Properties

Label 650.2.m.a
Level 650650
Weight 22
Character orbit 650.m
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(101,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.m (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+(2ζ123+ζ122+1)q3+ζ122q4+(ζ123ζ122++2)q6+(3ζ1233ζ12)q7++(3ζ123+12ζ1226)q99+O(q100) q + \zeta_{12} q^{2} + ( - 2 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 1) q^{3} + \zeta_{12}^{2} q^{4} + (\zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{6} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{7}+ \cdots + ( - 3 \zeta_{12}^{3} + 12 \zeta_{12}^{2} - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+2q4+6q62q94q1214q1312q142q16+6q1712q19+6q22+12q23+6q24+16q27+12q29+18q33+2q3618q37+42q97+O(q100) 4 q - 2 q^{3} + 2 q^{4} + 6 q^{6} - 2 q^{9} - 4 q^{12} - 14 q^{13} - 12 q^{14} - 2 q^{16} + 6 q^{17} - 12 q^{19} + 6 q^{22} + 12 q^{23} + 6 q^{24} + 16 q^{27} + 12 q^{29} + 18 q^{33} + 2 q^{36} - 18 q^{37}+ \cdots - 42 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i −1.36603 2.36603i 0.500000 0.866025i 0 2.36603 + 1.36603i 2.59808 + 1.50000i 1.00000i −2.23205 + 3.86603i 0
101.2 0.866025 0.500000i 0.366025 + 0.633975i 0.500000 0.866025i 0 0.633975 + 0.366025i −2.59808 1.50000i 1.00000i 1.23205 2.13397i 0
251.1 −0.866025 0.500000i −1.36603 + 2.36603i 0.500000 + 0.866025i 0 2.36603 1.36603i 2.59808 1.50000i 1.00000i −2.23205 3.86603i 0
251.2 0.866025 + 0.500000i 0.366025 0.633975i 0.500000 + 0.866025i 0 0.633975 0.366025i −2.59808 + 1.50000i 1.00000i 1.23205 + 2.13397i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.m.a 4
5.b even 2 1 130.2.l.a 4
5.c odd 4 1 650.2.n.a 4
5.c odd 4 1 650.2.n.b 4
13.e even 6 1 inner 650.2.m.a 4
13.f odd 12 1 8450.2.a.bf 2
13.f odd 12 1 8450.2.a.bm 2
15.d odd 2 1 1170.2.bs.c 4
20.d odd 2 1 1040.2.da.a 4
65.d even 2 1 1690.2.l.g 4
65.g odd 4 1 1690.2.e.l 4
65.g odd 4 1 1690.2.e.n 4
65.l even 6 1 130.2.l.a 4
65.l even 6 1 1690.2.d.f 4
65.n even 6 1 1690.2.d.f 4
65.n even 6 1 1690.2.l.g 4
65.r odd 12 1 650.2.n.a 4
65.r odd 12 1 650.2.n.b 4
65.s odd 12 1 1690.2.a.j 2
65.s odd 12 1 1690.2.a.m 2
65.s odd 12 1 1690.2.e.l 4
65.s odd 12 1 1690.2.e.n 4
195.y odd 6 1 1170.2.bs.c 4
260.w odd 6 1 1040.2.da.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.l.a 4 5.b even 2 1
130.2.l.a 4 65.l even 6 1
650.2.m.a 4 1.a even 1 1 trivial
650.2.m.a 4 13.e even 6 1 inner
650.2.n.a 4 5.c odd 4 1
650.2.n.a 4 65.r odd 12 1
650.2.n.b 4 5.c odd 4 1
650.2.n.b 4 65.r odd 12 1
1040.2.da.a 4 20.d odd 2 1
1040.2.da.a 4 260.w odd 6 1
1170.2.bs.c 4 15.d odd 2 1
1170.2.bs.c 4 195.y odd 6 1
1690.2.a.j 2 65.s odd 12 1
1690.2.a.m 2 65.s odd 12 1
1690.2.d.f 4 65.l even 6 1
1690.2.d.f 4 65.n even 6 1
1690.2.e.l 4 65.g odd 4 1
1690.2.e.l 4 65.s odd 12 1
1690.2.e.n 4 65.g odd 4 1
1690.2.e.n 4 65.s odd 12 1
1690.2.l.g 4 65.d even 2 1
1690.2.l.g 4 65.n even 6 1
8450.2.a.bf 2 13.f odd 12 1
8450.2.a.bm 2 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+2T33+6T324T3+4 T_{3}^{4} + 2T_{3}^{3} + 6T_{3}^{2} - 4T_{3} + 4 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1111 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1313 (T2+7T+13)2 (T^{2} + 7 T + 13)^{2} Copy content Toggle raw display
1717 T46T3++324 T^{4} - 6 T^{3} + \cdots + 324 Copy content Toggle raw display
1919 T4+12T3++9 T^{4} + 12 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
2929 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
3737 T4+18T3++81 T^{4} + 18 T^{3} + \cdots + 81 Copy content Toggle raw display
4141 (T2+18T+108)2 (T^{2} + 18 T + 108)^{2} Copy content Toggle raw display
4343 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
4747 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
5353 (T26T3)2 (T^{2} - 6 T - 3)^{2} Copy content Toggle raw display
5959 (T218T+108)2 (T^{2} - 18 T + 108)^{2} Copy content Toggle raw display
6161 T4+2T3++676 T^{4} + 2 T^{3} + \cdots + 676 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
7373 T4+168T2+4356 T^{4} + 168T^{2} + 4356 Copy content Toggle raw display
7979 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
8383 T4+72T2+324 T^{4} + 72T^{2} + 324 Copy content Toggle raw display
8989 T4+18T3++13689 T^{4} + 18 T^{3} + \cdots + 13689 Copy content Toggle raw display
9797 T4+42T3++19044 T^{4} + 42 T^{3} + \cdots + 19044 Copy content Toggle raw display
show more
show less