Properties

Label 650.2.e.h.601.1
Level $650$
Weight $2$
Character 650.601
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.1
Root \(1.58114 + 2.73861i\) of defining polynomial
Character \(\chi\) \(=\) 650.601
Dual form 650.2.e.h.451.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.58114 - 2.73861i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.58114 - 2.73861i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-3.50000 + 6.06218i) q^{9} +(2.08114 + 3.60464i) q^{11} +3.16228 q^{12} +(-0.0811388 + 3.60464i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.581139 - 1.00656i) q^{17} -7.00000 q^{18} +(4.08114 - 7.06874i) q^{19} +3.16228 q^{21} +(-2.08114 + 3.60464i) q^{22} +(3.00000 + 5.19615i) q^{23} +(1.58114 + 2.73861i) q^{24} +(-3.16228 + 1.73205i) q^{26} +12.6491 q^{27} +(-0.500000 - 0.866025i) q^{28} +(1.16228 + 2.01312i) q^{29} +0.837722 q^{31} +(0.500000 - 0.866025i) q^{32} +(6.58114 - 11.3989i) q^{33} +1.16228 q^{34} +(-3.50000 - 6.06218i) q^{36} +(3.08114 + 5.33669i) q^{37} +8.16228 q^{38} +(10.0000 - 5.47723i) q^{39} +(-1.16228 - 2.01312i) q^{41} +(1.58114 + 2.73861i) q^{42} +(1.00000 - 1.73205i) q^{43} -4.16228 q^{44} +(-3.00000 + 5.19615i) q^{46} +3.00000 q^{47} +(-1.58114 + 2.73861i) q^{48} +(3.00000 + 5.19615i) q^{49} -3.67544 q^{51} +(-3.08114 - 1.87259i) q^{52} -4.16228 q^{53} +(6.32456 + 10.9545i) q^{54} +(0.500000 - 0.866025i) q^{56} -25.8114 q^{57} +(-1.16228 + 2.01312i) q^{58} +(-1.16228 + 2.01312i) q^{59} +(-5.74342 + 9.94789i) q^{61} +(0.418861 + 0.725489i) q^{62} +(-3.50000 - 6.06218i) q^{63} +1.00000 q^{64} +13.1623 q^{66} +(5.16228 + 8.94133i) q^{67} +(0.581139 + 1.00656i) q^{68} +(9.48683 - 16.4317i) q^{69} +(-4.16228 + 7.20928i) q^{71} +(3.50000 - 6.06218i) q^{72} -9.16228 q^{73} +(-3.08114 + 5.33669i) q^{74} +(4.08114 + 7.06874i) q^{76} -4.16228 q^{77} +(9.74342 + 5.92164i) q^{78} +5.48683 q^{79} +(-9.50000 - 16.4545i) q^{81} +(1.16228 - 2.01312i) q^{82} +9.48683 q^{83} +(-1.58114 + 2.73861i) q^{84} +2.00000 q^{86} +(3.67544 - 6.36606i) q^{87} +(-2.08114 - 3.60464i) q^{88} +(-2.66228 - 4.61120i) q^{89} +(-3.08114 - 1.87259i) q^{91} -6.00000 q^{92} +(-1.32456 - 2.29420i) q^{93} +(1.50000 + 2.59808i) q^{94} -3.16228 q^{96} +(5.74342 - 9.94789i) q^{97} +(-3.00000 + 5.19615i) q^{98} -29.1359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{7} - 4 q^{8} - 14 q^{9} + 2 q^{11} + 6 q^{13} - 4 q^{14} - 2 q^{16} - 4 q^{17} - 28 q^{18} + 10 q^{19} - 2 q^{22} + 12 q^{23} - 2 q^{28} - 8 q^{29} + 16 q^{31} + 2 q^{32}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.58114 2.73861i −0.912871 1.58114i −0.809989 0.586445i \(-0.800527\pi\)
−0.102882 0.994694i \(-0.532806\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.58114 2.73861i 0.645497 1.11803i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.50000 + 6.06218i −1.16667 + 2.02073i
\(10\) 0 0
\(11\) 2.08114 + 3.60464i 0.627487 + 1.08684i 0.988054 + 0.154106i \(0.0492498\pi\)
−0.360567 + 0.932733i \(0.617417\pi\)
\(12\) 3.16228 0.912871
\(13\) −0.0811388 + 3.60464i −0.0225039 + 0.999747i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.581139 1.00656i 0.140947 0.244127i −0.786907 0.617072i \(-0.788319\pi\)
0.927853 + 0.372945i \(0.121652\pi\)
\(18\) −7.00000 −1.64992
\(19\) 4.08114 7.06874i 0.936277 1.62168i 0.163937 0.986471i \(-0.447580\pi\)
0.772340 0.635209i \(-0.219086\pi\)
\(20\) 0 0
\(21\) 3.16228 0.690066
\(22\) −2.08114 + 3.60464i −0.443700 + 0.768511i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 1.58114 + 2.73861i 0.322749 + 0.559017i
\(25\) 0 0
\(26\) −3.16228 + 1.73205i −0.620174 + 0.339683i
\(27\) 12.6491 2.43432
\(28\) −0.500000 0.866025i −0.0944911 0.163663i
\(29\) 1.16228 + 2.01312i 0.215830 + 0.373828i 0.953529 0.301302i \(-0.0974211\pi\)
−0.737699 + 0.675129i \(0.764088\pi\)
\(30\) 0 0
\(31\) 0.837722 0.150459 0.0752297 0.997166i \(-0.476031\pi\)
0.0752297 + 0.997166i \(0.476031\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 6.58114 11.3989i 1.14563 1.98429i
\(34\) 1.16228 0.199329
\(35\) 0 0
\(36\) −3.50000 6.06218i −0.583333 1.01036i
\(37\) 3.08114 + 5.33669i 0.506536 + 0.877346i 0.999971 + 0.00756376i \(0.00240764\pi\)
−0.493435 + 0.869783i \(0.664259\pi\)
\(38\) 8.16228 1.32410
\(39\) 10.0000 5.47723i 1.60128 0.877058i
\(40\) 0 0
\(41\) −1.16228 2.01312i −0.181517 0.314397i 0.760880 0.648892i \(-0.224767\pi\)
−0.942397 + 0.334495i \(0.891434\pi\)
\(42\) 1.58114 + 2.73861i 0.243975 + 0.422577i
\(43\) 1.00000 1.73205i 0.152499 0.264135i −0.779647 0.626219i \(-0.784601\pi\)
0.932145 + 0.362084i \(0.117935\pi\)
\(44\) −4.16228 −0.627487
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) −1.58114 + 2.73861i −0.228218 + 0.395285i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −3.67544 −0.514665
\(52\) −3.08114 1.87259i −0.427277 0.259681i
\(53\) −4.16228 −0.571733 −0.285866 0.958269i \(-0.592281\pi\)
−0.285866 + 0.958269i \(0.592281\pi\)
\(54\) 6.32456 + 10.9545i 0.860663 + 1.49071i
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) −25.8114 −3.41880
\(58\) −1.16228 + 2.01312i −0.152615 + 0.264336i
\(59\) −1.16228 + 2.01312i −0.151316 + 0.262086i −0.931711 0.363200i \(-0.881684\pi\)
0.780396 + 0.625286i \(0.215018\pi\)
\(60\) 0 0
\(61\) −5.74342 + 9.94789i −0.735369 + 1.27370i 0.219192 + 0.975682i \(0.429658\pi\)
−0.954561 + 0.298015i \(0.903675\pi\)
\(62\) 0.418861 + 0.725489i 0.0531954 + 0.0921372i
\(63\) −3.50000 6.06218i −0.440959 0.763763i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 13.1623 1.62016
\(67\) 5.16228 + 8.94133i 0.630673 + 1.09236i 0.987414 + 0.158154i \(0.0505542\pi\)
−0.356742 + 0.934203i \(0.616112\pi\)
\(68\) 0.581139 + 1.00656i 0.0704734 + 0.122064i
\(69\) 9.48683 16.4317i 1.14208 1.97814i
\(70\) 0 0
\(71\) −4.16228 + 7.20928i −0.493971 + 0.855584i −0.999976 0.00694720i \(-0.997789\pi\)
0.506004 + 0.862531i \(0.331122\pi\)
\(72\) 3.50000 6.06218i 0.412479 0.714435i
\(73\) −9.16228 −1.07236 −0.536182 0.844103i \(-0.680134\pi\)
−0.536182 + 0.844103i \(0.680134\pi\)
\(74\) −3.08114 + 5.33669i −0.358175 + 0.620377i
\(75\) 0 0
\(76\) 4.08114 + 7.06874i 0.468139 + 0.810840i
\(77\) −4.16228 −0.474336
\(78\) 9.74342 + 5.92164i 1.10322 + 0.670494i
\(79\) 5.48683 0.617317 0.308658 0.951173i \(-0.400120\pi\)
0.308658 + 0.951173i \(0.400120\pi\)
\(80\) 0 0
\(81\) −9.50000 16.4545i −1.05556 1.82828i
\(82\) 1.16228 2.01312i 0.128352 0.222312i
\(83\) 9.48683 1.04132 0.520658 0.853766i \(-0.325687\pi\)
0.520658 + 0.853766i \(0.325687\pi\)
\(84\) −1.58114 + 2.73861i −0.172516 + 0.298807i
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 3.67544 6.36606i 0.394049 0.682513i
\(88\) −2.08114 3.60464i −0.221850 0.384256i
\(89\) −2.66228 4.61120i −0.282201 0.488786i 0.689726 0.724071i \(-0.257731\pi\)
−0.971927 + 0.235285i \(0.924398\pi\)
\(90\) 0 0
\(91\) −3.08114 1.87259i −0.322991 0.196300i
\(92\) −6.00000 −0.625543
\(93\) −1.32456 2.29420i −0.137350 0.237897i
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) 0 0
\(96\) −3.16228 −0.322749
\(97\) 5.74342 9.94789i 0.583156 1.01006i −0.411947 0.911208i \(-0.635151\pi\)
0.995103 0.0988473i \(-0.0315155\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) −29.1359 −2.92827
\(100\) 0 0
\(101\) 2.41886 + 4.18959i 0.240686 + 0.416880i 0.960910 0.276862i \(-0.0892944\pi\)
−0.720224 + 0.693741i \(0.755961\pi\)
\(102\) −1.83772 3.18303i −0.181962 0.315167i
\(103\) −13.3246 −1.31291 −0.656454 0.754366i \(-0.727944\pi\)
−0.656454 + 0.754366i \(0.727944\pi\)
\(104\) 0.0811388 3.60464i 0.00795632 0.353464i
\(105\) 0 0
\(106\) −2.08114 3.60464i −0.202138 0.350113i
\(107\) 7.74342 + 13.4120i 0.748584 + 1.29659i 0.948501 + 0.316773i \(0.102599\pi\)
−0.199917 + 0.979813i \(0.564067\pi\)
\(108\) −6.32456 + 10.9545i −0.608581 + 1.05409i
\(109\) −14.6491 −1.40313 −0.701565 0.712605i \(-0.747515\pi\)
−0.701565 + 0.712605i \(0.747515\pi\)
\(110\) 0 0
\(111\) 9.74342 16.8761i 0.924804 1.60181i
\(112\) 1.00000 0.0944911
\(113\) 8.32456 14.4186i 0.783108 1.35638i −0.147014 0.989134i \(-0.546966\pi\)
0.930123 0.367249i \(-0.119700\pi\)
\(114\) −12.9057 22.3533i −1.20873 2.09358i
\(115\) 0 0
\(116\) −2.32456 −0.215830
\(117\) −21.5680 13.1081i −1.99396 1.21185i
\(118\) −2.32456 −0.213993
\(119\) 0.581139 + 1.00656i 0.0532729 + 0.0922714i
\(120\) 0 0
\(121\) −3.16228 + 5.47723i −0.287480 + 0.497930i
\(122\) −11.4868 −1.03997
\(123\) −3.67544 + 6.36606i −0.331404 + 0.574008i
\(124\) −0.418861 + 0.725489i −0.0376148 + 0.0651508i
\(125\) 0 0
\(126\) 3.50000 6.06218i 0.311805 0.540062i
\(127\) −4.66228 8.07530i −0.413710 0.716567i 0.581582 0.813488i \(-0.302434\pi\)
−0.995292 + 0.0969207i \(0.969101\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −6.32456 −0.556846
\(130\) 0 0
\(131\) 20.8114 1.81830 0.909150 0.416469i \(-0.136733\pi\)
0.909150 + 0.416469i \(0.136733\pi\)
\(132\) 6.58114 + 11.3989i 0.572815 + 0.992144i
\(133\) 4.08114 + 7.06874i 0.353880 + 0.612937i
\(134\) −5.16228 + 8.94133i −0.445953 + 0.772413i
\(135\) 0 0
\(136\) −0.581139 + 1.00656i −0.0498322 + 0.0863120i
\(137\) −1.74342 + 3.01969i −0.148950 + 0.257989i −0.930840 0.365428i \(-0.880923\pi\)
0.781890 + 0.623417i \(0.214256\pi\)
\(138\) 18.9737 1.61515
\(139\) 2.91886 5.05562i 0.247575 0.428812i −0.715278 0.698840i \(-0.753700\pi\)
0.962852 + 0.270029i \(0.0870331\pi\)
\(140\) 0 0
\(141\) −4.74342 8.21584i −0.399468 0.691898i
\(142\) −8.32456 −0.698581
\(143\) −13.1623 + 7.20928i −1.10068 + 0.602870i
\(144\) 7.00000 0.583333
\(145\) 0 0
\(146\) −4.58114 7.93477i −0.379138 0.656686i
\(147\) 9.48683 16.4317i 0.782461 1.35526i
\(148\) −6.16228 −0.506536
\(149\) −1.83772 + 3.18303i −0.150552 + 0.260764i −0.931431 0.363919i \(-0.881438\pi\)
0.780878 + 0.624683i \(0.214772\pi\)
\(150\) 0 0
\(151\) −11.1623 −0.908373 −0.454187 0.890907i \(-0.650070\pi\)
−0.454187 + 0.890907i \(0.650070\pi\)
\(152\) −4.08114 + 7.06874i −0.331024 + 0.573351i
\(153\) 4.06797 + 7.04593i 0.328876 + 0.569630i
\(154\) −2.08114 3.60464i −0.167703 0.290470i
\(155\) 0 0
\(156\) −0.256584 + 11.3989i −0.0205431 + 0.912640i
\(157\) 5.83772 0.465901 0.232950 0.972489i \(-0.425162\pi\)
0.232950 + 0.972489i \(0.425162\pi\)
\(158\) 2.74342 + 4.75174i 0.218254 + 0.378028i
\(159\) 6.58114 + 11.3989i 0.521918 + 0.903989i
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 9.50000 16.4545i 0.746390 1.29279i
\(163\) −0.743416 + 1.28764i −0.0582289 + 0.100855i −0.893670 0.448724i \(-0.851879\pi\)
0.835442 + 0.549579i \(0.185212\pi\)
\(164\) 2.32456 0.181517
\(165\) 0 0
\(166\) 4.74342 + 8.21584i 0.368161 + 0.637673i
\(167\) 0.337722 + 0.584952i 0.0261337 + 0.0452650i 0.878796 0.477197i \(-0.158347\pi\)
−0.852663 + 0.522462i \(0.825014\pi\)
\(168\) −3.16228 −0.243975
\(169\) −12.9868 0.584952i −0.998987 0.0449963i
\(170\) 0 0
\(171\) 28.5680 + 49.4812i 2.18465 + 3.78392i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) −2.08114 + 3.60464i −0.158226 + 0.274056i −0.934229 0.356674i \(-0.883911\pi\)
0.776003 + 0.630729i \(0.217244\pi\)
\(174\) 7.35089 0.557269
\(175\) 0 0
\(176\) 2.08114 3.60464i 0.156872 0.271710i
\(177\) 7.35089 0.552527
\(178\) 2.66228 4.61120i 0.199546 0.345624i
\(179\) −4.83772 8.37918i −0.361588 0.626289i 0.626634 0.779314i \(-0.284432\pi\)
−0.988222 + 0.153024i \(0.951099\pi\)
\(180\) 0 0
\(181\) −21.8114 −1.62123 −0.810614 0.585581i \(-0.800866\pi\)
−0.810614 + 0.585581i \(0.800866\pi\)
\(182\) 0.0811388 3.60464i 0.00601441 0.267194i
\(183\) 36.3246 2.68519
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) 0 0
\(186\) 1.32456 2.29420i 0.0971211 0.168219i
\(187\) 4.83772 0.353769
\(188\) −1.50000 + 2.59808i −0.109399 + 0.189484i
\(189\) −6.32456 + 10.9545i −0.460044 + 0.796819i
\(190\) 0 0
\(191\) 4.74342 8.21584i 0.343222 0.594477i −0.641807 0.766866i \(-0.721815\pi\)
0.985029 + 0.172389i \(0.0551485\pi\)
\(192\) −1.58114 2.73861i −0.114109 0.197642i
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) 11.4868 0.824707
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 0.243416 + 0.421610i 0.0173427 + 0.0300384i 0.874567 0.484906i \(-0.161146\pi\)
−0.857224 + 0.514944i \(0.827813\pi\)
\(198\) −14.5680 25.2325i −1.03530 1.79319i
\(199\) 13.3246 23.0788i 0.944553 1.63601i 0.187908 0.982187i \(-0.439829\pi\)
0.756644 0.653827i \(-0.226837\pi\)
\(200\) 0 0
\(201\) 16.3246 28.2750i 1.15145 1.99436i
\(202\) −2.41886 + 4.18959i −0.170190 + 0.294779i
\(203\) −2.32456 −0.163152
\(204\) 1.83772 3.18303i 0.128666 0.222857i
\(205\) 0 0
\(206\) −6.66228 11.5394i −0.464183 0.803988i
\(207\) −42.0000 −2.91920
\(208\) 3.16228 1.73205i 0.219265 0.120096i
\(209\) 33.9737 2.35001
\(210\) 0 0
\(211\) −9.08114 15.7290i −0.625171 1.08283i −0.988508 0.151171i \(-0.951696\pi\)
0.363336 0.931658i \(-0.381638\pi\)
\(212\) 2.08114 3.60464i 0.142933 0.247568i
\(213\) 26.3246 1.80373
\(214\) −7.74342 + 13.4120i −0.529329 + 0.916825i
\(215\) 0 0
\(216\) −12.6491 −0.860663
\(217\) −0.418861 + 0.725489i −0.0284341 + 0.0492494i
\(218\) −7.32456 12.6865i −0.496081 0.859238i
\(219\) 14.4868 + 25.0919i 0.978929 + 1.69556i
\(220\) 0 0
\(221\) 3.58114 + 2.17647i 0.240893 + 0.146405i
\(222\) 19.4868 1.30787
\(223\) −4.66228 8.07530i −0.312209 0.540762i 0.666631 0.745388i \(-0.267736\pi\)
−0.978840 + 0.204626i \(0.934402\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 16.6491 1.10748
\(227\) −1.16228 + 2.01312i −0.0771431 + 0.133616i −0.902016 0.431702i \(-0.857913\pi\)
0.824873 + 0.565318i \(0.191246\pi\)
\(228\) 12.9057 22.3533i 0.854700 1.48038i
\(229\) 9.16228 0.605460 0.302730 0.953076i \(-0.402102\pi\)
0.302730 + 0.953076i \(0.402102\pi\)
\(230\) 0 0
\(231\) 6.58114 + 11.3989i 0.433007 + 0.749990i
\(232\) −1.16228 2.01312i −0.0763073 0.132168i
\(233\) 9.48683 0.621503 0.310752 0.950491i \(-0.399419\pi\)
0.310752 + 0.950491i \(0.399419\pi\)
\(234\) 0.567972 25.2325i 0.0371295 1.64950i
\(235\) 0 0
\(236\) −1.16228 2.01312i −0.0756578 0.131043i
\(237\) −8.67544 15.0263i −0.563531 0.976064i
\(238\) −0.581139 + 1.00656i −0.0376696 + 0.0652457i
\(239\) 4.83772 0.312926 0.156463 0.987684i \(-0.449991\pi\)
0.156463 + 0.987684i \(0.449991\pi\)
\(240\) 0 0
\(241\) −5.98683 + 10.3695i −0.385646 + 0.667958i −0.991859 0.127344i \(-0.959355\pi\)
0.606213 + 0.795303i \(0.292688\pi\)
\(242\) −6.32456 −0.406558
\(243\) −11.0680 + 19.1703i −0.710011 + 1.22977i
\(244\) −5.74342 9.94789i −0.367685 0.636848i
\(245\) 0 0
\(246\) −7.35089 −0.468676
\(247\) 25.1491 + 15.2846i 1.60020 + 0.972534i
\(248\) −0.837722 −0.0531954
\(249\) −15.0000 25.9808i −0.950586 1.64646i
\(250\) 0 0
\(251\) 3.24342 5.61776i 0.204723 0.354590i −0.745322 0.666705i \(-0.767704\pi\)
0.950044 + 0.312115i \(0.101037\pi\)
\(252\) 7.00000 0.440959
\(253\) −12.4868 + 21.6278i −0.785040 + 1.35973i
\(254\) 4.66228 8.07530i 0.292537 0.506689i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) −3.16228 5.47723i −0.196875 0.340997i
\(259\) −6.16228 −0.382905
\(260\) 0 0
\(261\) −16.2719 −1.00720
\(262\) 10.4057 + 18.0232i 0.642866 + 1.11348i
\(263\) 6.82456 + 11.8205i 0.420820 + 0.728882i 0.996020 0.0891312i \(-0.0284090\pi\)
−0.575200 + 0.818013i \(0.695076\pi\)
\(264\) −6.58114 + 11.3989i −0.405041 + 0.701552i
\(265\) 0 0
\(266\) −4.08114 + 7.06874i −0.250231 + 0.433412i
\(267\) −8.41886 + 14.5819i −0.515226 + 0.892397i
\(268\) −10.3246 −0.630673
\(269\) −10.7434 + 18.6081i −0.655038 + 1.13456i 0.326847 + 0.945077i \(0.394014\pi\)
−0.981884 + 0.189481i \(0.939319\pi\)
\(270\) 0 0
\(271\) 3.16228 + 5.47723i 0.192095 + 0.332718i 0.945944 0.324329i \(-0.105139\pi\)
−0.753850 + 0.657047i \(0.771805\pi\)
\(272\) −1.16228 −0.0704734
\(273\) −0.256584 + 11.3989i −0.0155291 + 0.689891i
\(274\) −3.48683 −0.210647
\(275\) 0 0
\(276\) 9.48683 + 16.4317i 0.571040 + 0.989071i
\(277\) 10.2434 17.7421i 0.615467 1.06602i −0.374835 0.927092i \(-0.622301\pi\)
0.990302 0.138929i \(-0.0443660\pi\)
\(278\) 5.83772 0.350123
\(279\) −2.93203 + 5.07842i −0.175536 + 0.304037i
\(280\) 0 0
\(281\) 18.9737 1.13187 0.565937 0.824448i \(-0.308515\pi\)
0.565937 + 0.824448i \(0.308515\pi\)
\(282\) 4.74342 8.21584i 0.282466 0.489246i
\(283\) −11.0000 19.0526i −0.653882 1.13256i −0.982173 0.187980i \(-0.939806\pi\)
0.328291 0.944577i \(-0.393527\pi\)
\(284\) −4.16228 7.20928i −0.246986 0.427792i
\(285\) 0 0
\(286\) −12.8246 7.79423i −0.758332 0.460882i
\(287\) 2.32456 0.137214
\(288\) 3.50000 + 6.06218i 0.206239 + 0.357217i
\(289\) 7.82456 + 13.5525i 0.460268 + 0.797207i
\(290\) 0 0
\(291\) −36.3246 −2.12938
\(292\) 4.58114 7.93477i 0.268091 0.464347i
\(293\) −14.0811 + 24.3892i −0.822629 + 1.42484i 0.0810891 + 0.996707i \(0.474160\pi\)
−0.903718 + 0.428128i \(0.859173\pi\)
\(294\) 18.9737 1.10657
\(295\) 0 0
\(296\) −3.08114 5.33669i −0.179088 0.310189i
\(297\) 26.3246 + 45.5955i 1.52751 + 2.64572i
\(298\) −3.67544 −0.212913
\(299\) −18.9737 + 10.3923i −1.09728 + 0.601003i
\(300\) 0 0
\(301\) 1.00000 + 1.73205i 0.0576390 + 0.0998337i
\(302\) −5.58114 9.66682i −0.321158 0.556263i
\(303\) 7.64911 13.2486i 0.439430 0.761115i
\(304\) −8.16228 −0.468139
\(305\) 0 0
\(306\) −4.06797 + 7.04593i −0.232550 + 0.402789i
\(307\) −28.3246 −1.61657 −0.808284 0.588793i \(-0.799603\pi\)
−0.808284 + 0.588793i \(0.799603\pi\)
\(308\) 2.08114 3.60464i 0.118584 0.205393i
\(309\) 21.0680 + 36.4908i 1.19852 + 2.07589i
\(310\) 0 0
\(311\) 15.4868 0.878178 0.439089 0.898444i \(-0.355301\pi\)
0.439089 + 0.898444i \(0.355301\pi\)
\(312\) −10.0000 + 5.47723i −0.566139 + 0.310087i
\(313\) −4.32456 −0.244438 −0.122219 0.992503i \(-0.539001\pi\)
−0.122219 + 0.992503i \(0.539001\pi\)
\(314\) 2.91886 + 5.05562i 0.164721 + 0.285305i
\(315\) 0 0
\(316\) −2.74342 + 4.75174i −0.154329 + 0.267306i
\(317\) 6.48683 0.364337 0.182168 0.983267i \(-0.441688\pi\)
0.182168 + 0.983267i \(0.441688\pi\)
\(318\) −6.58114 + 11.3989i −0.369052 + 0.639217i
\(319\) −4.83772 + 8.37918i −0.270860 + 0.469144i
\(320\) 0 0
\(321\) 24.4868 42.4124i 1.36672 2.36723i
\(322\) −3.00000 5.19615i −0.167183 0.289570i
\(323\) −4.74342 8.21584i −0.263931 0.457141i
\(324\) 19.0000 1.05556
\(325\) 0 0
\(326\) −1.48683 −0.0823481
\(327\) 23.1623 + 40.1182i 1.28088 + 2.21854i
\(328\) 1.16228 + 2.01312i 0.0641760 + 0.111156i
\(329\) −1.50000 + 2.59808i −0.0826977 + 0.143237i
\(330\) 0 0
\(331\) −0.324555 + 0.562146i −0.0178392 + 0.0308984i −0.874807 0.484471i \(-0.839012\pi\)
0.856968 + 0.515370i \(0.172345\pi\)
\(332\) −4.74342 + 8.21584i −0.260329 + 0.450903i
\(333\) −43.1359 −2.36384
\(334\) −0.337722 + 0.584952i −0.0184793 + 0.0320072i
\(335\) 0 0
\(336\) −1.58114 2.73861i −0.0862582 0.149404i
\(337\) 1.48683 0.0809930 0.0404965 0.999180i \(-0.487106\pi\)
0.0404965 + 0.999180i \(0.487106\pi\)
\(338\) −5.98683 11.5394i −0.325641 0.627661i
\(339\) −52.6491 −2.85951
\(340\) 0 0
\(341\) 1.74342 + 3.01969i 0.0944113 + 0.163525i
\(342\) −28.5680 + 49.4812i −1.54478 + 2.67564i
\(343\) −13.0000 −0.701934
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) −4.16228 −0.223765
\(347\) 10.7434 18.6081i 0.576737 0.998937i −0.419114 0.907934i \(-0.637659\pi\)
0.995851 0.0910037i \(-0.0290075\pi\)
\(348\) 3.67544 + 6.36606i 0.197025 + 0.341256i
\(349\) 0.743416 + 1.28764i 0.0397942 + 0.0689255i 0.885237 0.465141i \(-0.153996\pi\)
−0.845442 + 0.534067i \(0.820663\pi\)
\(350\) 0 0
\(351\) −1.02633 + 45.5955i −0.0547817 + 2.43371i
\(352\) 4.16228 0.221850
\(353\) −0.581139 1.00656i −0.0309309 0.0535739i 0.850146 0.526548i \(-0.176514\pi\)
−0.881076 + 0.472974i \(0.843181\pi\)
\(354\) 3.67544 + 6.36606i 0.195348 + 0.338352i
\(355\) 0 0
\(356\) 5.32456 0.282201
\(357\) 1.83772 3.18303i 0.0972626 0.168464i
\(358\) 4.83772 8.37918i 0.255682 0.442853i
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −23.8114 41.2425i −1.25323 2.17066i
\(362\) −10.9057 18.8892i −0.573191 0.992795i
\(363\) 20.0000 1.04973
\(364\) 3.16228 1.73205i 0.165748 0.0907841i
\(365\) 0 0
\(366\) 18.1623 + 31.4580i 0.949357 + 1.64434i
\(367\) −10.3246 17.8827i −0.538937 0.933467i −0.998962 0.0455606i \(-0.985493\pi\)
0.460024 0.887906i \(-0.347841\pi\)
\(368\) 3.00000 5.19615i 0.156386 0.270868i
\(369\) 16.2719 0.847081
\(370\) 0 0
\(371\) 2.08114 3.60464i 0.108047 0.187143i
\(372\) 2.64911 0.137350
\(373\) −2.67544 + 4.63401i −0.138529 + 0.239940i −0.926940 0.375209i \(-0.877571\pi\)
0.788411 + 0.615149i \(0.210904\pi\)
\(374\) 2.41886 + 4.18959i 0.125076 + 0.216639i
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) −7.35089 + 4.02625i −0.378590 + 0.207362i
\(378\) −12.6491 −0.650600
\(379\) 3.59431 + 6.22552i 0.184627 + 0.319784i 0.943451 0.331513i \(-0.107559\pi\)
−0.758824 + 0.651296i \(0.774226\pi\)
\(380\) 0 0
\(381\) −14.7434 + 25.5363i −0.755328 + 1.30827i
\(382\) 9.48683 0.485389
\(383\) 15.0000 25.9808i 0.766464 1.32755i −0.173005 0.984921i \(-0.555348\pi\)
0.939469 0.342634i \(-0.111319\pi\)
\(384\) 1.58114 2.73861i 0.0806872 0.139754i
\(385\) 0 0
\(386\) 2.00000 3.46410i 0.101797 0.176318i
\(387\) 7.00000 + 12.1244i 0.355830 + 0.616316i
\(388\) 5.74342 + 9.94789i 0.291578 + 0.505028i
\(389\) 19.1623 0.971566 0.485783 0.874079i \(-0.338535\pi\)
0.485783 + 0.874079i \(0.338535\pi\)
\(390\) 0 0
\(391\) 6.97367 0.352673
\(392\) −3.00000 5.19615i −0.151523 0.262445i
\(393\) −32.9057 56.9943i −1.65987 2.87498i
\(394\) −0.243416 + 0.421610i −0.0122631 + 0.0212404i
\(395\) 0 0
\(396\) 14.5680 25.2325i 0.732068 1.26798i
\(397\) 9.75658 16.8989i 0.489669 0.848131i −0.510260 0.860020i \(-0.670451\pi\)
0.999929 + 0.0118885i \(0.00378433\pi\)
\(398\) 26.6491 1.33580
\(399\) 12.9057 22.3533i 0.646093 1.11907i
\(400\) 0 0
\(401\) 7.98683 + 13.8336i 0.398843 + 0.690817i 0.993583 0.113101i \(-0.0360784\pi\)
−0.594740 + 0.803918i \(0.702745\pi\)
\(402\) 32.6491 1.62839
\(403\) −0.0679718 + 3.01969i −0.00338592 + 0.150421i
\(404\) −4.83772 −0.240686
\(405\) 0 0
\(406\) −1.16228 2.01312i −0.0576829 0.0999097i
\(407\) −12.8246 + 22.2128i −0.635690 + 1.10105i
\(408\) 3.67544 0.181962
\(409\) −1.82456 + 3.16022i −0.0902185 + 0.156263i −0.907603 0.419830i \(-0.862090\pi\)
0.817385 + 0.576092i \(0.195423\pi\)
\(410\) 0 0
\(411\) 11.0263 0.543889
\(412\) 6.66228 11.5394i 0.328227 0.568506i
\(413\) −1.16228 2.01312i −0.0571919 0.0990594i
\(414\) −21.0000 36.3731i −1.03209 1.78764i
\(415\) 0 0
\(416\) 3.08114 + 1.87259i 0.151065 + 0.0918112i
\(417\) −18.4605 −0.904015
\(418\) 16.9868 + 29.4221i 0.830853 + 1.43908i
\(419\) 5.32456 + 9.22240i 0.260122 + 0.450544i 0.966274 0.257516i \(-0.0829040\pi\)
−0.706152 + 0.708060i \(0.749571\pi\)
\(420\) 0 0
\(421\) 3.16228 0.154120 0.0770600 0.997026i \(-0.475447\pi\)
0.0770600 + 0.997026i \(0.475447\pi\)
\(422\) 9.08114 15.7290i 0.442063 0.765675i
\(423\) −10.5000 + 18.1865i −0.510527 + 0.884260i
\(424\) 4.16228 0.202138
\(425\) 0 0
\(426\) 13.1623 + 22.7977i 0.637714 + 1.10455i
\(427\) −5.74342 9.94789i −0.277943 0.481412i
\(428\) −15.4868 −0.748584
\(429\) 40.5548 + 24.6475i 1.95800 + 1.18999i
\(430\) 0 0
\(431\) 1.74342 + 3.01969i 0.0839774 + 0.145453i 0.904955 0.425507i \(-0.139904\pi\)
−0.820978 + 0.570960i \(0.806571\pi\)
\(432\) −6.32456 10.9545i −0.304290 0.527046i
\(433\) −3.16228 + 5.47723i −0.151969 + 0.263219i −0.931951 0.362583i \(-0.881895\pi\)
0.779982 + 0.625802i \(0.215228\pi\)
\(434\) −0.837722 −0.0402120
\(435\) 0 0
\(436\) 7.32456 12.6865i 0.350783 0.607573i
\(437\) 48.9737 2.34273
\(438\) −14.4868 + 25.0919i −0.692208 + 1.19894i
\(439\) 13.9057 + 24.0854i 0.663683 + 1.14953i 0.979641 + 0.200759i \(0.0643408\pi\)
−0.315958 + 0.948773i \(0.602326\pi\)
\(440\) 0 0
\(441\) −42.0000 −2.00000
\(442\) −0.0943058 + 4.18959i −0.00448567 + 0.199278i
\(443\) −1.35089 −0.0641827 −0.0320913 0.999485i \(-0.510217\pi\)
−0.0320913 + 0.999485i \(0.510217\pi\)
\(444\) 9.74342 + 16.8761i 0.462402 + 0.800904i
\(445\) 0 0
\(446\) 4.66228 8.07530i 0.220765 0.382377i
\(447\) 11.6228 0.549738
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) 19.9868 34.6182i 0.943237 1.63373i 0.183994 0.982927i \(-0.441097\pi\)
0.759243 0.650807i \(-0.225569\pi\)
\(450\) 0 0
\(451\) 4.83772 8.37918i 0.227799 0.394560i
\(452\) 8.32456 + 14.4186i 0.391554 + 0.678192i
\(453\) 17.6491 + 30.5692i 0.829228 + 1.43626i
\(454\) −2.32456 −0.109097
\(455\) 0 0
\(456\) 25.8114 1.20873
\(457\) −16.2302 28.1116i −0.759219 1.31501i −0.943249 0.332085i \(-0.892248\pi\)
0.184030 0.982921i \(-0.441086\pi\)
\(458\) 4.58114 + 7.93477i 0.214063 + 0.370767i
\(459\) 7.35089 12.7321i 0.343110 0.594284i
\(460\) 0 0
\(461\) −1.25658 + 2.17647i −0.0585249 + 0.101368i −0.893803 0.448459i \(-0.851973\pi\)
0.835279 + 0.549827i \(0.185306\pi\)
\(462\) −6.58114 + 11.3989i −0.306182 + 0.530323i
\(463\) 0.324555 0.0150834 0.00754168 0.999972i \(-0.497599\pi\)
0.00754168 + 0.999972i \(0.497599\pi\)
\(464\) 1.16228 2.01312i 0.0539574 0.0934569i
\(465\) 0 0
\(466\) 4.74342 + 8.21584i 0.219735 + 0.380591i
\(467\) −7.35089 −0.340159 −0.170079 0.985430i \(-0.554402\pi\)
−0.170079 + 0.985430i \(0.554402\pi\)
\(468\) 22.1359 12.1244i 1.02323 0.560449i
\(469\) −10.3246 −0.476744
\(470\) 0 0
\(471\) −9.23025 15.9873i −0.425307 0.736654i
\(472\) 1.16228 2.01312i 0.0534982 0.0926615i
\(473\) 8.32456 0.382763
\(474\) 8.67544 15.0263i 0.398476 0.690181i
\(475\) 0 0
\(476\) −1.16228 −0.0532729
\(477\) 14.5680 25.2325i 0.667022 1.15532i
\(478\) 2.41886 + 4.18959i 0.110636 + 0.191627i
\(479\) −16.0680 27.8305i −0.734164 1.27161i −0.955089 0.296319i \(-0.904241\pi\)
0.220925 0.975291i \(-0.429093\pi\)
\(480\) 0 0
\(481\) −19.4868 + 10.6734i −0.888523 + 0.486664i
\(482\) −11.9737 −0.545386
\(483\) 9.48683 + 16.4317i 0.431666 + 0.747667i
\(484\) −3.16228 5.47723i −0.143740 0.248965i
\(485\) 0 0
\(486\) −22.1359 −1.00411
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 5.74342 9.94789i 0.259992 0.450320i
\(489\) 4.70178 0.212622
\(490\) 0 0
\(491\) −18.2434 31.5985i −0.823314 1.42602i −0.903201 0.429218i \(-0.858789\pi\)
0.0798873 0.996804i \(-0.474544\pi\)
\(492\) −3.67544 6.36606i −0.165702 0.287004i
\(493\) 2.70178 0.121682
\(494\) −0.662278 + 29.4221i −0.0297973 + 1.32376i
\(495\) 0 0
\(496\) −0.418861 0.725489i −0.0188074 0.0325754i
\(497\) −4.16228 7.20928i −0.186704 0.323380i
\(498\) 15.0000 25.9808i 0.672166 1.16423i
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 0 0
\(501\) 1.06797 1.84978i 0.0477135 0.0826421i
\(502\) 6.48683 0.289522
\(503\) 18.1491 31.4352i 0.809229 1.40163i −0.104170 0.994560i \(-0.533219\pi\)
0.913399 0.407066i \(-0.133448\pi\)
\(504\) 3.50000 + 6.06218i 0.155902 + 0.270031i
\(505\) 0 0
\(506\) −24.9737 −1.11021
\(507\) 18.9320 + 36.4908i 0.840801 + 1.62061i
\(508\) 9.32456 0.413710
\(509\) −18.4868 32.0201i −0.819414 1.41927i −0.906114 0.423033i \(-0.860965\pi\)
0.0866998 0.996234i \(-0.472368\pi\)
\(510\) 0 0
\(511\) 4.58114 7.93477i 0.202658 0.351013i
\(512\) −1.00000 −0.0441942
\(513\) 51.6228 89.4133i 2.27920 3.94769i
\(514\) 0 0
\(515\) 0 0
\(516\) 3.16228 5.47723i 0.139212 0.241121i
\(517\) 6.24342 + 10.8139i 0.274585 + 0.475595i
\(518\) −3.08114 5.33669i −0.135377 0.234481i
\(519\) 13.1623 0.577760
\(520\) 0 0
\(521\) 35.3246 1.54760 0.773798 0.633432i \(-0.218354\pi\)
0.773798 + 0.633432i \(0.218354\pi\)
\(522\) −8.13594 14.0919i −0.356101 0.616784i
\(523\) 5.64911 + 9.78455i 0.247018 + 0.427848i 0.962697 0.270581i \(-0.0872159\pi\)
−0.715679 + 0.698430i \(0.753883\pi\)
\(524\) −10.4057 + 18.0232i −0.454575 + 0.787347i
\(525\) 0 0
\(526\) −6.82456 + 11.8205i −0.297565 + 0.515397i
\(527\) 0.486833 0.843219i 0.0212068 0.0367312i
\(528\) −13.1623 −0.572815
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −8.13594 14.0919i −0.353070 0.611535i
\(532\) −8.16228 −0.353880
\(533\) 7.35089 4.02625i 0.318402 0.174396i
\(534\) −16.8377 −0.728640
\(535\) 0 0
\(536\) −5.16228 8.94133i −0.222976 0.386207i
\(537\) −15.2982 + 26.4973i −0.660167 + 1.14344i
\(538\) −21.4868 −0.926363
\(539\) −12.4868 + 21.6278i −0.537846 + 0.931577i
\(540\) 0 0
\(541\) 33.1623 1.42576 0.712879 0.701287i \(-0.247391\pi\)
0.712879 + 0.701287i \(0.247391\pi\)
\(542\) −3.16228 + 5.47723i −0.135831 + 0.235267i
\(543\) 34.4868 + 59.7329i 1.47997 + 2.56339i
\(544\) −0.581139 1.00656i −0.0249161 0.0431560i
\(545\) 0 0
\(546\) −10.0000 + 5.47723i −0.427960 + 0.234404i
\(547\) −18.6491 −0.797378 −0.398689 0.917086i \(-0.630535\pi\)
−0.398689 + 0.917086i \(0.630535\pi\)
\(548\) −1.74342 3.01969i −0.0744751 0.128995i
\(549\) −40.2039 69.6352i −1.71586 2.97196i
\(550\) 0 0
\(551\) 18.9737 0.808305
\(552\) −9.48683 + 16.4317i −0.403786 + 0.699379i
\(553\) −2.74342 + 4.75174i −0.116662 + 0.202064i
\(554\) 20.4868 0.870402
\(555\) 0 0
\(556\) 2.91886 + 5.05562i 0.123787 + 0.214406i
\(557\) 11.0811 + 19.1931i 0.469523 + 0.813238i 0.999393 0.0348414i \(-0.0110926\pi\)
−0.529870 + 0.848079i \(0.677759\pi\)
\(558\) −5.86406 −0.248245
\(559\) 6.16228 + 3.74517i 0.260637 + 0.158404i
\(560\) 0 0
\(561\) −7.64911 13.2486i −0.322946 0.559358i
\(562\) 9.48683 + 16.4317i 0.400178 + 0.693128i
\(563\) −12.0000 + 20.7846i −0.505740 + 0.875967i 0.494238 + 0.869326i \(0.335447\pi\)
−0.999978 + 0.00664037i \(0.997886\pi\)
\(564\) 9.48683 0.399468
\(565\) 0 0
\(566\) 11.0000 19.0526i 0.462364 0.800839i
\(567\) 19.0000 0.797925
\(568\) 4.16228 7.20928i 0.174645 0.302495i
\(569\) −1.98683 3.44130i −0.0832924 0.144267i 0.821370 0.570396i \(-0.193210\pi\)
−0.904662 + 0.426129i \(0.859877\pi\)
\(570\) 0 0
\(571\) 19.1359 0.800814 0.400407 0.916337i \(-0.368869\pi\)
0.400407 + 0.916337i \(0.368869\pi\)
\(572\) 0.337722 15.0035i 0.0141209 0.627328i
\(573\) −30.0000 −1.25327
\(574\) 1.16228 + 2.01312i 0.0485125 + 0.0840262i
\(575\) 0 0
\(576\) −3.50000 + 6.06218i −0.145833 + 0.252591i
\(577\) −0.837722 −0.0348748 −0.0174374 0.999848i \(-0.505551\pi\)
−0.0174374 + 0.999848i \(0.505551\pi\)
\(578\) −7.82456 + 13.5525i −0.325459 + 0.563711i
\(579\) −6.32456 + 10.9545i −0.262840 + 0.455251i
\(580\) 0 0
\(581\) −4.74342 + 8.21584i −0.196790 + 0.340850i
\(582\) −18.1623 31.4580i −0.752851 1.30398i
\(583\) −8.66228 15.0035i −0.358755 0.621382i
\(584\) 9.16228 0.379138
\(585\) 0 0
\(586\) −28.1623 −1.16337
\(587\) −12.4868 21.6278i −0.515387 0.892676i −0.999841 0.0178592i \(-0.994315\pi\)
0.484454 0.874817i \(-0.339018\pi\)
\(588\) 9.48683 + 16.4317i 0.391230 + 0.677631i
\(589\) 3.41886 5.92164i 0.140872 0.243997i
\(590\) 0 0
\(591\) 0.769751 1.33325i 0.0316633 0.0548425i
\(592\) 3.08114 5.33669i 0.126634 0.219337i
\(593\) 28.6491 1.17648 0.588239 0.808687i \(-0.299821\pi\)
0.588239 + 0.808687i \(0.299821\pi\)
\(594\) −26.3246 + 45.5955i −1.08011 + 1.87080i
\(595\) 0 0
\(596\) −1.83772 3.18303i −0.0752760 0.130382i
\(597\) −84.2719 −3.44902
\(598\) −18.4868 11.2355i −0.755983 0.459455i
\(599\) −31.9473 −1.30533 −0.652666 0.757646i \(-0.726350\pi\)
−0.652666 + 0.757646i \(0.726350\pi\)
\(600\) 0 0
\(601\) 8.14911 + 14.1147i 0.332409 + 0.575750i 0.982984 0.183693i \(-0.0588052\pi\)
−0.650575 + 0.759442i \(0.725472\pi\)
\(602\) −1.00000 + 1.73205i −0.0407570 + 0.0705931i
\(603\) −72.2719 −2.94314
\(604\) 5.58114 9.66682i 0.227093 0.393337i
\(605\) 0 0
\(606\) 15.2982 0.621448
\(607\) 2.50000 4.33013i 0.101472 0.175754i −0.810819 0.585296i \(-0.800978\pi\)
0.912291 + 0.409542i \(0.134311\pi\)
\(608\) −4.08114 7.06874i −0.165512 0.286675i
\(609\) 3.67544 + 6.36606i 0.148937 + 0.257966i
\(610\) 0 0
\(611\) −0.243416 + 10.8139i −0.00984758 + 0.437484i
\(612\) −8.13594 −0.328876
\(613\) 0.756584 + 1.31044i 0.0305581 + 0.0529282i 0.880900 0.473302i \(-0.156938\pi\)
−0.850342 + 0.526231i \(0.823605\pi\)
\(614\) −14.1623 24.5298i −0.571543 0.989942i
\(615\) 0 0
\(616\) 4.16228 0.167703
\(617\) 21.9737 38.0595i 0.884626 1.53222i 0.0384853 0.999259i \(-0.487747\pi\)
0.846141 0.532959i \(-0.178920\pi\)
\(618\) −21.0680 + 36.4908i −0.847478 + 1.46788i
\(619\) 27.4605 1.10373 0.551865 0.833933i \(-0.313916\pi\)
0.551865 + 0.833933i \(0.313916\pi\)
\(620\) 0 0
\(621\) 37.9473 + 65.7267i 1.52277 + 2.63752i
\(622\) 7.74342 + 13.4120i 0.310483 + 0.537772i
\(623\) 5.32456 0.213324
\(624\) −9.74342 5.92164i −0.390049 0.237055i
\(625\) 0 0
\(626\) −2.16228 3.74517i −0.0864220 0.149687i
\(627\) −53.7171 93.0407i −2.14525 3.71569i
\(628\) −2.91886 + 5.05562i −0.116475 + 0.201741i
\(629\) 7.16228 0.285579
\(630\) 0 0
\(631\) 0.837722 1.45098i 0.0333492 0.0577625i −0.848869 0.528603i \(-0.822716\pi\)
0.882218 + 0.470841i \(0.156049\pi\)
\(632\) −5.48683 −0.218254
\(633\) −28.7171 + 49.7394i −1.14140 + 1.97697i
\(634\) 3.24342 + 5.61776i 0.128813 + 0.223110i
\(635\) 0 0
\(636\) −13.1623 −0.521918
\(637\) −18.9737 + 10.3923i −0.751764 + 0.411758i
\(638\) −9.67544 −0.383055
\(639\) −29.1359 50.4649i −1.15260 1.99636i
\(640\) 0 0
\(641\) −13.9868 + 24.2259i −0.552447 + 0.956866i 0.445651 + 0.895207i \(0.352972\pi\)
−0.998097 + 0.0616587i \(0.980361\pi\)
\(642\) 48.9737 1.93284
\(643\) −22.2302 + 38.5039i −0.876675 + 1.51845i −0.0217083 + 0.999764i \(0.506911\pi\)
−0.854967 + 0.518682i \(0.826423\pi\)
\(644\) 3.00000 5.19615i 0.118217 0.204757i
\(645\) 0 0
\(646\) 4.74342 8.21584i 0.186627 0.323248i
\(647\) 10.9868 + 19.0298i 0.431937 + 0.748137i 0.997040 0.0768835i \(-0.0244970\pi\)
−0.565103 + 0.825020i \(0.691164\pi\)
\(648\) 9.50000 + 16.4545i 0.373195 + 0.646393i
\(649\) −9.67544 −0.379794
\(650\) 0 0
\(651\) 2.64911 0.103827
\(652\) −0.743416 1.28764i −0.0291144 0.0504277i
\(653\) 18.2434 + 31.5985i 0.713920 + 1.23655i 0.963375 + 0.268159i \(0.0864154\pi\)
−0.249455 + 0.968387i \(0.580251\pi\)
\(654\) −23.1623 + 40.1182i −0.905717 + 1.56875i
\(655\) 0 0
\(656\) −1.16228 + 2.01312i −0.0453793 + 0.0785993i
\(657\) 32.0680 55.5434i 1.25109 2.16695i
\(658\) −3.00000 −0.116952
\(659\) 13.6491 23.6410i 0.531694 0.920921i −0.467622 0.883929i \(-0.654889\pi\)
0.999316 0.0369921i \(-0.0117776\pi\)
\(660\) 0 0
\(661\) 8.58114 + 14.8630i 0.333768 + 0.578102i 0.983247 0.182276i \(-0.0583466\pi\)
−0.649480 + 0.760379i \(0.725013\pi\)
\(662\) −0.649111 −0.0252284
\(663\) 0.298221 13.2486i 0.0115820 0.514535i
\(664\) −9.48683 −0.368161
\(665\) 0 0
\(666\) −21.5680 37.3568i −0.835742 1.44755i
\(667\) −6.97367 + 12.0787i −0.270021 + 0.467691i
\(668\) −0.675445 −0.0261337
\(669\) −14.7434 + 25.5363i −0.570013 + 0.987292i
\(670\) 0 0
\(671\) −47.8114 −1.84574
\(672\) 1.58114 2.73861i 0.0609938 0.105644i
\(673\) −11.4868 19.8958i −0.442785 0.766926i 0.555110 0.831777i \(-0.312676\pi\)
−0.997895 + 0.0648510i \(0.979343\pi\)
\(674\) 0.743416 + 1.28764i 0.0286353 + 0.0495979i
\(675\) 0 0
\(676\) 7.00000 10.9545i 0.269231 0.421325i
\(677\) −24.9737 −0.959816 −0.479908 0.877319i \(-0.659330\pi\)
−0.479908 + 0.877319i \(0.659330\pi\)
\(678\) −26.3246 45.5955i −1.01099 1.75108i
\(679\) 5.74342 + 9.94789i 0.220412 + 0.381765i
\(680\) 0 0
\(681\) 7.35089 0.281687
\(682\) −1.74342 + 3.01969i −0.0667589 + 0.115630i
\(683\) 16.1623 27.9939i 0.618432 1.07116i −0.371340 0.928497i \(-0.621101\pi\)
0.989772 0.142659i \(-0.0455653\pi\)
\(684\) −57.1359 −2.18465
\(685\) 0 0
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) −14.4868 25.0919i −0.552707 0.957317i
\(688\) −2.00000 −0.0762493
\(689\) 0.337722 15.0035i 0.0128662 0.571588i
\(690\) 0 0
\(691\) −3.56797 6.17991i −0.135732 0.235095i 0.790145 0.612920i \(-0.210005\pi\)
−0.925877 + 0.377825i \(0.876672\pi\)
\(692\) −2.08114 3.60464i −0.0791130 0.137028i
\(693\) 14.5680 25.2325i 0.553391 0.958502i
\(694\) 21.4868 0.815629
\(695\) 0 0
\(696\) −3.67544 + 6.36606i −0.139317 + 0.241305i
\(697\) −2.70178 −0.102337
\(698\) −0.743416 + 1.28764i −0.0281387 + 0.0487377i
\(699\) −15.0000 25.9808i −0.567352 0.982683i
\(700\) 0 0
\(701\) −16.8377 −0.635952 −0.317976 0.948099i \(-0.603003\pi\)
−0.317976 + 0.948099i \(0.603003\pi\)
\(702\) −40.0000 + 21.9089i −1.50970 + 0.826898i
\(703\) 50.2982 1.89703
\(704\) 2.08114 + 3.60464i 0.0784359 + 0.135855i
\(705\) 0 0
\(706\) 0.581139 1.00656i 0.0218714 0.0378825i
\(707\) −4.83772 −0.181941
\(708\) −3.67544 + 6.36606i −0.138132 + 0.239251i
\(709\) −11.2566 + 19.4970i −0.422750 + 0.732224i −0.996207 0.0870111i \(-0.972268\pi\)
0.573457 + 0.819235i \(0.305602\pi\)
\(710\) 0 0
\(711\) −19.2039 + 33.2622i −0.720203 + 1.24743i
\(712\) 2.66228 + 4.61120i 0.0997731 + 0.172812i
\(713\) 2.51317 + 4.35293i 0.0941188 + 0.163019i
\(714\) 3.67544 0.137550
\(715\) 0 0
\(716\) 9.67544 0.361588
\(717\) −7.64911 13.2486i −0.285661 0.494780i
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) −6.00000 + 10.3923i −0.223762 + 0.387568i −0.955947 0.293538i \(-0.905167\pi\)
0.732185 + 0.681106i \(0.238501\pi\)
\(720\) 0 0
\(721\) 6.66228 11.5394i 0.248116 0.429750i
\(722\) 23.8114 41.2425i 0.886168 1.53489i
\(723\) 37.8641 1.40818
\(724\) 10.9057 18.8892i 0.405307 0.702012i
\(725\) 0 0
\(726\) 10.0000 + 17.3205i 0.371135 + 0.642824i
\(727\) 33.3246 1.23594 0.617970 0.786202i \(-0.287955\pi\)
0.617970 + 0.786202i \(0.287955\pi\)
\(728\) 3.08114 + 1.87259i 0.114195 + 0.0694027i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −1.16228 2.01312i −0.0429884 0.0744581i
\(732\) −18.1623 + 31.4580i −0.671297 + 1.16272i
\(733\) 10.4868 0.387340 0.193670 0.981067i \(-0.437961\pi\)
0.193670 + 0.981067i \(0.437961\pi\)
\(734\) 10.3246 17.8827i 0.381086 0.660061i
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) −21.4868 + 37.2163i −0.791478 + 1.37088i
\(738\) 8.13594 + 14.0919i 0.299488 + 0.518729i
\(739\) 6.59431 + 11.4217i 0.242575 + 0.420153i 0.961447 0.274990i \(-0.0886745\pi\)
−0.718872 + 0.695143i \(0.755341\pi\)
\(740\) 0 0
\(741\) 2.09431 93.0407i 0.0769362 3.41794i
\(742\) 4.16228 0.152802
\(743\) −9.00000 15.5885i −0.330178 0.571885i 0.652369 0.757902i \(-0.273775\pi\)
−0.982547 + 0.186017i \(0.940442\pi\)
\(744\) 1.32456 + 2.29420i 0.0485606 + 0.0841093i
\(745\) 0 0
\(746\) −5.35089 −0.195910
\(747\) −33.2039 + 57.5109i −1.21487 + 2.10421i
\(748\) −2.41886 + 4.18959i −0.0884423 + 0.153187i
\(749\) −15.4868 −0.565877
\(750\) 0 0
\(751\) −1.48683 2.57527i −0.0542553 0.0939729i 0.837622 0.546250i \(-0.183945\pi\)
−0.891877 + 0.452277i \(0.850612\pi\)
\(752\) −1.50000 2.59808i −0.0546994 0.0947421i
\(753\) −20.5132 −0.747541
\(754\) −7.16228 4.35293i −0.260835 0.158524i
\(755\) 0 0
\(756\) −6.32456 10.9545i −0.230022 0.398410i
\(757\) 13.9189 + 24.1082i 0.505890 + 0.876227i 0.999977 + 0.00681414i \(0.00216903\pi\)
−0.494087 + 0.869412i \(0.664498\pi\)
\(758\) −3.59431 + 6.22552i −0.130551 + 0.226121i
\(759\) 78.9737 2.86656
\(760\) 0 0
\(761\) −21.1491 + 36.6313i −0.766655 + 1.32788i 0.172713 + 0.984972i \(0.444747\pi\)
−0.939367 + 0.342913i \(0.888587\pi\)
\(762\) −29.4868 −1.06820
\(763\) 7.32456 12.6865i 0.265167 0.459282i
\(764\) 4.74342 + 8.21584i 0.171611 + 0.297239i
\(765\) 0 0
\(766\) 30.0000 1.08394
\(767\) −7.16228 4.35293i −0.258615 0.157175i
\(768\) 3.16228 0.114109
\(769\) 3.16228 + 5.47723i 0.114035 + 0.197514i 0.917393 0.397981i \(-0.130289\pi\)
−0.803359 + 0.595495i \(0.796956\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000 0.143963
\(773\) −10.8925 + 18.8664i −0.391777 + 0.678578i −0.992684 0.120741i \(-0.961473\pi\)
0.600907 + 0.799319i \(0.294806\pi\)
\(774\) −7.00000 + 12.1244i −0.251610 + 0.435801i
\(775\) 0 0
\(776\) −5.74342 + 9.94789i −0.206177 + 0.357108i
\(777\) 9.74342 + 16.8761i 0.349543 + 0.605426i
\(778\) 9.58114 + 16.5950i 0.343500 + 0.594960i
\(779\) −18.9737 −0.679802
\(780\) 0 0
\(781\) −34.6491 −1.23984
\(782\) 3.48683 + 6.03937i 0.124689 + 0.215967i
\(783\) 14.7018 + 25.4642i 0.525399 + 0.910017i
\(784\) 3.00000 5.19615i 0.107143 0.185577i
\(785\) 0 0
\(786\) 32.9057 56.9943i 1.17371 2.03292i
\(787\) −0.932028 + 1.61432i −0.0332232 + 0.0575443i −0.882159 0.470952i \(-0.843911\pi\)
0.848936 + 0.528496i \(0.177244\pi\)
\(788\) −0.486833 −0.0173427
\(789\) 21.5811 37.3796i 0.768309 1.33075i
\(790\) 0 0
\(791\) 8.32456 + 14.4186i 0.295987 + 0.512665i
\(792\) 29.1359 1.03530
\(793\) −35.3925 21.5101i −1.25683 0.763846i
\(794\) 19.5132 0.692496
\(795\) 0 0
\(796\) 13.3246 + 23.0788i 0.472276 + 0.818007i
\(797\) −13.1623 + 22.7977i −0.466232 + 0.807537i −0.999256 0.0385627i \(-0.987722\pi\)
0.533024 + 0.846100i \(0.321055\pi\)
\(798\) 25.8114 0.913713
\(799\) 1.74342 3.01969i 0.0616776 0.106829i
\(800\) 0 0
\(801\) 37.2719 1.31694
\(802\) −7.98683 + 13.8336i −0.282025 + 0.488481i
\(803\) −19.0680 33.0267i −0.672894 1.16549i
\(804\) 16.3246 + 28.2750i 0.575723 + 0.997181i
\(805\) 0 0
\(806\) −2.64911 + 1.45098i −0.0933109 + 0.0511085i
\(807\) 67.9473 2.39186
\(808\) −2.41886 4.18959i −0.0850952 0.147389i
\(809\) 1.16228 + 2.01312i 0.0408635 + 0.0707777i 0.885734 0.464194i \(-0.153656\pi\)
−0.844870 + 0.534971i \(0.820322\pi\)
\(810\) 0 0
\(811\) 0.162278 0.00569834 0.00284917 0.999996i \(-0.499093\pi\)
0.00284917 + 0.999996i \(0.499093\pi\)
\(812\) 1.16228 2.01312i 0.0407879 0.0706468i
\(813\) 10.0000 17.3205i 0.350715 0.607457i
\(814\) −25.6491 −0.899001
\(815\) 0 0
\(816\) 1.83772 + 3.18303i 0.0643331 + 0.111428i
\(817\) −8.16228 14.1375i −0.285562 0.494608i
\(818\) −3.64911 −0.127588
\(819\) 22.1359 12.1244i 0.773492 0.423659i
\(820\) 0 0
\(821\) −0.581139 1.00656i −0.0202819 0.0351293i 0.855706 0.517462i \(-0.173123\pi\)
−0.875988 + 0.482333i \(0.839790\pi\)
\(822\) 5.51317 + 9.54909i 0.192294 + 0.333063i
\(823\) 23.5000 40.7032i 0.819159 1.41882i −0.0871445 0.996196i \(-0.527774\pi\)
0.906303 0.422628i \(-0.138892\pi\)
\(824\) 13.3246 0.464183
\(825\) 0 0
\(826\) 1.16228 2.01312i 0.0404408 0.0700455i
\(827\) 32.5132 1.13059 0.565297 0.824888i \(-0.308762\pi\)
0.565297 + 0.824888i \(0.308762\pi\)
\(828\) 21.0000 36.3731i 0.729800 1.26405i
\(829\) −16.0000 27.7128i −0.555703 0.962506i −0.997848 0.0655624i \(-0.979116\pi\)
0.442145 0.896943i \(-0.354217\pi\)
\(830\) 0 0
\(831\) −64.7851 −2.24737
\(832\) −0.0811388 + 3.60464i −0.00281298 + 0.124968i
\(833\) 6.97367 0.241623
\(834\) −9.23025 15.9873i −0.319617 0.553594i
\(835\) 0 0
\(836\) −16.9868 + 29.4221i −0.587502 + 1.01758i
\(837\) 10.5964 0.366267
\(838\) −5.32456 + 9.22240i −0.183934 + 0.318583i
\(839\) 8.41886 14.5819i 0.290651 0.503423i −0.683313 0.730126i \(-0.739461\pi\)
0.973964 + 0.226703i \(0.0727947\pi\)
\(840\) 0 0
\(841\) 11.7982 20.4351i 0.406835 0.704659i
\(842\) 1.58114 + 2.73861i 0.0544896 + 0.0943788i
\(843\) −30.0000 51.9615i −1.03325 1.78965i
\(844\) 18.1623 0.625171
\(845\) 0 0
\(846\) −21.0000 −0.721995
\(847\) −3.16228 5.47723i −0.108657 0.188200i
\(848\) 2.08114 + 3.60464i 0.0714666 + 0.123784i
\(849\) −34.7851 + 60.2495i −1.19382 + 2.06776i
\(850\) 0 0
\(851\) −18.4868 + 32.0201i −0.633720 + 1.09764i
\(852\) −13.1623 + 22.7977i −0.450932 + 0.781037i
\(853\) 32.2719 1.10497 0.552484 0.833523i \(-0.313680\pi\)
0.552484 + 0.833523i \(0.313680\pi\)
\(854\) 5.74342 9.94789i 0.196536 0.340410i
\(855\) 0 0
\(856\) −7.74342 13.4120i −0.264665 0.458412i
\(857\) 14.1359 0.482875 0.241437 0.970416i \(-0.422381\pi\)
0.241437 + 0.970416i \(0.422381\pi\)
\(858\) −1.06797 + 47.4452i −0.0364600 + 1.61975i
\(859\) 2.86406 0.0977203 0.0488602 0.998806i \(-0.484441\pi\)
0.0488602 + 0.998806i \(0.484441\pi\)
\(860\) 0 0
\(861\) −3.67544 6.36606i −0.125259 0.216955i
\(862\) −1.74342 + 3.01969i −0.0593810 + 0.102851i
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 6.32456 10.9545i 0.215166 0.372678i
\(865\) 0 0
\(866\) −6.32456 −0.214917
\(867\) 24.7434 42.8569i 0.840330 1.45550i
\(868\) −0.418861 0.725489i −0.0142171 0.0246247i
\(869\) 11.4189 + 19.7780i 0.387358 + 0.670924i
\(870\) 0 0
\(871\) −32.6491 + 17.8827i −1.10627 + 0.605931i
\(872\) 14.6491 0.496081
\(873\) 40.2039 + 69.6352i 1.36070 + 2.35680i
\(874\) 24.4868 + 42.4124i 0.828279 + 1.43462i
\(875\) 0 0
\(876\) −28.9737 −0.978929
\(877\) −18.1623 + 31.4580i −0.613297 + 1.06226i 0.377384 + 0.926057i \(0.376824\pi\)
−0.990681 + 0.136204i \(0.956510\pi\)
\(878\) −13.9057 + 24.0854i −0.469294 + 0.812842i
\(879\) 89.0569 3.00382
\(880\) 0 0
\(881\) 10.0132 + 17.3433i 0.337352 + 0.584311i 0.983934 0.178534i \(-0.0571354\pi\)
−0.646582 + 0.762845i \(0.723802\pi\)
\(882\) −21.0000 36.3731i −0.707107 1.22474i
\(883\) −16.5132 −0.555712 −0.277856 0.960623i \(-0.589624\pi\)
−0.277856 + 0.960623i \(0.589624\pi\)
\(884\) −3.67544 + 2.01312i −0.123619 + 0.0677087i
\(885\) 0 0
\(886\) −0.675445 1.16990i −0.0226920 0.0393037i
\(887\) −13.3114 23.0560i −0.446953 0.774145i 0.551233 0.834351i \(-0.314157\pi\)
−0.998186 + 0.0602064i \(0.980824\pi\)
\(888\) −9.74342 + 16.8761i −0.326968 + 0.566325i
\(889\) 9.32456 0.312736
\(890\) 0 0
\(891\) 39.5416 68.4881i 1.32469 2.29444i
\(892\) 9.32456 0.312209
\(893\) 12.2434 21.2062i 0.409710 0.709639i
\(894\) 5.81139 + 10.0656i 0.194362 + 0.336645i
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 58.4605 + 35.5298i 1.95194 + 1.18631i
\(898\) 39.9737 1.33394
\(899\) 0.973666 + 1.68644i 0.0324736 + 0.0562459i
\(900\) 0 0
\(901\) −2.41886 + 4.18959i −0.0805839 + 0.139575i
\(902\) 9.67544 0.322157
\(903\) 3.16228 5.47723i 0.105234 0.182271i
\(904\) −8.32456 + 14.4186i −0.276871 + 0.479554i
\(905\) 0 0
\(906\) −17.6491 + 30.5692i −0.586352 + 1.01559i
\(907\) 14.0680 + 24.3664i 0.467119 + 0.809074i 0.999294 0.0375599i \(-0.0119585\pi\)
−0.532175 + 0.846634i \(0.678625\pi\)
\(908\) −1.16228 2.01312i −0.0385715 0.0668079i
\(909\) −33.8641 −1.12320
\(910\) 0 0
\(911\) 33.2982 1.10322 0.551610 0.834102i \(-0.314014\pi\)
0.551610 + 0.834102i \(0.314014\pi\)
\(912\) 12.9057 + 22.3533i 0.427350 + 0.740192i
\(913\) 19.7434 + 34.1966i 0.653412 + 1.13174i
\(914\) 16.2302 28.1116i 0.536849 0.929850i
\(915\) 0 0
\(916\) −4.58114 + 7.93477i −0.151365 + 0.262172i
\(917\) −10.4057 + 18.0232i −0.343626 + 0.595178i
\(918\) 14.7018 0.485231
\(919\) 12.1623 21.0657i 0.401197 0.694893i −0.592674 0.805442i \(-0.701928\pi\)
0.993871 + 0.110550i \(0.0352611\pi\)
\(920\) 0 0
\(921\) 44.7851 + 77.5700i 1.47572 + 2.55602i
\(922\) −2.51317 −0.0827667
\(923\) −25.6491 15.5885i −0.844251 0.513100i
\(924\) −13.1623 −0.433007
\(925\) 0 0
\(926\) 0.162278 + 0.281073i 0.00533277 + 0.00923664i
\(927\) 46.6359 80.7758i 1.53173 2.65303i
\(928\) 2.32456 0.0763073
\(929\) −27.0000 + 46.7654i −0.885841 + 1.53432i −0.0410949 + 0.999155i \(0.513085\pi\)
−0.844746 + 0.535167i \(0.820249\pi\)
\(930\) 0 0
\(931\) 48.9737 1.60505
\(932\) −4.74342 + 8.21584i −0.155376 + 0.269119i
\(933\) −24.4868 42.4124i −0.801663 1.38852i
\(934\) −3.67544 6.36606i −0.120264 0.208304i
\(935\) 0 0
\(936\) 21.5680 + 13.1081i 0.704971 + 0.428452i
\(937\) −40.3246 −1.31735 −0.658673 0.752429i \(-0.728882\pi\)
−0.658673 + 0.752429i \(0.728882\pi\)
\(938\) −5.16228 8.94133i −0.168554 0.291945i
\(939\) 6.83772 + 11.8433i 0.223141 + 0.386491i
\(940\) 0 0
\(941\) 9.67544 0.315410 0.157705 0.987486i \(-0.449590\pi\)
0.157705 + 0.987486i \(0.449590\pi\)
\(942\) 9.23025 15.9873i 0.300738 0.520893i
\(943\) 6.97367 12.0787i 0.227094 0.393338i
\(944\) 2.32456 0.0756578
\(945\) 0 0
\(946\) 4.16228 + 7.20928i 0.135327 + 0.234394i
\(947\) 14.9057 + 25.8174i 0.484370 + 0.838953i 0.999839 0.0179549i \(-0.00571554\pi\)
−0.515469 + 0.856908i \(0.672382\pi\)
\(948\) 17.3509 0.563531
\(949\) 0.743416 33.0267i 0.0241323 1.07209i
\(950\) 0 0
\(951\) −10.2566 17.7649i −0.332593 0.576067i
\(952\) −0.581139 1.00656i −0.0188348 0.0326229i
\(953\) −10.7434 + 18.6081i −0.348013 + 0.602777i −0.985896 0.167356i \(-0.946477\pi\)
0.637883 + 0.770133i \(0.279810\pi\)
\(954\) 29.1359 0.943311
\(955\) 0 0
\(956\) −2.41886 + 4.18959i −0.0782316 + 0.135501i
\(957\) 30.5964 0.989043
\(958\) 16.0680 27.8305i 0.519133 0.899164i
\(959\) −1.74342 3.01969i −0.0562979 0.0975107i
\(960\) 0 0
\(961\) −30.2982 −0.977362
\(962\) −18.9868 11.5394i −0.612160 0.372045i
\(963\) −108.408 −3.49339
\(964\) −5.98683 10.3695i −0.192823 0.333979i
\(965\) 0 0
\(966\) −9.48683 + 16.4317i −0.305234 + 0.528681i
\(967\) −46.6228 −1.49929 −0.749644 0.661842i \(-0.769775\pi\)
−0.749644 + 0.661842i \(0.769775\pi\)
\(968\) 3.16228 5.47723i 0.101639 0.176045i
\(969\) −15.0000 + 25.9808i −0.481869 + 0.834622i
\(970\) 0 0
\(971\) 4.89253 8.47411i 0.157009 0.271947i −0.776780 0.629772i \(-0.783148\pi\)
0.933789 + 0.357825i \(0.116482\pi\)
\(972\) −11.0680 19.1703i −0.355005 0.614887i
\(973\) 2.91886 + 5.05562i 0.0935744 + 0.162076i
\(974\) −1.00000 −0.0320421
\(975\) 0 0
\(976\) 11.4868 0.367685
\(977\) −9.48683 16.4317i −0.303511 0.525696i 0.673418 0.739262i \(-0.264825\pi\)
−0.976929 + 0.213566i \(0.931492\pi\)
\(978\) 2.35089 + 4.07186i 0.0751732 + 0.130204i
\(979\) 11.0811 19.1931i 0.354155 0.613414i
\(980\) 0 0
\(981\) 51.2719 88.8055i 1.63699 2.83534i
\(982\) 18.2434 31.5985i 0.582171 1.00835i
\(983\) −55.6491 −1.77493 −0.887465 0.460874i \(-0.847536\pi\)
−0.887465 + 0.460874i \(0.847536\pi\)
\(984\) 3.67544 6.36606i 0.117169 0.202942i
\(985\) 0 0
\(986\) 1.35089 + 2.33981i 0.0430211 + 0.0745147i
\(987\) 9.48683 0.301969
\(988\) −25.8114 + 14.1375i −0.821170 + 0.449773i
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) −5.64911 9.78455i −0.179450 0.310816i 0.762242 0.647292i \(-0.224098\pi\)
−0.941692 + 0.336475i \(0.890765\pi\)
\(992\) 0.418861 0.725489i 0.0132989 0.0230343i
\(993\) 2.05267 0.0651395
\(994\) 4.16228 7.20928i 0.132019 0.228664i
\(995\) 0 0
\(996\) 30.0000 0.950586
\(997\) 9.08114 15.7290i 0.287603 0.498142i −0.685634 0.727946i \(-0.740475\pi\)
0.973237 + 0.229804i \(0.0738085\pi\)
\(998\) −11.0000 19.0526i −0.348199 0.603098i
\(999\) 38.9737 + 67.5044i 1.23307 + 2.13574i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.h.601.1 4
5.2 odd 4 650.2.o.g.549.1 8
5.3 odd 4 650.2.o.g.549.4 8
5.4 even 2 130.2.e.c.81.2 yes 4
13.3 even 3 8450.2.a.bc.1.2 2
13.9 even 3 inner 650.2.e.h.451.1 4
13.10 even 6 8450.2.a.bj.1.2 2
15.14 odd 2 1170.2.i.q.991.1 4
20.19 odd 2 1040.2.q.m.81.1 4
65.4 even 6 1690.2.e.m.191.2 4
65.9 even 6 130.2.e.c.61.2 4
65.19 odd 12 1690.2.l.k.1161.4 8
65.22 odd 12 650.2.o.g.399.4 8
65.24 odd 12 1690.2.d.g.1351.3 4
65.29 even 6 1690.2.a.n.1.1 2
65.34 odd 4 1690.2.l.k.361.4 8
65.44 odd 4 1690.2.l.k.361.2 8
65.48 odd 12 650.2.o.g.399.1 8
65.49 even 6 1690.2.a.k.1.1 2
65.54 odd 12 1690.2.d.g.1351.1 4
65.59 odd 12 1690.2.l.k.1161.2 8
65.64 even 2 1690.2.e.m.991.2 4
195.74 odd 6 1170.2.i.q.451.1 4
260.139 odd 6 1040.2.q.m.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.c.61.2 4 65.9 even 6
130.2.e.c.81.2 yes 4 5.4 even 2
650.2.e.h.451.1 4 13.9 even 3 inner
650.2.e.h.601.1 4 1.1 even 1 trivial
650.2.o.g.399.1 8 65.48 odd 12
650.2.o.g.399.4 8 65.22 odd 12
650.2.o.g.549.1 8 5.2 odd 4
650.2.o.g.549.4 8 5.3 odd 4
1040.2.q.m.81.1 4 20.19 odd 2
1040.2.q.m.321.1 4 260.139 odd 6
1170.2.i.q.451.1 4 195.74 odd 6
1170.2.i.q.991.1 4 15.14 odd 2
1690.2.a.k.1.1 2 65.49 even 6
1690.2.a.n.1.1 2 65.29 even 6
1690.2.d.g.1351.1 4 65.54 odd 12
1690.2.d.g.1351.3 4 65.24 odd 12
1690.2.e.m.191.2 4 65.4 even 6
1690.2.e.m.991.2 4 65.64 even 2
1690.2.l.k.361.2 8 65.44 odd 4
1690.2.l.k.361.4 8 65.34 odd 4
1690.2.l.k.1161.2 8 65.59 odd 12
1690.2.l.k.1161.4 8 65.19 odd 12
8450.2.a.bc.1.2 2 13.3 even 3
8450.2.a.bj.1.2 2 13.10 even 6