gp: [N,k,chi] = [650,2,Mod(101,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.101");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-2,2,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 + 2 T 3 3 + 6 T 3 2 − 4 T 3 + 4 T_{3}^{4} + 2T_{3}^{3} + 6T_{3}^{2} - 4T_{3} + 4 T 3 4 + 2 T 3 3 + 6 T 3 2 − 4 T 3 + 4
T3^4 + 2*T3^3 + 6*T3^2 - 4*T3 + 4
acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
3 3 3
T 4 + 2 T 3 + ⋯ + 4 T^{4} + 2 T^{3} + \cdots + 4 T 4 + 2 T 3 + ⋯ + 4
T^4 + 2*T^3 + 6*T^2 - 4*T + 4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 − 9 T 2 + 81 T^{4} - 9T^{2} + 81 T 4 − 9 T 2 + 8 1
T^4 - 9*T^2 + 81
11 11 1 1
T 4 − 9 T 2 + 81 T^{4} - 9T^{2} + 81 T 4 − 9 T 2 + 8 1
T^4 - 9*T^2 + 81
13 13 1 3
( T 2 + 7 T + 13 ) 2 (T^{2} + 7 T + 13)^{2} ( T 2 + 7 T + 1 3 ) 2
(T^2 + 7*T + 13)^2
17 17 1 7
T 4 − 6 T 3 + ⋯ + 324 T^{4} - 6 T^{3} + \cdots + 324 T 4 − 6 T 3 + ⋯ + 3 2 4
T^4 - 6*T^3 + 54*T^2 + 108*T + 324
19 19 1 9
T 4 + 12 T 3 + ⋯ + 9 T^{4} + 12 T^{3} + \cdots + 9 T 4 + 1 2 T 3 + ⋯ + 9
T^4 + 12*T^3 + 51*T^2 + 36*T + 9
23 23 2 3
T 4 − 12 T 3 + ⋯ + 576 T^{4} - 12 T^{3} + \cdots + 576 T 4 − 1 2 T 3 + ⋯ + 5 7 6
T^4 - 12*T^3 + 120*T^2 - 288*T + 576
29 29 2 9
T 4 − 12 T 3 + ⋯ + 576 T^{4} - 12 T^{3} + \cdots + 576 T 4 − 1 2 T 3 + ⋯ + 5 7 6
T^4 - 12*T^3 + 120*T^2 - 288*T + 576
31 31 3 1
T 4 + 24 T 2 + 36 T^{4} + 24T^{2} + 36 T 4 + 2 4 T 2 + 3 6
T^4 + 24*T^2 + 36
37 37 3 7
T 4 + 18 T 3 + ⋯ + 81 T^{4} + 18 T^{3} + \cdots + 81 T 4 + 1 8 T 3 + ⋯ + 8 1
T^4 + 18*T^3 + 99*T^2 - 162*T + 81
41 41 4 1
( T 2 + 18 T + 108 ) 2 (T^{2} + 18 T + 108)^{2} ( T 2 + 1 8 T + 1 0 8 ) 2
(T^2 + 18*T + 108)^2
43 43 4 3
( T 2 − 2 T + 4 ) 2 (T^{2} - 2 T + 4)^{2} ( T 2 − 2 T + 4 ) 2
(T^2 - 2*T + 4)^2
47 47 4 7
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
53 53 5 3
( T 2 − 6 T − 3 ) 2 (T^{2} - 6 T - 3)^{2} ( T 2 − 6 T − 3 ) 2
(T^2 - 6*T - 3)^2
59 59 5 9
( T 2 − 18 T + 108 ) 2 (T^{2} - 18 T + 108)^{2} ( T 2 − 1 8 T + 1 0 8 ) 2
(T^2 - 18*T + 108)^2
61 61 6 1
T 4 + 2 T 3 + ⋯ + 676 T^{4} + 2 T^{3} + \cdots + 676 T 4 + 2 T 3 + ⋯ + 6 7 6
T^4 + 2*T^3 + 30*T^2 - 52*T + 676
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 − 36 T 2 + 1296 T^{4} - 36T^{2} + 1296 T 4 − 3 6 T 2 + 1 2 9 6
T^4 - 36*T^2 + 1296
73 73 7 3
T 4 + 168 T 2 + 4356 T^{4} + 168T^{2} + 4356 T 4 + 1 6 8 T 2 + 4 3 5 6
T^4 + 168*T^2 + 4356
79 79 7 9
( T 2 − 2 T − 26 ) 2 (T^{2} - 2 T - 26)^{2} ( T 2 − 2 T − 2 6 ) 2
(T^2 - 2*T - 26)^2
83 83 8 3
T 4 + 72 T 2 + 324 T^{4} + 72T^{2} + 324 T 4 + 7 2 T 2 + 3 2 4
T^4 + 72*T^2 + 324
89 89 8 9
T 4 + 18 T 3 + ⋯ + 13689 T^{4} + 18 T^{3} + \cdots + 13689 T 4 + 1 8 T 3 + ⋯ + 1 3 6 8 9
T^4 + 18*T^3 - 9*T^2 - 2106*T + 13689
97 97 9 7
T 4 + 42 T 3 + ⋯ + 19044 T^{4} + 42 T^{3} + \cdots + 19044 T 4 + 4 2 T 3 + ⋯ + 1 9 0 4 4
T^4 + 42*T^3 + 726*T^2 + 5796*T + 19044
show more
show less