gp: [N,k,chi] = [650,2,Mod(451,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.451");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,2,0,-2,0,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 10 x 2 + 100 x^{4} + 10x^{2} + 100 x 4 + 1 0 x 2 + 1 0 0
x^4 + 10*x^2 + 100
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 10 ( \nu^{2} ) / 10 ( ν 2 ) / 1 0
(v^2) / 10
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 10 ( \nu^{3} ) / 10 ( ν 3 ) / 1 0
(v^3) / 10
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
10 β 2 10\beta_{2} 1 0 β 2
10*b2
ν 3 \nu^{3} ν 3 = = =
10 β 3 10\beta_{3} 1 0 β 3
10*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
β 2 \beta_{2} β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 10 T 3 2 + 100 T_{3}^{4} + 10T_{3}^{2} + 100 T 3 4 + 1 0 T 3 2 + 1 0 0
T3^4 + 10*T3^2 + 100
T 7 2 + T 7 + 1 T_{7}^{2} + T_{7} + 1 T 7 2 + T 7 + 1
T7^2 + T7 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
3 3 3
T 4 + 10 T 2 + 100 T^{4} + 10T^{2} + 100 T 4 + 1 0 T 2 + 1 0 0
T^4 + 10*T^2 + 100
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
11 11 1 1
T 4 − 2 T 3 + ⋯ + 81 T^{4} - 2 T^{3} + \cdots + 81 T 4 − 2 T 3 + ⋯ + 8 1
T^4 - 2*T^3 + 13*T^2 + 18*T + 81
13 13 1 3
T 4 − 6 T 3 + ⋯ + 169 T^{4} - 6 T^{3} + \cdots + 169 T 4 − 6 T 3 + ⋯ + 1 6 9
T^4 - 6*T^3 + 25*T^2 - 78*T + 169
17 17 1 7
T 4 + 4 T 3 + ⋯ + 36 T^{4} + 4 T^{3} + \cdots + 36 T 4 + 4 T 3 + ⋯ + 3 6
T^4 + 4*T^3 + 22*T^2 - 24*T + 36
19 19 1 9
T 4 − 10 T 3 + ⋯ + 225 T^{4} - 10 T^{3} + \cdots + 225 T 4 − 1 0 T 3 + ⋯ + 2 2 5
T^4 - 10*T^3 + 85*T^2 - 150*T + 225
23 23 2 3
( T 2 − 6 T + 36 ) 2 (T^{2} - 6 T + 36)^{2} ( T 2 − 6 T + 3 6 ) 2
(T^2 - 6*T + 36)^2
29 29 2 9
T 4 + 8 T 3 + ⋯ + 576 T^{4} + 8 T^{3} + \cdots + 576 T 4 + 8 T 3 + ⋯ + 5 7 6
T^4 + 8*T^3 + 88*T^2 - 192*T + 576
31 31 3 1
( T 2 − 8 T + 6 ) 2 (T^{2} - 8 T + 6)^{2} ( T 2 − 8 T + 6 ) 2
(T^2 - 8*T + 6)^2
37 37 3 7
T 4 − 6 T 3 + ⋯ + 1 T^{4} - 6 T^{3} + \cdots + 1 T 4 − 6 T 3 + ⋯ + 1
T^4 - 6*T^3 + 37*T^2 + 6*T + 1
41 41 4 1
T 4 − 8 T 3 + ⋯ + 576 T^{4} - 8 T^{3} + \cdots + 576 T 4 − 8 T 3 + ⋯ + 5 7 6
T^4 - 8*T^3 + 88*T^2 + 192*T + 576
43 43 4 3
( T 2 − 2 T + 4 ) 2 (T^{2} - 2 T + 4)^{2} ( T 2 − 2 T + 4 ) 2
(T^2 - 2*T + 4)^2
47 47 4 7
( T − 3 ) 4 (T - 3)^{4} ( T − 3 ) 4
(T - 3)^4
53 53 5 3
( T 2 + 2 T − 9 ) 2 (T^{2} + 2 T - 9)^{2} ( T 2 + 2 T − 9 ) 2
(T^2 + 2*T - 9)^2
59 59 5 9
T 4 − 8 T 3 + ⋯ + 576 T^{4} - 8 T^{3} + \cdots + 576 T 4 − 8 T 3 + ⋯ + 5 7 6
T^4 - 8*T^3 + 88*T^2 + 192*T + 576
61 61 6 1
T 4 + 4 T 3 + ⋯ + 7396 T^{4} + 4 T^{3} + \cdots + 7396 T 4 + 4 T 3 + ⋯ + 7 3 9 6
T^4 + 4*T^3 + 102*T^2 - 344*T + 7396
67 67 6 7
T 4 − 8 T 3 + ⋯ + 576 T^{4} - 8 T^{3} + \cdots + 576 T 4 − 8 T 3 + ⋯ + 5 7 6
T^4 - 8*T^3 + 88*T^2 + 192*T + 576
71 71 7 1
T 4 + 4 T 3 + ⋯ + 1296 T^{4} + 4 T^{3} + \cdots + 1296 T 4 + 4 T 3 + ⋯ + 1 2 9 6
T^4 + 4*T^3 + 52*T^2 - 144*T + 1296
73 73 7 3
( T 2 + 12 T + 26 ) 2 (T^{2} + 12 T + 26)^{2} ( T 2 + 1 2 T + 2 6 ) 2
(T^2 + 12*T + 26)^2
79 79 7 9
( T 2 + 8 T − 74 ) 2 (T^{2} + 8 T - 74)^{2} ( T 2 + 8 T − 7 4 ) 2
(T^2 + 8*T - 74)^2
83 83 8 3
( T 2 − 90 ) 2 (T^{2} - 90)^{2} ( T 2 − 9 0 ) 2
(T^2 - 90)^2
89 89 8 9
T 4 − 2 T 3 + ⋯ + 1521 T^{4} - 2 T^{3} + \cdots + 1521 T 4 − 2 T 3 + ⋯ + 1 5 2 1
T^4 - 2*T^3 + 43*T^2 + 78*T + 1521
97 97 9 7
T 4 − 4 T 3 + ⋯ + 7396 T^{4} - 4 T^{3} + \cdots + 7396 T 4 − 4 T 3 + ⋯ + 7 3 9 6
T^4 - 4*T^3 + 102*T^2 + 344*T + 7396
show more
show less