06218i −1.16667 + 2.02073i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 1.08114 + 1.87259i 0.325976 + 0.564606i 0.981709 0.190386i \(-0.0609739\pi\)
−0.655734 + 0.754992i \(0.727641\pi\)
\(12\) 3.16228 0.912871
\(13\) 0 0
\(14\) −1.00000 −0.267261
\(15\) −1.58114 2.73861i −0.408248 0.707107i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.58114 4.47066i 0.626018 1.08430i −0.362325 0.932052i \(-0.618017\pi\)
0.988343 0.152243i \(-0.0486497\pi\)
\(18\) −7.00000 −1.64992
\(19\) −0.918861 + 1.59151i −0.210801 + 0.365118i −0.951966 0.306205i \(-0.900941\pi\)
0.741164 + 0.671324i \(0.234274\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 3.16228 0.690066
\(22\) −1.08114 + 1.87259i −0.230500 + 0.399237i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 1.58114 + 2.73861i 0.322749 + 0.559017i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 12.6491 2.43432
\(28\) −0.500000 0.866025i −0.0944911 0.163663i
\(29\) −5.16228 8.94133i −0.958611 1.66036i −0.725880 0.687822i \(-0.758567\pi\)
−0.232731 0.972541i \(-0.574766\pi\)
\(30\) 1.58114 2.73861i 0.288675 0.500000i
\(31\) −7.16228 −1.28638 −0.643192 0.765705i \(-0.722390\pi\)
−0.643192 + 0.765705i \(0.722390\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 3.41886 5.92164i 0.595147 1.03083i
\(34\) 5.16228 0.885323
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) −3.50000 6.06218i −0.583333 1.01036i
\(37\) −0.0811388 0.140537i −0.0133391 0.0231041i 0.859279 0.511508i \(-0.170913\pi\)
−0.872618 + 0.488403i \(0.837579\pi\)
\(38\) −1.83772 −0.298118
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −5.16228 8.94133i −0.806212 1.39640i −0.915470 0.402387i \(-0.868181\pi\)
0.109257 0.994014i \(-0.465153\pi\)
\(42\) 1.58114 + 2.73861i 0.243975 + 0.422577i
\(43\) −1.00000 + 1.73205i −0.152499 + 0.264135i −0.932145 0.362084i \(-0.882065\pi\)
0.779647 + 0.626219i \(0.215399\pi\)
\(44\) −2.16228 −0.325976
\(45\) −3.50000 + 6.06218i −0.521749 + 0.903696i
\(46\) 3.00000 5.19615i 0.442326 0.766131i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) −1.58114 + 2.73861i −0.228218 + 0.395285i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) −16.3246 −2.28589
\(52\) 0 0
\(53\) −2.16228 −0.297012 −0.148506 0.988912i \(-0.547446\pi\)
−0.148506 + 0.988912i \(0.547446\pi\)
\(54\) 6.32456 + 10.9545i 0.860663 + 1.49071i
\(55\) 1.08114 + 1.87259i 0.145781 + 0.252500i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 5.81139 0.769737
\(58\) 5.16228 8.94133i 0.677840 1.17405i
\(59\) −5.16228 + 8.94133i −0.672071 + 1.16406i 0.305244 + 0.952274i \(0.401262\pi\)
−0.977316 + 0.211788i \(0.932071\pi\)
\(60\) 3.16228 0.408248
\(61\) 3.74342 6.48379i 0.479295 0.830164i −0.520423 0.853909i \(-0.674226\pi\)
0.999718 + 0.0237449i \(0.00755894\pi\)
\(62\) −3.58114 6.20271i −0.454805 0.787746i
\(63\) −3.50000 6.06218i −0.440959 0.763763i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.83772 0.841665
\(67\) −1.16228 2.01312i −0.141995 0.245942i 0.786253 0.617905i \(-0.212018\pi\)
−0.928248 + 0.371963i \(0.878685\pi\)
\(68\) 2.58114 + 4.47066i 0.313009 + 0.542148i
\(69\) −9.48683 + 16.4317i −1.14208 + 1.97814i
\(70\) −1.00000 −0.119523
\(71\) −2.16228 + 3.74517i −0.256615 + 0.444470i −0.965333 0.261022i \(-0.915941\pi\)
0.708718 + 0.705492i \(0.249274\pi\)
\(72\) 3.50000 6.06218i 0.412479 0.714435i
\(73\) −2.83772 −0.332130 −0.166065 0.986115i \(-0.553106\pi\)
−0.166065 + 0.986115i \(0.553106\pi\)
\(74\) 0.0811388 0.140537i 0.00943220 0.0163370i
\(75\) −1.58114 2.73861i −0.182574 0.316228i
\(76\) −0.918861 1.59151i −0.105401 0.182559i
\(77\) −2.16228 −0.246414
\(78\) 0 0
\(79\) −13.4868 −1.51739 −0.758694 0.651448i \(-0.774162\pi\)
−0.758694 + 0.651448i \(0.774162\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) −9.50000 16.4545i −1.05556 1.82828i
\(82\) 5.16228 8.94133i 0.570078 0.987404i
\(83\) −9.48683 −1.04132 −0.520658 0.853766i \(-0.674313\pi\)
−0.520658 + 0.853766i \(0.674313\pi\)
\(84\) −1.58114 + 2.73861i −0.172516 + 0.298807i
\(85\) 2.58114 4.47066i 0.279964 0.484912i
\(86\) −2.00000 −0.215666
\(87\) −16.3246 + 28.2750i −1.75018 + 3.03139i
\(88\) −1.08114 1.87259i −0.115250 0.199618i
\(89\) −3.66228 6.34325i −0.388201 0.672383i 0.604007 0.796979i \(-0.293570\pi\)
−0.992208 + 0.124596i \(0.960237\pi\)
\(90\) −7.00000 −0.737865
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 11.3246 + 19.6147i 1.17430 + 2.03395i
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) −0.918861 + 1.59151i −0.0942732 + 0.163286i
\(96\) −3.16228 −0.322749
\(97\) −3.74342 + 6.48379i −0.380086 + 0.658329i −0.991074 0.133311i \(-0.957439\pi\)
0.610988 + 0.791640i \(0.290772\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) −15.1359 −1.52122
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 5.58114 + 9.66682i 0.555344 + 0.961884i 0.997877 + 0.0651317i \(0.0207468\pi\)
−0.442533 + 0.896752i \(0.645920\pi\)
\(102\) −8.16228 14.1375i −0.808186 1.39982i
\(103\) 0.675445 0.0665535 0.0332768 0.999446i \(-0.489406\pi\)
0.0332768 + 0.999446i \(0.489406\pi\)
\(104\) 0 0
\(105\) 3.16228 0.308607
\(106\) −1.08114 1.87259i −0.105009 0.181882i
\(107\) 1.74342 + 3.01969i 0.168542 + 0.291924i 0.937908 0.346885i \(-0.112761\pi\)
−0.769365 + 0.638809i \(0.779427\pi\)
\(108\) −6.32456 + 10.9545i −0.608581 + 1.05409i
\(109\) −10.6491 −1.02000 −0.510000 0.860174i \(-0.670355\pi\)
−0.510000 + 0.860174i \(0.670355\pi\)
\(110\) −1.08114 + 1.87259i −0.103083 + 0.178544i
\(111\) −0.256584 + 0.444416i −0.0243538 + 0.0421821i
\(112\) 1.00000 0.0944911
\(113\) 4.32456 7.49035i 0.406820 0.704633i −0.587711 0.809071i \(-0.699971\pi\)
0.994531 + 0.104438i \(0.0333043\pi\)
\(114\) 2.90569 + 5.03281i 0.272143 + 0.471366i
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 10.3246 0.958611
\(117\) 0 0
\(118\) −10.3246 −0.950452
\(119\) 2.58114 + 4.47066i 0.236613 + 0.409825i
\(120\) 1.58114 + 2.73861i 0.144338 + 0.250000i
\(121\) 3.16228 5.47723i 0.287480 0.497930i
\(122\) 7.48683 0.677826
\(123\) −16.3246 + 28.2750i −1.47194 + 2.54947i
\(124\) 3.58114 6.20271i 0.321596 0.557020i
\(125\) 1.00000 0.0894427
\(126\) 3.50000 6.06218i 0.311805 0.540062i
\(127\) −1.66228 2.87915i −0.147503 0.255483i 0.782801 0.622272i \(-0.213790\pi\)
−0.930304 + 0.366789i \(0.880457\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 6.32456 0.556846
\(130\) 0 0
\(131\) −10.8114 −0.944595 −0.472298 0.881439i \(-0.656575\pi\)
−0.472298 + 0.881439i \(0.656575\pi\)
\(132\) 3.41886 + 5.92164i 0.297574 + 0.515413i
\(133\) −0.918861 1.59151i −0.0796754 0.138002i
\(134\) 1.16228 2.01312i 0.100405 0.173907i
\(135\) 12.6491 1.08866
\(136\) −2.58114 + 4.47066i −0.221331 + 0.383356i
\(137\) 7.74342 13.4120i 0.661565 1.14586i −0.318640 0.947876i \(-0.603226\pi\)
0.980204 0.197988i \(-0.0634406\pi\)
\(138\) −18.9737 −1.61515
\(139\) 6.08114 10.5328i 0.515795 0.893384i −0.484036 0.875048i \(-0.660830\pi\)
0.999832 0.0183361i \(-0.00583689\pi\)
\(140\) −0.500000 0.866025i −0.0422577 0.0731925i
\(141\) −4.74342 8.21584i −0.399468 0.691898i
\(142\) −4.32456 −0.362909
\(143\) 0 0
\(144\) 7.00000 0.583333
\(145\) −5.16228 8.94133i −0.428704 0.742537i
\(146\) −1.41886 2.45754i −0.117426 0.203387i
\(147\) 9.48683 16.4317i 0.782461 1.35526i
\(148\) 0.162278 0.0133391
\(149\) 8.16228 14.1375i 0.668680 1.15819i −0.309594 0.950869i \(-0.600193\pi\)
0.978273 0.207319i \(-0.0664736\pi\)
\(150\) 1.58114 2.73861i 0.129099 0.223607i
\(151\) 4.83772 0.393688 0.196844 0.980435i \(-0.436931\pi\)
0.196844 + 0.980435i \(0.436931\pi\)
\(152\) 0.918861 1.59151i 0.0745295 0.129089i
\(153\) 18.0680 + 31.2946i 1.46071 + 2.53002i
\(154\) −1.08114 1.87259i −0.0871206 0.150897i
\(155\) −7.16228 −0.575288
\(156\) 0 0
\(157\) −12.1623 −0.970655 −0.485328 0.874332i \(-0.661300\pi\)
−0.485328 + 0.874332i \(0.661300\pi\)
\(158\) −6.74342 11.6799i −0.536477 0.929206i
\(159\) 3.41886 + 5.92164i 0.271133 + 0.469617i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 6.00000 0.472866
\(162\) 9.50000 16.4545i 0.746390 1.29279i
\(163\) 8.74342 15.1440i 0.684837 1.18617i −0.288651 0.957434i \(-0.593207\pi\)
0.973488 0.228738i \(-0.0734600\pi\)
\(164\) 10.3246 0.806212
\(165\) 3.41886 5.92164i 0.266158 0.460999i
\(166\) −4.74342 8.21584i −0.368161 0.637673i
\(167\) 6.66228 + 11.5394i 0.515543 + 0.892946i 0.999837 + 0.0180409i \(0.00574292\pi\)
−0.484295 + 0.874905i \(0.660924\pi\)
\(168\) −3.16228 −0.243975
\(169\) 0 0
\(170\) 5.16228 0.395929
\(171\) −6.43203 11.1406i −0.491869 0.851943i
\(172\) −1.00000 1.73205i −0.0762493 0.132068i
\(173\) −1.08114 + 1.87259i −0.0821975 + 0.142370i −0.904194 0.427123i \(-0.859527\pi\)
0.821996 + 0.569493i \(0.192860\pi\)
\(174\) −32.6491 −2.47512
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 1.08114 1.87259i 0.0814939 0.141152i
\(177\) 32.6491 2.45406
\(178\) 3.66228 6.34325i 0.274499 0.475447i
\(179\) −11.1623 19.3336i −0.834308 1.44506i −0.894593 0.446882i \(-0.852534\pi\)
0.0602850 0.998181i \(-0.480799\pi\)
\(180\) −3.50000 6.06218i −0.260875 0.451848i
\(181\) 9.81139 0.729275 0.364637 0.931150i \(-0.381193\pi\)
0.364637 + 0.931150i \(0.381193\pi\)
\(182\) 0 0
\(183\) −23.6754 −1.75014
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) −0.0811388 0.140537i −0.00596545 0.0103325i
\(186\) −11.3246 + 19.6147i −0.830357 + 1.43822i
\(187\) 11.1623 0.816267
\(188\) −1.50000 + 2.59808i −0.109399 + 0.189484i
\(189\) −6.32456 + 10.9545i −0.460044 + 0.796819i
\(190\) −1.83772 −0.133322
\(191\) −4.74342 + 8.21584i −0.343222 + 0.594477i −0.985029 0.172389i \(-0.944852\pi\)
0.641807 + 0.766866i \(0.278185\pi\)
\(192\) −1.58114 2.73861i −0.114109 0.197642i
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) −7.48683 −0.537523
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −9.24342 16.0101i −0.658566 1.14067i −0.980987 0.194074i \(-0.937830\pi\)
0.322421 0.946596i \(-0.395503\pi\)
\(198\) −7.56797 13.1081i −0.537832 0.931553i
\(199\) 0.675445 1.16990i 0.0478810 0.0829323i −0.841092 0.540893i \(-0.818087\pi\)
0.888973 + 0.457960i \(0.151420\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −3.67544 + 6.36606i −0.259246 + 0.449027i
\(202\) −5.58114 + 9.66682i −0.392688 + 0.680155i
\(203\) 10.3246 0.724642
\(204\) 8.16228 14.1375i 0.571474 0.989822i
\(205\) −5.16228 8.94133i −0.360549 0.624489i
\(206\) 0.337722 + 0.584952i 0.0235302 + 0.0407556i
\(207\) 42.0000 2.91920
\(208\) 0 0
\(209\) −3.97367 −0.274864
\(210\) 1.58114 + 2.73861i 0.109109 + 0.188982i
\(211\) −5.91886 10.2518i −0.407471 0.705761i 0.587134 0.809489i \(-0.300256\pi\)
−0.994606 + 0.103729i \(0.966923\pi\)
\(212\) 1.08114 1.87259i 0.0742529 0.128610i
\(213\) 13.6754 0.937026
\(214\) −1.74342 + 3.01969i −0.119177 + 0.206421i
\(215\) −1.00000 + 1.73205i −0.0681994 + 0.118125i
\(216\) −12.6491 −0.860663
\(217\) 3.58114 6.20271i 0.243104 0.421068i
\(218\) −5.32456 9.22240i −0.360624 0.624620i
\(219\) 4.48683 + 7.77142i 0.303192 + 0.525144i
\(220\) −2.16228 −0.145781
\(221\) 0 0
\(222\) −0.513167 −0.0344415
\(223\) 1.66228 + 2.87915i 0.111314 + 0.192802i 0.916300 0.400492i \(-0.131161\pi\)
−0.804986 + 0.593294i \(0.797827\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) −3.50000 + 6.06218i −0.233333 + 0.404145i
\(226\) 8.64911 0.575330
\(227\) 5.16228 8.94133i 0.342632 0.593457i −0.642288 0.766463i \(-0.722015\pi\)
0.984921 + 0.173006i \(0.0553481\pi\)
\(228\) −2.90569 + 5.03281i −0.192434 + 0.333306i
\(229\) −2.83772 −0.187522 −0.0937610 0.995595i \(-0.529889\pi\)
−0.0937610 + 0.995595i \(0.529889\pi\)
\(230\) 3.00000 5.19615i 0.197814 0.342624i
\(231\) 3.41886 + 5.92164i 0.224945 + 0.389615i
\(232\) 5.16228 + 8.94133i 0.338920 + 0.587027i
\(233\) 9.48683 0.621503 0.310752 0.950491i \(-0.399419\pi\)
0.310752 + 0.950491i \(0.399419\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) −5.16228 8.94133i −0.336036 0.582031i
\(237\) 21.3246 + 36.9352i 1.38518 + 2.39920i
\(238\) −2.58114 + 4.47066i −0.167310 + 0.289790i
\(239\) −11.1623 −0.722028 −0.361014 0.932560i \(-0.617569\pi\)
−0.361014 + 0.932560i \(0.617569\pi\)
\(240\) −1.58114 + 2.73861i −0.102062 + 0.176777i
\(241\) −12.9868 + 22.4939i −0.836555 + 1.44896i 0.0562022 + 0.998419i \(0.482101\pi\)
−0.892758 + 0.450537i \(0.851232\pi\)
\(242\) 6.32456 0.406558
\(243\) −11.0680 + 19.1703i −0.710011 + 1.22977i
\(244\) 3.74342 + 6.48379i 0.239648 + 0.415082i
\(245\) 3.00000 + 5.19615i 0.191663 + 0.331970i
\(246\) −32.6491 −2.08163
\(247\) 0 0
\(248\) 7.16228 0.454805
\(249\) 15.0000 + 25.9808i 0.950586 + 1.64646i
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −6.24342 + 10.8139i −0.394081 + 0.682568i −0.992983 0.118254i \(-0.962270\pi\)
0.598902 + 0.800822i \(0.295604\pi\)
\(252\) 7.00000 0.440959
\(253\) 6.48683 11.2355i 0.407824 0.706371i
\(254\) 1.66228 2.87915i 0.104301 0.180654i
\(255\) −16.3246 −1.02228
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 3.16228 + 5.47723i 0.196875 + 0.340997i
\(259\) 0.162278 0.0100834
\(260\) 0 0
\(261\) 72.2719 4.47352
\(262\) −5.40569 9.36294i −0.333965 0.578444i
\(263\) 5.82456 + 10.0884i 0.359157 + 0.622079i 0.987820 0.155599i \(-0.0497308\pi\)
−0.628663 + 0.777678i \(0.716397\pi\)
\(264\) −3.41886 + 5.92164i −0.210416 + 0.364452i
\(265\) −2.16228 −0.132828
\(266\) 0.918861 1.59151i 0.0563390 0.0975820i
\(267\) −11.5811 + 20.0591i −0.708754 + 1.22760i
\(268\) 2.32456 0.141995
\(269\) −1.25658 + 2.17647i −0.0766152 + 0.132702i −0.901788 0.432180i \(-0.857745\pi\)
0.825172 + 0.564881i \(0.191078\pi\)
\(270\) 6.32456 + 10.9545i 0.384900 + 0.666667i
\(271\) 3.16228 + 5.47723i 0.192095 + 0.332718i 0.945944 0.324329i \(-0.105139\pi\)
−0.753850 + 0.657047i \(0.771805\pi\)
\(272\) −5.16228 −0.313009
\(273\) 0 0
\(274\) 15.4868 0.935594
\(275\) 1.08114 + 1.87259i 0.0651951 + 0.112921i
\(276\) −9.48683 16.4317i −0.571040 0.989071i
\(277\) −0.756584 + 1.31044i −0.0454587 + 0.0787368i −0.887859 0.460115i \(-0.847808\pi\)
0.842401 + 0.538851i \(0.181142\pi\)
\(278\) 12.1623 0.729445
\(279\) 25.0680 43.4190i 1.50078 2.59943i
\(280\) 0.500000 0.866025i 0.0298807 0.0517549i
\(281\) 18.9737 1.13187 0.565937 0.824448i \(-0.308515\pi\)
0.565937 + 0.824448i \(0.308515\pi\)
\(282\) 4.74342 8.21584i 0.282466 0.489246i
\(283\) 11.0000 + 19.0526i 0.653882 + 1.13256i 0.982173 + 0.187980i \(0.0601941\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) −2.16228 3.74517i −0.128308 0.222235i
\(285\) 5.81139 0.344237
\(286\) 0 0
\(287\) 10.3246 0.609439
\(288\) 3.50000 + 6.06218i 0.206239 + 0.357217i
\(289\) −4.82456 8.35637i −0.283797 0.491551i
\(290\) 5.16228 8.94133i 0.303139 0.525053i
\(291\) 23.6754 1.38788
\(292\) 1.41886 2.45754i 0.0830326 0.143817i
\(293\) −10.9189 + 18.9120i −0.637887 + 1.10485i 0.348009 + 0.937491i \(0.386858\pi\)
−0.985896 + 0.167361i \(0.946475\pi\)
\(294\) 18.9737 1.10657
\(295\) −5.16228 + 8.94133i −0.300559 + 0.520584i
\(296\) 0.0811388 + 0.140537i 0.00471610 + 0.00816852i
\(297\) 13.6754 + 23.6866i 0.793530 + 1.37443i
\(298\) 16.3246 0.945656
\(299\) 0 0
\(300\) 3.16228 0.182574
\(301\) −1.00000 1.73205i −0.0576390 0.0998337i
\(302\) 2.41886 + 4.18959i 0.139190 + 0.241084i
\(303\) 17.6491 30.5692i 1.01391 1.75615i
\(304\) 1.83772 0.105401
\(305\) 3.74342 6.48379i 0.214347 0.371261i
\(306\) −18.0680 + 31.2946i −1.03288 + 1.78900i
\(307\) −15.6754 −0.894645 −0.447322 0.894373i \(-0.647622\pi\)
−0.447322 + 0.894373i \(0.647622\pi\)
\(308\) 1.08114 1.87259i 0.0616036 0.106701i
\(309\) −1.06797 1.84978i −0.0607548 0.105230i
\(310\) −3.58114 6.20271i −0.203395 0.352291i
\(311\) −3.48683 −0.197720 −0.0988601 0.995101i \(-0.531520\pi\)
−0.0988601 + 0.995101i \(0.531520\pi\)
\(312\) 0 0
\(313\) −8.32456 −0.470532 −0.235266 0.971931i \(-0.575596\pi\)
−0.235266 + 0.971931i \(0.575596\pi\)
\(314\) −6.08114 10.5328i −0.343179 0.594403i
\(315\) −3.50000 6.06218i −0.197203 0.341565i
\(316\) 6.74342 11.6799i 0.379347 0.657048i
\(317\) −12.4868 −0.701330 −0.350665 0.936501i \(-0.614044\pi\)
−0.350665 + 0.936501i \(0.614044\pi\)
\(318\) −3.41886 + 5.92164i −0.191720 + 0.332069i
\(319\) 11.1623 19.3336i 0.624968 1.08248i
\(320\) 1.00000 0.0559017
\(321\) 5.51317 9.54909i 0.307715 0.532978i
\(322\) 3.00000 + 5.19615i 0.167183 + 0.289570i
\(323\) 4.74342 + 8.21584i 0.263931 + 0.457141i
\(324\) 19.0000 1.05556
\(325\) 0 0
\(326\) 17.4868 0.968506
\(327\) 16.8377 + 29.1638i 0.931128 + 1.61276i
\(328\) 5.16228 + 8.94133i 0.285039 + 0.493702i
\(329\) −1.50000 + 2.59808i −0.0826977 + 0.143237i
\(330\) 6.83772 0.376404
\(331\) −12.3246 + 21.3468i −0.677419 + 1.17332i 0.298337 + 0.954461i \(0.403568\pi\)
−0.975756 + 0.218863i \(0.929765\pi\)
\(332\) 4.74342 8.21584i 0.260329 0.450903i
\(333\) 1.13594 0.0622493
\(334\) −6.66228 + 11.5394i −0.364544 + 0.631408i
\(335\) −1.16228 2.01312i −0.0635020 0.109989i
\(336\) −1.58114 2.73861i −0.0862582 0.149404i
\(337\) 17.4868 0.952568 0.476284 0.879291i \(-0.341983\pi\)
0.476284 + 0.879291i \(0.341983\pi\)
\(338\) 0 0
\(339\) −27.3509 −1.48550
\(340\) 2.58114 + 4.47066i 0.139982 + 0.242456i
\(341\) −7.74342 13.4120i −0.419330 0.726300i
\(342\) 6.43203 11.1406i 0.347804 0.602415i
\(343\) −13.0000 −0.701934
\(344\) 1.00000 1.73205i 0.0539164 0.0933859i
\(345\) −9.48683 + 16.4317i −0.510754 + 0.884652i
\(346\) −2.16228 −0.116245
\(347\) −1.25658 + 2.17647i −0.0674569 + 0.116839i −0.897781 0.440442i \(-0.854822\pi\)
0.830324 + 0.557281i \(0.188155\pi\)
\(348\) −16.3246 28.2750i −0.875088 1.51570i
\(349\) 8.74342 + 15.1440i 0.468024 + 0.810642i 0.999332 0.0365368i \(-0.0116326\pi\)
−0.531308 + 0.847179i \(0.678299\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 0 0
\(352\) 2.16228 0.115250
\(353\) 2.58114 + 4.47066i 0.137380 + 0.237949i 0.926504 0.376284i \(-0.122798\pi\)
−0.789124 + 0.614234i \(0.789465\pi\)
\(354\) 16.3246 + 28.2750i 0.867640 + 1.50280i
\(355\) −2.16228 + 3.74517i −0.114762 + 0.198773i
\(356\) 7.32456 0.388201
\(357\) 8.16228 14.1375i 0.431994 0.748235i
\(358\) 11.1623 19.3336i 0.589945 1.02181i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 3.50000 6.06218i 0.184466 0.319505i
\(361\) 7.81139 + 13.5297i 0.411126 + 0.712091i
\(362\) 4.90569 + 8.49691i 0.257838 + 0.446588i
\(363\) −20.0000 −1.04973
\(364\) 0 0
\(365\) −2.83772 −0.148533
\(366\) −11.8377 20.5035i −0.618768 1.07174i
\(367\) −2.32456 4.02625i −0.121341 0.210168i 0.798956 0.601390i \(-0.205386\pi\)
−0.920297 + 0.391221i \(0.872053\pi\)
\(368\) −3.00000 + 5.19615i −0.156386 + 0.270868i
\(369\) 72.2719 3.76232
\(370\) 0.0811388 0.140537i 0.00421821 0.00730615i
\(371\) 1.08114 1.87259i 0.0561299 0.0972199i
\(372\) −22.6491 −1.17430
\(373\) 15.3246 26.5429i 0.793475 1.37434i −0.130327 0.991471i \(-0.541603\pi\)
0.923803 0.382869i \(-0.125064\pi\)
\(374\) 5.58114 + 9.66682i 0.288594 + 0.499859i
\(375\) −1.58114 2.73861i −0.0816497 0.141421i
\(376\) −3.00000 −0.154713
\(377\) 0 0
\(378\) −12.6491 −0.650600
\(379\) −19.4057 33.6116i −0.996804 1.72651i −0.567590 0.823311i \(-0.692124\pi\)
−0.429214 0.903203i \(-0.641209\pi\)
\(380\) −0.918861 1.59151i −0.0471366 0.0816430i
\(381\) −5.25658 + 9.10467i −0.269303 + 0.466446i
\(382\) −9.48683 −0.485389
\(383\) 15.0000 25.9808i 0.766464 1.32755i −0.173005 0.984921i \(-0.555348\pi\)
0.939469 0.342634i \(-0.111319\pi\)
\(384\) 1.58114 2.73861i 0.0806872 0.139754i
\(385\) −2.16228 −0.110200
\(386\) 2.00000 3.46410i 0.101797 0.176318i
\(387\) −7.00000 12.1244i −0.355830 0.616316i
\(388\) −3.74342 6.48379i −0.190043 0.329164i
\(389\) 12.8377 0.650898 0.325449 0.945560i \(-0.394484\pi\)
0.325449 + 0.945560i \(0.394484\pi\)
\(390\) 0 0
\(391\) −30.9737 −1.56641
\(392\) −3.00000 5.19615i −0.151523 0.262445i
\(393\) 17.0943 + 29.6082i 0.862294 + 1.49354i
\(394\) 9.24342 16.0101i 0.465677 0.806576i
\(395\) −13.4868 −0.678596
\(396\) 7.56797 13.1081i 0.380305 0.658707i
\(397\) 19.2434 33.3306i 0.965799 1.67281i 0.258348 0.966052i \(-0.416822\pi\)
0.707452 0.706762i \(-0.249845\pi\)
\(398\) 1.35089 0.0677140
\(399\) −2.90569 + 5.03281i −0.145467 + 0.251956i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) 10.9868 + 19.0298i 0.548656 + 0.950301i 0.998367 + 0.0571262i \(0.0181938\pi\)
−0.449711 + 0.893174i \(0.648473\pi\)
\(402\) −7.35089 −0.366629
\(403\) 0 0
\(404\) −11.1623 −0.555344
\(405\) −9.50000 16.4545i −0.472059 0.817630i
\(406\) 5.16228 + 8.94133i 0.256200 + 0.443751i
\(407\) 0.175445 0.303879i 0.00869647 0.0150627i
\(408\) 16.3246 0.808186
\(409\) −10.8246 + 18.7487i −0.535240 + 0.927063i 0.463912 + 0.885881i \(0.346445\pi\)
−0.999152 + 0.0411812i \(0.986888\pi\)
\(410\) 5.16228 8.94133i 0.254947 0.441581i
\(411\) −48.9737 −2.41569
\(412\) −0.337722 + 0.584952i −0.0166384 + 0.0288185i
\(413\) −5.16228 8.94133i −0.254019 0.439974i
\(414\) 21.0000 + 36.3731i 1.03209 + 1.78764i
\(415\) −9.48683 −0.465690
\(416\) 0 0
\(417\) −38.4605 −1.88342
\(418\) −1.98683 3.44130i −0.0971792 0.168319i
\(419\) −7.32456 12.6865i −0.357828 0.619776i 0.629770 0.776782i \(-0.283149\pi\)
−0.987598 + 0.157006i \(0.949816\pi\)
\(420\) −1.58114 + 2.73861i −0.0771517 + 0.133631i
\(421\) 3.16228 0.154120 0.0770600 0.997026i \(-0.475447\pi\)
0.0770600 + 0.997026i \(0.475447\pi\)
\(422\) 5.91886 10.2518i 0.288126 0.499048i
\(423\) −10.5000 + 18.1865i −0.510527 + 0.884260i
\(424\) 2.16228 0.105009
\(425\) 2.58114 4.47066i 0.125204 0.216859i
\(426\) 6.83772 + 11.8433i 0.331289 + 0.573809i
\(427\) 3.74342 + 6.48379i 0.181157 + 0.313772i
\(428\) −3.48683 −0.168542
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) 7.74342 + 13.4120i 0.372987 + 0.646033i 0.990024 0.140902i \(-0.0450002\pi\)
−0.617036 + 0.786935i \(0.711667\pi\)
\(432\) −6.32456 10.9545i −0.304290 0.527046i
\(433\) −3.16228 + 5.47723i −0.151969 + 0.263219i −0.931951 0.362583i \(-0.881895\pi\)
0.779982 + 0.625802i \(0.215228\pi\)
\(434\) 7.16228 0.343800
\(435\) −16.3246 + 28.2750i −0.782703 + 1.35568i
\(436\) 5.32456 9.22240i 0.255000 0.441673i
\(437\) 11.0263 0.527461
\(438\) −4.48683 + 7.77142i −0.214389 + 0.371333i
\(439\) −1.90569 3.30076i −0.0909538 0.157537i 0.816959 0.576696i \(-0.195658\pi\)
−0.907913 + 0.419159i \(0.862325\pi\)
\(440\) −1.08114 1.87259i −0.0515413 0.0892721i
\(441\) −42.0000 −2.00000
\(442\) 0 0
\(443\) 26.6491 1.26614 0.633069 0.774096i \(-0.281795\pi\)
0.633069 + 0.774096i \(0.281795\pi\)
\(444\) −0.256584 0.444416i −0.0121769 0.0210910i
\(445\) −3.66228 6.34325i −0.173609 0.300699i
\(446\) −1.66228 + 2.87915i −0.0787111 + 0.136332i
\(447\) −51.6228 −2.44167
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) −1.01317 + 1.75486i −0.0478143 + 0.0828168i −0.888942 0.458020i \(-0.848559\pi\)
0.841128 + 0.540837i \(0.181892\pi\)
\(450\) −7.00000 −0.329983
\(451\) 11.1623 19.3336i 0.525611 0.910385i
\(452\) 4.32456 + 7.49035i 0.203410 + 0.352316i
\(453\) −7.64911 13.2486i −0.359387 0.622476i
\(454\) 10.3246 0.484555
\(455\) 0 0
\(456\) −5.81139 −0.272143
\(457\) 12.2302 + 21.1834i 0.572107 + 0.990918i 0.996349 + 0.0853696i \(0.0272071\pi\)
−0.424242 + 0.905549i \(0.639460\pi\)
\(458\) −1.41886 2.45754i −0.0662990 0.114833i
\(459\) 32.6491 56.5499i 1.52393 2.63952i
\(460\) 6.00000 0.279751
\(461\) 10.7434 18.6081i 0.500371 0.866668i −0.499629 0.866239i \(-0.666530\pi\)
1.00000 0.000428205i \(-0.000136302\pi\)
\(462\) −3.41886 + 5.92164i −0.159060 + 0.275500i
\(463\) −12.3246 −0.572771 −0.286385 0.958115i \(-0.592454\pi\)
−0.286385 + 0.958115i \(0.592454\pi\)
\(464\) −5.16228 + 8.94133i −0.239653 + 0.415091i
\(465\) 11.3246 + 19.6147i 0.525164 + 0.909610i
\(466\) 4.74342 + 8.21584i 0.219735 + 0.380591i
\(467\) 32.6491 1.51082 0.755410 0.655252i \(-0.227438\pi\)
0.755410 + 0.655252i \(0.227438\pi\)
\(468\) 0 0
\(469\) 2.32456 0.107338
\(470\) 1.50000 + 2.59808i 0.0691898 + 0.119840i
\(471\) 19.2302 + 33.3078i 0.886083 + 1.53474i
\(472\) 5.16228 8.94133i 0.237613 0.411558i
\(473\) −4.32456 −0.198843
\(474\) −21.3246 + 36.9352i −0.979469 + 1.69649i
\(475\) −0.918861 + 1.59151i −0.0421602 + 0.0730237i
\(476\) −5.16228 −0.236613
\(477\) 7.56797 13.1081i 0.346514 0.600179i
\(478\) −5.58114 9.66682i −0.255275 0.442150i
\(479\) −6.06797 10.5100i −0.277253 0.480216i 0.693448 0.720506i \(-0.256091\pi\)
−0.970701 + 0.240291i \(0.922757\pi\)
\(480\) −3.16228 −0.144338
\(481\) 0 0
\(482\) −25.9737 −1.18307
\(483\) −9.48683 16.4317i −0.431666 0.747667i
\(484\) 3.16228 + 5.47723i 0.143740 + 0.248965i
\(485\) −3.74342 + 6.48379i −0.169980 + 0.294414i
\(486\) −22.1359 −1.00411
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) −3.74342 + 6.48379i −0.169457 + 0.293507i
\(489\) −55.2982 −2.50067
\(490\) −3.00000 + 5.19615i −0.135526 + 0.234738i
\(491\) −8.75658 15.1668i −0.395179 0.684470i 0.597945 0.801537i \(-0.295984\pi\)
−0.993124 + 0.117067i \(0.962651\pi\)
\(492\) −16.3246 28.2750i −0.735968 1.27473i
\(493\) −53.2982 −2.40043
\(494\) 0 0
\(495\) −15.1359 −0.680310
\(496\) 3.58114 + 6.20271i 0.160798 + 0.278510i
\(497\) −2.16228 3.74517i −0.0969914 0.167994i
\(498\) −15.0000 + 25.9808i −0.672166 + 1.16423i
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 21.0680 36.4908i 0.941248 1.63029i
\(502\) −12.4868 −0.557315
\(503\) 7.14911 12.3826i 0.318763 0.552114i −0.661467 0.749974i \(-0.730066\pi\)
0.980230 + 0.197860i \(0.0633992\pi\)
\(504\) 3.50000 + 6.06218i 0.155902 + 0.270031i
\(505\) 5.58114 + 9.66682i 0.248357 + 0.430168i
\(506\) 12.9737 0.576750
\(507\) 0 0
\(508\) 3.32456 0.147503
\(509\) −0.486833 0.843219i −0.0215785 0.0373750i 0.855035 0.518571i \(-0.173536\pi\)
−0.876613 + 0.481196i \(0.840203\pi\)
\(510\) −8.16228 14.1375i −0.361432 0.626018i
\(511\) 1.41886 2.45754i 0.0627667 0.108715i
\(512\) −1.00000 −0.0441942
\(513\) −11.6228 + 20.1312i −0.513158 + 0.888816i
\(514\) 0 0
\(515\) 0.675445 0.0297636
\(516\) −3.16228 + 5.47723i −0.139212 + 0.241121i
\(517\) 3.24342 + 5.61776i 0.142645 + 0.247069i
\(518\) 0.0811388 + 0.140537i 0.00356504 + 0.00617482i
\(519\) 6.83772 0.300143
\(520\) 0 0
\(521\) 22.6754 0.993429 0.496715 0.867914i \(-0.334540\pi\)
0.496715 + 0.867914i \(0.334540\pi\)
\(522\) 36.1359 + 62.5893i 1.58163 + 2.73946i
\(523\) 19.6491 + 34.0333i 0.859196 + 1.48817i 0.872697 + 0.488262i \(0.162369\pi\)
−0.0135017 + 0.999909i \(0.504298\pi\)
\(524\) 5.40569 9.36294i 0.236149 0.409022i
\(525\) 3.16228 0.138013
\(526\) −5.82456 + 10.0884i −0.253963 + 0.439876i
\(527\) −18.4868 + 32.0201i −0.805299 + 1.39482i
\(528\) −6.83772 −0.297574
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −1.08114 1.87259i −0.0469617 0.0813400i
\(531\) −36.1359 62.5893i −1.56817 2.71614i
\(532\) 1.83772 0.0796754
\(533\) 0 0
\(534\) −23.1623 −1.00233
\(535\) 1.74342 + 3.01969i 0.0753745 + 0.130552i
\(536\) 1.16228 + 2.01312i 0.0502027 + 0.0869537i
\(537\) −35.2982 + 61.1383i −1.52323 + 2.63831i
\(538\) −2.51317 −0.108350
\(539\) −6.48683 + 11.2355i −0.279408 + 0.483948i
\(540\) −6.32456 + 10.9545i −0.272166 + 0.471405i
\(541\) −26.8377 −1.15384 −0.576922 0.816799i \(-0.695746\pi\)
−0.576922 + 0.816799i \(0.695746\pi\)
\(542\) −3.16228 + 5.47723i −0.135831 + 0.235267i
\(543\) −15.5132 26.8696i −0.665734 1.15308i
\(544\) −2.58114 4.47066i −0.110665 0.191678i
\(545\) −10.6491 −0.456158
\(546\) 0 0
\(547\) −6.64911 −0.284295 −0.142148 0.989845i \(-0.545401\pi\)
−0.142148 + 0.989845i \(0.545401\pi\)
\(548\) 7.74342 + 13.4120i 0.330782 + 0.572932i
\(549\) 26.2039 + 45.3865i 1.11836 + 1.93705i
\(550\) −1.08114 + 1.87259i −0.0460999 + 0.0798474i
\(551\) 18.9737 0.808305
\(552\) 9.48683 16.4317i 0.403786 0.699379i
\(553\) 6.74342 11.6799i 0.286759 0.496682i
\(554\) −1.51317 −0.0642883
\(555\) −0.256584 + 0.444416i −0.0108914 + 0.0188644i
\(556\) 6.08114 + 10.5328i 0.257898 + 0.446692i
\(557\) 7.91886 + 13.7159i 0.335533 + 0.581160i 0.983587 0.180434i \(-0.0577503\pi\)
−0.648054 + 0.761594i \(0.724417\pi\)
\(558\) 50.1359 2.12242
\(559\) 0 0
\(560\) 1.00000 0.0422577
\(561\) −17.6491 30.5692i −0.745146 1.29063i
\(562\) 9.48683 + 16.4317i 0.400178 + 0.693128i
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 9.48683 0.399468
\(565\) 4.32456 7.49035i 0.181935 0.315121i
\(566\) −11.0000 + 19.0526i −0.462364 + 0.800839i
\(567\) 19.0000 0.797925
\(568\) 2.16228 3.74517i 0.0907272 0.157144i
\(569\) 16.9868 + 29.4221i 0.712125 + 1.23344i 0.964058 + 0.265692i \(0.0856005\pi\)
−0.251933 + 0.967745i \(0.581066\pi\)
\(570\) 2.90569 + 5.03281i 0.121706 + 0.210801i
\(571\) −25.1359 −1.05191 −0.525953 0.850513i \(-0.676291\pi\)
−0.525953 + 0.850513i \(0.676291\pi\)
\(572\) 0 0
\(573\) 30.0000 1.25327
\(574\) 5.16228 + 8.94133i 0.215469 + 0.373204i
\(575\) −3.00000 5.19615i −0.125109 0.216695i
\(576\) −3.50000 + 6.06218i −0.145833 + 0.252591i
\(577\) −7.16228 −0.298170 −0.149085 0.988824i \(-0.547633\pi\)
−0.149085 + 0.988824i \(0.547633\pi\)
\(578\) 4.82456 8.35637i 0.200675 0.347579i
\(579\) −6.32456 + 10.9545i −0.262840 + 0.455251i
\(580\) 10.3246 0.428704
\(581\) 4.74342 8.21584i 0.196790 0.340850i
\(582\) 11.8377 + 20.5035i 0.490689 + 0.849899i
\(583\) −2.33772 4.04905i −0.0968186 0.167695i
\(584\) 2.83772 0.117426
\(585\) 0 0
\(586\) −21.8377 −0.902108
\(587\) 6.48683 + 11.2355i 0.267740 + 0.463740i 0.968278 0.249876i \(-0.0803898\pi\)
−0.700538 + 0.713615i \(0.747056\pi\)
\(588\) 9.48683 + 16.4317i 0.391230 + 0.677631i
\(589\) 6.58114 11.3989i 0.271171 0.469682i
\(590\) −10.3246 −0.425055
\(591\) −29.2302 + 50.6283i −1.20237 + 2.08257i
\(592\) −0.0811388 + 0.140537i −0.00333479 + 0.00577602i
\(593\) 3.35089 0.137605 0.0688023 0.997630i \(-0.478082\pi\)
0.0688023 + 0.997630i \(0.478082\pi\)
\(594\) −13.6754 + 23.6866i −0.561110 + 0.971872i
\(595\) 2.58114 + 4.47066i 0.105816 + 0.183279i
\(596\) 8.16228 + 14.1375i 0.334340 + 0.579094i
\(597\) −4.27189 −0.174837
\(598\) 0 0
\(599\) 43.9473 1.79564 0.897820 0.440363i \(-0.145150\pi\)
0.897820 + 0.440363i \(0.145150\pi\)
\(600\) 1.58114 + 2.73861i 0.0645497 + 0.111803i
\(601\) −17.1491 29.7031i −0.699527 1.21162i −0.968631 0.248505i \(-0.920061\pi\)
0.269104 0.963111i \(-0.413273\pi\)
\(602\) 1.00000 1.73205i 0.0407570 0.0705931i
\(603\) 16.2719 0.662642
\(604\) −2.41886 + 4.18959i −0.0984221 + 0.170472i
\(605\) 3.16228 5.47723i 0.128565 0.222681i
\(606\) 35.2982 1.43389
\(607\) −2.50000 + 4.33013i −0.101472 + 0.175754i −0.912291 0.409542i \(-0.865689\pi\)
0.810819 + 0.585296i \(0.199022\pi\)
\(608\) 0.918861 + 1.59151i 0.0372647 + 0.0645444i
\(609\) −16.3246 28.2750i −0.661504 1.14576i
\(610\) 7.48683 0.303133
\(611\) 0 0
\(612\) −36.1359 −1.46071
\(613\) 10.2434 + 17.7421i 0.413728 + 0.716597i 0.995294 0.0969016i \(-0.0308932\pi\)
−0.581566 + 0.813499i \(0.697560\pi\)
\(614\) −7.83772 13.5753i −0.316305 0.547856i
\(615\) −16.3246 + 28.2750i −0.658270 + 1.14016i
\(616\) 2.16228 0.0871206
\(617\) −15.9737 + 27.6672i −0.643076 + 1.11384i 0.341667 + 0.939821i \(0.389009\pi\)
−0.984742 + 0.174018i \(0.944325\pi\)
\(618\) 1.06797 1.84978i 0.0429601 0.0744091i
\(619\) 29.4605 1.18412 0.592059 0.805895i \(-0.298315\pi\)
0.592059 + 0.805895i \(0.298315\pi\)
\(620\) 3.58114 6.20271i 0.143822 0.249107i
\(621\) −37.9473 65.7267i −1.52277 2.63752i
\(622\) −1.74342 3.01969i −0.0699046 0.121078i
\(623\) 7.32456 0.293452
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −4.16228 7.20928i −0.166358 0.288141i
\(627\) 6.28292 + 10.8823i 0.250916 + 0.434598i
\(628\) 6.08114 10.5328i 0.242664 0.420306i
\(629\) −0.837722 −0.0334022
\(630\) 3.50000 6.06218i 0.139443 0.241523i
\(631\) −7.16228 + 12.4054i −0.285126 + 0.493852i −0.972640 0.232319i \(-0.925369\pi\)
0.687514 + 0.726171i \(0.258702\pi\)
\(632\) 13.4868 0.536477
\(633\) −18.7171 + 32.4189i −0.743937 + 1.28854i
\(634\) −6.24342 10.8139i −0.247958 0.429475i
\(635\) −1.66228 2.87915i −0.0659655 0.114256i
\(636\) −6.83772 −0.271133
\(637\) 0 0
\(638\) 22.3246 0.883838
\(639\) −15.1359 26.2162i −0.598769 1.03710i
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) 4.98683 8.63745i 0.196968 0.341159i −0.750576 0.660784i \(-0.770224\pi\)
0.947544 + 0.319626i \(0.103557\pi\)
\(642\) 11.0263 0.435175
\(643\) 6.23025 10.7911i 0.245697 0.425560i −0.716630 0.697453i \(-0.754316\pi\)
0.962327 + 0.271893i \(0.0876498\pi\)
\(644\) −3.00000 + 5.19615i −0.118217 + 0.204757i
\(645\) 6.32456 0.249029
\(646\) −4.74342 + 8.21584i −0.186627 + 0.323248i
\(647\) 7.98683 + 13.8336i 0.313995 + 0.543855i 0.979223 0.202785i \(-0.0649992\pi\)
−0.665229 + 0.746640i \(0.731666\pi\)
\(648\) 9.50000 + 16.4545i 0.373195 + 0.646393i
\(649\) −22.3246 −0.876315
\(650\) 0 0
\(651\) −22.6491 −0.887689
\(652\) 8.74342 + 15.1440i 0.342419 + 0.593086i
\(653\) −8.75658 15.1668i −0.342672 0.593525i 0.642256 0.766490i \(-0.277998\pi\)
−0.984928 + 0.172965i \(0.944665\pi\)
\(654\) −16.8377 + 29.1638i −0.658407 + 1.14039i
\(655\) −10.8114 −0.422436
\(656\) −5.16228 + 8.94133i −0.201553 + 0.349100i
\(657\) 9.93203 17.2028i 0.387485 0.671144i
\(658\) −3.00000 −0.116952
\(659\) −11.6491 + 20.1769i −0.453785 + 0.785979i −0.998617 0.0525663i \(-0.983260\pi\)
0.544833 + 0.838545i \(0.316593\pi\)
\(660\) 3.41886 + 5.92164i 0.133079 + 0.230500i
\(661\) −5.41886 9.38574i −0.210769 0.365063i 0.741186 0.671299i \(-0.234264\pi\)
−0.951956 + 0.306236i \(0.900930\pi\)
\(662\) −24.6491 −0.958015
\(663\) 0 0
\(664\) 9.48683 0.368161
\(665\) −0.918861 1.59151i −0.0356319 0.0617163i
\(666\) 0.567972 + 0.983756i 0.0220085 + 0.0381198i
\(667\) −30.9737 + 53.6480i −1.19931 + 2.07726i
\(668\) −13.3246 −0.515543
\(669\) 5.25658 9.10467i 0.203231 0.352007i
\(670\) 1.16228 2.01312i 0.0449027 0.0777738i
\(671\) 16.1886 0.624954
\(672\) 1.58114 2.73861i 0.0609938 0.105644i
\(673\) −7.48683 12.9676i −0.288596 0.499863i 0.684879 0.728657i \(-0.259855\pi\)
−0.973475 + 0.228794i \(0.926522\pi\)
\(674\) 8.74342 + 15.1440i 0.336784 + 0.583327i
\(675\) 12.6491 0.486864
\(676\) 0 0
\(677\) −12.9737 −0.498618 −0.249309 0.968424i \(-0.580204\pi\)
−0.249309 + 0.968424i \(0.580204\pi\)
\(678\) −13.6754 23.6866i −0.525202 0.909677i
\(679\) −3.74342 6.48379i −0.143659 0.248825i
\(680\) −2.58114 + 4.47066i −0.0989822 + 0.171442i
\(681\) −32.6491 −1.25112
\(682\) 7.74342 13.4120i 0.296511 0.513572i
\(683\) 9.83772 17.0394i 0.376430 0.651996i −0.614110 0.789220i \(-0.710485\pi\)
0.990540 + 0.137225i \(0.0438182\pi\)
\(684\) 12.8641 0.491869
\(685\) 7.74342 13.4120i 0.295861 0.512446i
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) 4.48683 + 7.77142i 0.171183 + 0.296498i
\(688\) 2.00000 0.0762493
\(689\) 0 0
\(690\) −18.9737 −0.722315
\(691\) −18.5680 32.1607i −0.706359 1.22345i −0.966199 0.257798i \(-0.917003\pi\)
0.259840 0.965652i \(-0.416330\pi\)
\(692\) −1.08114 1.87259i −0.0410987 0.0711851i
\(693\) 7.56797 13.1081i 0.287483 0.497936i
\(694\) −2.51317 −0.0953985
\(695\) 6.08114 10.5328i 0.230671 0.399533i
\(696\) 16.3246 28.2750i 0.618781 1.07176i
\(697\) −53.2982 −2.01881
\(698\) −8.74342 + 15.1440i −0.330943 + 0.573210i
\(699\) −15.0000 25.9808i −0.567352 0.982683i
\(700\) −0.500000 0.866025i −0.0188982 0.0327327i
\(701\) −23.1623 −0.874827 −0.437414 0.899260i \(-0.644105\pi\)
−0.437414 + 0.899260i \(0.644105\pi\)
\(702\) 0 0
\(703\) 0.298221 0.0112476
\(704\) 1.08114 + 1.87259i 0.0407470 + 0.0705758i
\(705\) −4.74342 8.21584i −0.178647 0.309426i
\(706\) −2.58114 + 4.47066i −0.0971424 + 0.168256i
\(707\) −11.1623 −0.419801
\(708\) −16.3246 + 28.2750i −0.613514 + 1.06264i
\(709\) 20.7434 35.9287i 0.779035 1.34933i −0.153463 0.988154i \(-0.549043\pi\)
0.932498 0.361174i \(-0.117624\pi\)
\(710\) −4.32456 −0.162298
\(711\) 47.2039 81.7596i 1.77029 3.06622i
\(712\) 3.66228 + 6.34325i 0.137250 + 0.237723i
\(713\) 21.4868 + 37.2163i 0.804688 + 1.39376i
\(714\) 16.3246 0.610931
\(715\) 0 0
\(716\) 22.3246 0.834308
\(717\) 17.6491 + 30.5692i 0.659118 + 1.14163i
\(718\) 3.00000 + 5.19615i 0.111959 + 0.193919i
\(719\) −6.00000 + 10.3923i −0.223762 + 0.387568i −0.955947 0.293538i \(-0.905167\pi\)
0.732185 + 0.681106i \(0.238501\pi\)
\(720\) 7.00000 0.260875
\(721\) −0.337722 + 0.584952i −0.0125774 + 0.0217848i
\(722\) −7.81139 + 13.5297i −0.290710 + 0.503524i
\(723\) 82.1359 3.05467
\(724\) −4.90569 + 8.49691i −0.182319 + 0.315785i
\(725\) −5.16228 8.94133i −0.191722 0.332073i
\(726\) −10.0000 17.3205i −0.371135 0.642824i
\(727\) −20.6754 −0.766810 −0.383405 0.923580i \(-0.625249\pi\)
−0.383405 + 0.923580i \(0.625249\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −1.41886 2.45754i −0.0525144 0.0909576i
\(731\) 5.16228 + 8.94133i 0.190934 + 0.330707i
\(732\) 11.8377 20.5035i 0.437535 0.757833i
\(733\) −8.48683 −0.313468 −0.156734 0.987641i \(-0.550097\pi\)
−0.156734 + 0.987641i \(0.550097\pi\)
\(734\) 2.32456 4.02625i 0.0858009 0.148612i
\(735\) 9.48683 16.4317i 0.349927 0.606092i
\(736\) −6.00000 −0.221163
\(737\) 2.51317 4.35293i 0.0925737 0.160342i
\(738\) 36.1359 + 62.5893i 1.33018 + 2.30394i
\(739\) −22.4057 38.8078i −0.824207 1.42757i −0.902524 0.430640i \(-0.858288\pi\)
0.0783172 0.996928i \(-0.475045\pi\)
\(740\) 0.162278 0.00596545
\(741\) 0 0
\(742\) 2.16228 0.0793797
\(743\) −9.00000 15.5885i −0.330178 0.571885i 0.652369 0.757902i \(-0.273775\pi\)
−0.982547 + 0.186017i \(0.940442\pi\)
\(744\) −11.3246 19.6147i −0.415178 0.719110i
\(745\) 8.16228 14.1375i 0.299043 0.517957i
\(746\) 30.6491 1.12214
\(747\) 33.2039 57.5109i 1.21487 2.10421i
\(748\) −5.58114 + 9.66682i −0.204067 + 0.353454i
\(749\) −3.48683 −0.127406
\(750\) 1.58114 2.73861i 0.0577350 0.100000i
\(751\) 17.4868 + 30.2881i 0.638104 + 1.10523i 0.985849 + 0.167639i \(0.0536142\pi\)
−0.347745 + 0.937589i \(0.613052\pi\)
\(752\) −1.50000 2.59808i −0.0546994 0.0947421i
\(753\) 39.4868 1.43898
\(754\) 0 0
\(755\) 4.83772 0.176063
\(756\) −6.32456 10.9545i −0.230022 0.398410i
\(757\) −17.0811 29.5854i −0.620825 1.07530i −0.989332 0.145675i \(-0.953465\pi\)
0.368508 0.929625i \(-0.379869\pi\)
\(758\) 19.4057 33.6116i 0.704847 1.22083i
\(759\) −41.0263 −1.48916
\(760\) 0.918861 1.59151i 0.0333306 0.0577303i
\(761\) −4.14911 + 7.18647i −0.150405 + 0.260509i −0.931376 0.364058i \(-0.881391\pi\)
0.780971 + 0.624567i \(0.214724\pi\)
\(762\) −10.5132 −0.380852
\(763\) 5.32456 9.22240i 0.192762 0.333873i
\(764\) −4.74342 8.21584i −0.171611 0.297239i
\(765\) 18.0680 + 31.2946i 0.653249 + 1.13146i
\(766\) 30.0000 1.08394
\(767\) 0 0
\(768\) 3.16228 0.114109
\(769\) 3.16228 + 5.47723i 0.114035 + 0.197514i 0.917393 0.397981i \(-0.130289\pi\)
−0.803359 + 0.595495i \(0.796956\pi\)
\(770\) −1.08114 1.87259i −0.0389615 0.0674834i
\(771\) 0 0
\(772\) 4.00000 0.143963
\(773\) 23.8925 41.3831i 0.859354 1.48845i −0.0131912 0.999913i \(-0.504199\pi\)
0.872546 0.488533i \(-0.162468\pi\)
\(774\) 7.00000 12.1244i 0.251610 0.435801i
\(775\) −7.16228 −0.257277
\(776\) 3.74342 6.48379i 0.134381 0.232754i
\(777\) −0.256584 0.444416i −0.00920488 0.0159433i
\(778\) 6.41886 + 11.1178i 0.230127 + 0.398592i
\(779\) 18.9737 0.679802
\(780\) 0 0
\(781\) −9.35089 −0.334601
\(782\) −15.4868 26.8240i −0.553808 0.959224i
\(783\) −65.2982 113.100i −2.33357 4.04186i
\(784\) 3.00000 5.19615i 0.107143 0.185577i
\(785\) −12.1623 −0.434090
\(786\) −17.0943 + 29.6082i −0.609734 + 1.05609i
\(787\) −23.0680 + 39.9549i −0.822284 + 1.42424i 0.0816928 + 0.996658i \(0.473967\pi\)
−0.903977 + 0.427581i \(0.859366\pi\)
\(788\) 18.4868 0.658566
\(789\) 18.4189 31.9024i 0.655729 1.13576i
\(790\) −6.74342 11.6799i −0.239920 0.415554i
\(791\) 4.32456 + 7.49035i 0.153763 + 0.266326i
\(792\) 15.1359 0.537832
\(793\) 0 0
\(794\) 38.4868 1.36585
\(795\) 3.41886 + 5.92164i 0.121255 + 0.210019i
\(796\) 0.675445 + 1.16990i 0.0239405 + 0.0414662i
\(797\) 6.83772 11.8433i 0.242205 0.419511i −0.719137 0.694868i \(-0.755463\pi\)
0.961342 + 0.275357i \(0.0887962\pi\)
\(798\) −5.81139 −0.205721
\(799\) 7.74342 13.4120i 0.273942 0.474482i
\(800\) 0.500000 0.866025i 0.0176777 0.0306186i
\(801\) 51.2719 1.81160
\(802\) −10.9868 + 19.0298i −0.387959 + 0.671964i
\(803\) −3.06797 5.31388i −0.108266 0.187523i
\(804\) −3.67544 6.36606i −0.129623 0.224514i
\(805\) 6.00000 0.211472
\(806\) 0 0
\(807\) 7.94733 0.279759
\(808\) −5.58114 9.66682i −0.196344 0.340077i
\(809\) −5.16228 8.94133i −0.181496 0.314360i 0.760894 0.648876i \(-0.224761\pi\)
−0.942390 + 0.334516i \(0.891427\pi\)
\(810\) 9.50000 16.4545i 0.333796 0.578152i
\(811\) 6.16228 0.216387 0.108193 0.994130i \(-0.465493\pi\)
0.108193 + 0.994130i \(0.465493\pi\)
\(812\) −5.16228 + 8.94133i −0.181160 + 0.313779i
\(813\) 10.0000 17.3205i 0.350715 0.607457i
\(814\) 0.350889 0.0122987
\(815\) 8.74342 15.1440i 0.306269 0.530473i
\(816\) 8.16228 + 14.1375i 0.285737 + 0.494911i
\(817\) −1.83772 3.18303i −0.0642938 0.111360i
\(818\) −21.6491 −0.756943
\(819\) 0 0
\(820\) 10.3246 0.360549
\(821\) −2.58114 4.47066i −0.0900824 0.156027i 0.817463 0.575981i \(-0.195380\pi\)
−0.907546 + 0.419954i \(0.862046\pi\)
\(822\) −24.4868 42.4124i −0.854076 1.47930i
\(823\) −23.5000 + 40.7032i −0.819159 + 1.41882i 0.0871445 + 0.996196i \(0.472226\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(824\) −0.675445 −0.0235302
\(825\) 3.41886 5.92164i 0.119029 0.206165i
\(826\) 5.16228 8.94133i 0.179619 0.311109i
\(827\) 51.4868 1.79037 0.895186 0.445692i \(-0.147042\pi\)
0.895186 + 0.445692i \(0.147042\pi\)
\(828\) −21.0000 + 36.3731i −0.729800 + 1.26405i
\(829\) −16.0000 27.7128i −0.555703 0.962506i −0.997848 0.0655624i \(-0.979116\pi\)
0.442145 0.896943i \(-0.354217\pi\)
\(830\) −4.74342 8.21584i −0.164646 0.285176i
\(831\) 4.78505 0.165992
\(832\) 0 0
\(833\) 30.9737 1.07317
\(834\) −19.2302 33.3078i −0.665889 1.15335i
\(835\) 6.66228 + 11.5394i 0.230558 + 0.399338i
\(836\) 1.98683 3.44130i 0.0687161 0.119020i
\(837\) −90.5964 −3.13147
\(838\) 7.32456 12.6865i 0.253023 0.438248i
\(839\) −11.5811 + 20.0591i −0.399825 + 0.692518i −0.993704 0.112037i \(-0.964263\pi\)
0.593879 + 0.804555i \(0.297596\pi\)
\(840\) −3.16228 −0.109109
\(841\) −38.7982 + 67.2005i −1.33787 + 2.31726i
\(842\) 1.58114 + 2.73861i 0.0544896 + 0.0943788i
\(843\) −30.0000 51.9615i −1.03325 1.78965i
\(844\) 11.8377 0.407471
\(845\) 0 0
\(846\) −21.0000 −0.721995
\(847\) 3.16228 + 5.47723i 0.108657 + 0.188200i
\(848\) 1.08114 + 1.87259i 0.0371265 + 0.0643049i
\(849\) 34.7851 60.2495i 1.19382 2.06776i
\(850\) 5.16228 0.177065
\(851\) −0.486833 + 0.843219i −0.0166884 + 0.0289052i
\(852\) −6.83772 + 11.8433i −0.234257 + 0.405744i
\(853\) −56.2719 −1.92671 −0.963356 0.268225i \(-0.913563\pi\)
−0.963356 + 0.268225i \(0.913563\pi\)
\(854\) −3.74342 + 6.48379i −0.128097 + 0.221871i
\(855\) −6.43203 11.1406i −0.219971 0.381000i
\(856\) −1.74342 3.01969i −0.0595887 0.103211i
\(857\) 30.1359 1.02942 0.514712 0.857363i \(-0.327899\pi\)
0.514712 + 0.857363i \(0.327899\pi\)
\(858\) 0 0
\(859\) 47.1359 1.60826 0.804129 0.594455i \(-0.202632\pi\)
0.804129 + 0.594455i \(0.202632\pi\)
\(860\) −1.00000 1.73205i −0.0340997 0.0590624i
\(861\) −16.3246 28.2750i −0.556339 0.963608i
\(862\) −7.74342 + 13.4120i −0.263742 + 0.456814i
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 6.32456 10.9545i 0.215166 0.372678i
\(865\) −1.08114 + 1.87259i −0.0367598 + 0.0636699i
\(866\) −6.32456 −0.214917
\(867\) −15.2566 + 26.4252i −0.518141 + 0.897446i
\(868\) 3.58114 + 6.20271i 0.121552 + 0.210534i
\(869\) −14.5811 25.2553i −0.494631 0.856726i
\(870\) −32.6491 −1.10691
\(871\) 0 0
\(872\) 10.6491 0.360624
\(873\) −26.2039 45.3865i −0.886868 1.53610i
\(874\) 5.51317 + 9.54909i 0.186486 + 0.323003i
\(875\) −0.500000 + 0.866025i −0.0169031 + 0.0292770i
\(876\) −8.97367 −0.303192
\(877\) −11.8377 + 20.5035i −0.399731 + 0.692355i −0.993693 0.112139i \(-0.964230\pi\)
0.593961 + 0.804494i \(0.297563\pi\)
\(878\) 1.90569 3.30076i 0.0643141 0.111395i
\(879\) 69.0569 2.32923
\(880\) 1.08114 1.87259i 0.0364452 0.0631249i
\(881\) 28.9868 + 50.2067i 0.976591 + 1.69151i 0.674581 + 0.738201i \(0.264324\pi\)
0.302010 + 0.953305i \(0.402342\pi\)
\(882\) −21.0000 36.3731i −0.707107 1.22474i
\(883\) 35.4868 1.19423 0.597114 0.802157i \(-0.296314\pi\)
0.597114 + 0.802157i \(0.296314\pi\)
\(884\) 0 0
\(885\) 32.6491 1.09749
\(886\) 13.3246 + 23.0788i 0.447647 + 0.775348i
\(887\) −18.3114 31.7163i −0.614836 1.06493i −0.990413 0.138136i \(-0.955889\pi\)
0.375577 0.926791i \(-0.377445\pi\)
\(888\) 0.256584 0.444416i 0.00861038 0.0149136i
\(889\) 3.32456 0.111502
\(890\) 3.66228 6.34325i 0.122760 0.212626i
\(891\) 20.5416 35.5792i 0.688171 1.19195i
\(892\) −3.32456 −0.111314
\(893\) −2.75658 + 4.77454i −0.0922455 + 0.159774i
\(894\) −25.8114 44.7066i −0.863262 1.49521i
\(895\) −11.1623 19.3336i −0.373114 0.646252i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −2.02633 −0.0676196
\(899\) 36.9737 + 64.0403i 1.23314 + 2.13586i
\(900\) −3.50000 6.06218i −0.116667 0.202073i
\(901\) −5.58114 + 9.66682i −0.185935 + 0.322048i
\(902\) 22.3246 0.743326
\(903\) −3.16228 + 5.47723i −0.105234 + 0.182271i
\(904\) −4.32456 + 7.49035i −0.143833 + 0.249125i
\(905\) 9.81139 0.326142
\(906\) 7.64911 13.2486i 0.254125 0.440157i
\(907\) 8.06797 + 13.9741i 0.267893 + 0.464004i 0.968317 0.249723i \(-0.0803394\pi\)
−0.700425 + 0.713726i \(0.747006\pi\)
\(908\) 5.16228 + 8.94133i 0.171316 + 0.296728i
\(909\) −78.1359 −2.59161
\(910\) 0 0
\(911\) −17.2982 −0.573116 −0.286558 0.958063i \(-0.592511\pi\)
−0.286558 + 0.958063i \(0.592511\pi\)
\(912\) −2.90569 5.03281i −0.0962171 0.166653i
\(913\) −10.2566 17.7649i −0.339443 0.587933i
\(914\) −12.2302 + 21.1834i −0.404541 + 0.700685i
\(915\) −23.6754 −0.782686
\(916\) 1.41886 2.45754i 0.0468805 0.0811994i
\(917\) 5.40569 9.36294i 0.178512 0.309191i
\(918\) 65.2982 2.15516
\(919\) 5.83772 10.1112i 0.192569 0.333539i −0.753532 0.657411i \(-0.771652\pi\)
0.946101 + 0.323872i \(0.104985\pi\)
\(920\) 3.00000 + 5.19615i 0.0989071 + 0.171312i
\(921\) 24.7851 + 42.9290i 0.816695 + 1.41456i
\(922\) 21.4868 0.707631
\(923\) 0 0
\(924\) −6.83772 −0.224945
\(925\) −0.0811388 0.140537i −0.00266783 0.00462081i
\(926\) −6.16228 10.6734i −0.202505 0.350749i
\(927\) −2.36406 + 4.09467i −0.0776458 + 0.134486i
\(928\) −10.3246 −0.338920
\(929\) 27.0000 46.7654i 0.885841 1.53432i 0.0410949 0.999155i \(-0.486915\pi\)
0.844746 0.535167i \(-0.179751\pi\)
\(930\) −11.3246 + 19.6147i −0.371347 + 0.643192i
\(931\) −11.0263 −0.361374
\(932\) −4.74342 + 8.21584i −0.155376 + 0.269119i
\(933\) 5.51317 + 9.54909i 0.180493 + 0.312623i
\(934\) 16.3246 + 28.2750i 0.534156 + 0.925185i
\(935\) 11.1623 0.365046
\(936\) 0 0
\(937\) 27.6754 0.904117 0.452059 0.891988i \(-0.350690\pi\)
0.452059 + 0.891988i \(0.350690\pi\)
\(938\) 1.16228 + 2.01312i 0.0379497 + 0.0657308i
\(939\) 13.1623 + 22.7977i 0.429535 + 0.743976i
\(940\) −1.50000 + 2.59808i −0.0489246 + 0.0847399i
\(941\) −22.3246 −0.727760 −0.363880 0.931446i \(-0.618548\pi\)
−0.363880 + 0.931446i \(0.618548\pi\)
\(942\) −19.2302 + 33.3078i −0.626555 + 1.08523i
\(943\) −30.9737 + 53.6480i −1.00864 + 1.74702i
\(944\) 10.3246 0.336036
\(945\) −6.32456 + 10.9545i −0.205738 + 0.356348i
\(946\) −2.16228 3.74517i −0.0703017 0.121766i
\(947\) −0.905694 1.56871i −0.0294311 0.0509762i 0.850935 0.525271i \(-0.176036\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(948\) −42.6491 −1.38518
\(949\) 0 0
\(950\) −1.83772 −0.0596236
\(951\) 19.7434 + 34.1966i 0.640224 + 1.10890i
\(952\) −2.58114 4.47066i −0.0836552 0.144895i
\(953\) 1.25658 2.17647i 0.0407047 0.0705027i −0.844955 0.534837i \(-0.820373\pi\)
0.885660 + 0.464334i \(0.153706\pi\)
\(954\) 15.1359 0.490044
\(955\) −4.74342 + 8.21584i −0.153493 + 0.265858i
\(956\) 5.58114 9.66682i 0.180507 0.312647i
\(957\) −70.5964 −2.28206
\(958\) 6.06797 10.5100i 0.196047 0.339564i
\(959\) 7.74342 + 13.4120i 0.250048 + 0.433096i
\(960\) −1.58114 2.73861i −0.0510310 0.0883883i
\(961\) 20.2982 0.654781
\(962\) 0 0
\(963\) −24.4078 −0.786531
\(964\) −12.9868 22.4939i −0.418278 0.724478i
\(965\) −2.00000 3.46410i −0.0643823 0.111513i
\(966\) 9.48683 16.4317i 0.305234 0.528681i
\(967\) 16.6228 0.534552 0.267276 0.963620i \(-0.413876\pi\)
0.267276 + 0.963620i \(0.413876\pi\)
\(968\) −3.16228 + 5.47723i −0.101639 + 0.176045i
\(969\) 15.0000 25.9808i 0.481869 0.834622i
\(970\) −7.48683 −0.240388
\(971\) −29.8925 + 51.7754i −0.959297 + 1.66155i −0.235083 + 0.971975i \(0.575536\pi\)
−0.724214 + 0.689576i \(0.757797\pi\)
\(972\) −11.0680 19.1703i −0.355005 0.614887i
\(973\) 6.08114 + 10.5328i 0.194952 + 0.337667i
\(974\) −1.00000 −0.0320421
\(975\) 0 0
\(976\) −7.48683 −0.239648
\(977\) 9.48683 + 16.4317i 0.303511 + 0.525696i 0.976929 0.213566i \(-0.0685079\pi\)
−0.673418 + 0.739262i \(0.735175\pi\)
\(978\) −27.6491 47.8897i −0.884121 1.53134i
\(979\) 7.91886 13.7159i 0.253088 0.438361i
\(980\) −6.00000 −0.191663
\(981\) 37.2719 64.5568i 1.19000 2.06114i
\(982\) 8.75658 15.1668i 0.279434 0.483994i
\(983\) −30.3509 −0.968043 −0.484022 0.875056i \(-0.660824\pi\)
−0.484022 + 0.875056i \(0.660824\pi\)
\(984\) 16.3246 28.2750i 0.520408 0.901373i
\(985\) −9.24342 16.0101i −0.294520 0.510123i
\(986\) −26.6491 46.1576i −0.848681 1.46996i
\(987\) 9.48683 0.301969
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) −7.56797 13.1081i −0.240526 0.416603i
\(991\) 19.6491 + 34.0333i 0.624175 + 1.08110i 0.988700 + 0.149909i \(0.0478979\pi\)
−0.364525 + 0.931193i \(0.618769\pi\)
\(992\) −3.58114 + 6.20271i −0.113701 + 0.196936i
\(993\) 77.9473 2.47358
\(994\) 2.16228 3.74517i 0.0685833 0.118790i
\(995\) 0.675445 1.16990i 0.0214130 0.0370885i
\(996\) −30.0000 −0.950586
\(997\) −5.91886 + 10.2518i −0.187452 + 0.324677i −0.944400 0.328798i \(-0.893356\pi\)
0.756948 + 0.653475i \(0.226690\pi\)
\(998\) 11.0000 + 19.0526i 0.348199 + 0.603098i
\(999\) −1.02633 1.77766i −0.0324718 0.0562428i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.m.991.1 4
13.2 odd 12 1690.2.d.g.1351.4 4
13.3 even 3 1690.2.a.k.1.2 2
13.4 even 6 130.2.e.c.61.1 4
13.5 odd 4 1690.2.l.k.361.3 8
13.6 odd 12 1690.2.l.k.1161.1 8
13.7 odd 12 1690.2.l.k.1161.3 8
13.8 odd 4 1690.2.l.k.361.1 8
13.9 even 3 inner 1690.2.e.m.191.1 4
13.10 even 6 1690.2.a.n.1.2 2
13.11 odd 12 1690.2.d.g.1351.2 4
13.12 even 2 130.2.e.c.81.1 yes 4
39.17 odd 6 1170.2.i.q.451.2 4
39.38 odd 2 1170.2.i.q.991.2 4
52.43 odd 6 1040.2.q.m.321.2 4
52.51 odd 2 1040.2.q.m.81.2 4
65.4 even 6 650.2.e.h.451.2 4
65.12 odd 4 650.2.o.g.549.3 8
65.17 odd 12 650.2.o.g.399.2 8
65.29 even 6 8450.2.a.bj.1.1 2
65.38 odd 4 650.2.o.g.549.2 8
65.43 odd 12 650.2.o.g.399.3 8
65.49 even 6 8450.2.a.bc.1.1 2
65.64 even 2 650.2.e.h.601.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.c.61.1 4 13.4 even 6
130.2.e.c.81.1 yes 4 13.12 even 2
650.2.e.h.451.2 4 65.4 even 6
650.2.e.h.601.2 4 65.64 even 2
650.2.o.g.399.2 8 65.17 odd 12
650.2.o.g.399.3 8 65.43 odd 12
650.2.o.g.549.2 8 65.38 odd 4
650.2.o.g.549.3 8 65.12 odd 4
1040.2.q.m.81.2 4 52.51 odd 2
1040.2.q.m.321.2 4 52.43 odd 6
1170.2.i.q.451.2 4 39.17 odd 6
1170.2.i.q.991.2 4 39.38 odd 2
1690.2.a.k.1.2 2 13.3 even 3
1690.2.a.n.1.2 2 13.10 even 6
1690.2.d.g.1351.2 4 13.11 odd 12
1690.2.d.g.1351.4 4 13.2 odd 12
1690.2.e.m.191.1 4 13.9 even 3 inner
1690.2.e.m.991.1 4 1.1 even 1 trivial
1690.2.l.k.361.1 8 13.8 odd 4
1690.2.l.k.361.3 8 13.5 odd 4
1690.2.l.k.1161.1 8 13.6 odd 12
1690.2.l.k.1161.3 8 13.7 odd 12
8450.2.a.bc.1.1 2 65.49 even 6
8450.2.a.bj.1.1 2 65.29 even 6