Properties

Label 650.2.e.h
Level 650650
Weight 22
Character orbit 650.e
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,10)\Q(\sqrt{-3}, \sqrt{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+10x2+100 x^{4} + 10x^{2} + 100 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q2β1q3+β2q4+(β3β1)q6+β2q7q8+7β2q9+(β2+β1+1)q11β3q12+(β3+β2+β1+2)q13++(7β37)q99+O(q100) q + (\beta_{2} + 1) q^{2} - \beta_1 q^{3} + \beta_{2} q^{4} + ( - \beta_{3} - \beta_1) q^{6} + \beta_{2} q^{7} - q^{8} + 7 \beta_{2} q^{9} + (\beta_{2} + \beta_1 + 1) q^{11} - \beta_{3} q^{12} + (\beta_{3} + \beta_{2} + \beta_1 + 2) q^{13}+ \cdots + (7 \beta_{3} - 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q42q74q814q9+2q11+6q134q142q164q1728q18+10q192q22+12q232q288q29+16q31+2q32+28q99+O(q100) 4 q + 2 q^{2} - 2 q^{4} - 2 q^{7} - 4 q^{8} - 14 q^{9} + 2 q^{11} + 6 q^{13} - 4 q^{14} - 2 q^{16} - 4 q^{17} - 28 q^{18} + 10 q^{19} - 2 q^{22} + 12 q^{23} - 2 q^{28} - 8 q^{29} + 16 q^{31} + 2 q^{32}+ \cdots - 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+10x2+100 x^{4} + 10x^{2} + 100 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/10 ( \nu^{2} ) / 10 Copy content Toggle raw display
β3\beta_{3}== (ν3)/10 ( \nu^{3} ) / 10 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 10β2 10\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 10β3 10\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
451.1
1.58114 2.73861i
−1.58114 + 2.73861i
1.58114 + 2.73861i
−1.58114 2.73861i
0.500000 0.866025i −1.58114 + 2.73861i −0.500000 0.866025i 0 1.58114 + 2.73861i −0.500000 0.866025i −1.00000 −3.50000 6.06218i 0
451.2 0.500000 0.866025i 1.58114 2.73861i −0.500000 0.866025i 0 −1.58114 2.73861i −0.500000 0.866025i −1.00000 −3.50000 6.06218i 0
601.1 0.500000 + 0.866025i −1.58114 2.73861i −0.500000 + 0.866025i 0 1.58114 2.73861i −0.500000 + 0.866025i −1.00000 −3.50000 + 6.06218i 0
601.2 0.500000 + 0.866025i 1.58114 + 2.73861i −0.500000 + 0.866025i 0 −1.58114 + 2.73861i −0.500000 + 0.866025i −1.00000 −3.50000 + 6.06218i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.e.h 4
5.b even 2 1 130.2.e.c 4
5.c odd 4 2 650.2.o.g 8
13.c even 3 1 inner 650.2.e.h 4
13.c even 3 1 8450.2.a.bc 2
13.e even 6 1 8450.2.a.bj 2
15.d odd 2 1 1170.2.i.q 4
20.d odd 2 1 1040.2.q.m 4
65.d even 2 1 1690.2.e.m 4
65.g odd 4 2 1690.2.l.k 8
65.l even 6 1 1690.2.a.k 2
65.l even 6 1 1690.2.e.m 4
65.n even 6 1 130.2.e.c 4
65.n even 6 1 1690.2.a.n 2
65.q odd 12 2 650.2.o.g 8
65.s odd 12 2 1690.2.d.g 4
65.s odd 12 2 1690.2.l.k 8
195.x odd 6 1 1170.2.i.q 4
260.v odd 6 1 1040.2.q.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.c 4 5.b even 2 1
130.2.e.c 4 65.n even 6 1
650.2.e.h 4 1.a even 1 1 trivial
650.2.e.h 4 13.c even 3 1 inner
650.2.o.g 8 5.c odd 4 2
650.2.o.g 8 65.q odd 12 2
1040.2.q.m 4 20.d odd 2 1
1040.2.q.m 4 260.v odd 6 1
1170.2.i.q 4 15.d odd 2 1
1170.2.i.q 4 195.x odd 6 1
1690.2.a.k 2 65.l even 6 1
1690.2.a.n 2 65.n even 6 1
1690.2.d.g 4 65.s odd 12 2
1690.2.e.m 4 65.d even 2 1
1690.2.e.m 4 65.l even 6 1
1690.2.l.k 8 65.g odd 4 2
1690.2.l.k 8 65.s odd 12 2
8450.2.a.bc 2 13.c even 3 1
8450.2.a.bj 2 13.e even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T34+10T32+100 T_{3}^{4} + 10T_{3}^{2} + 100 Copy content Toggle raw display
T72+T7+1 T_{7}^{2} + T_{7} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4+10T2+100 T^{4} + 10T^{2} + 100 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
1111 T42T3++81 T^{4} - 2 T^{3} + \cdots + 81 Copy content Toggle raw display
1313 T46T3++169 T^{4} - 6 T^{3} + \cdots + 169 Copy content Toggle raw display
1717 T4+4T3++36 T^{4} + 4 T^{3} + \cdots + 36 Copy content Toggle raw display
1919 T410T3++225 T^{4} - 10 T^{3} + \cdots + 225 Copy content Toggle raw display
2323 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
2929 T4+8T3++576 T^{4} + 8 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 (T28T+6)2 (T^{2} - 8 T + 6)^{2} Copy content Toggle raw display
3737 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T48T3++576 T^{4} - 8 T^{3} + \cdots + 576 Copy content Toggle raw display
4343 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
4747 (T3)4 (T - 3)^{4} Copy content Toggle raw display
5353 (T2+2T9)2 (T^{2} + 2 T - 9)^{2} Copy content Toggle raw display
5959 T48T3++576 T^{4} - 8 T^{3} + \cdots + 576 Copy content Toggle raw display
6161 T4+4T3++7396 T^{4} + 4 T^{3} + \cdots + 7396 Copy content Toggle raw display
6767 T48T3++576 T^{4} - 8 T^{3} + \cdots + 576 Copy content Toggle raw display
7171 T4+4T3++1296 T^{4} + 4 T^{3} + \cdots + 1296 Copy content Toggle raw display
7373 (T2+12T+26)2 (T^{2} + 12 T + 26)^{2} Copy content Toggle raw display
7979 (T2+8T74)2 (T^{2} + 8 T - 74)^{2} Copy content Toggle raw display
8383 (T290)2 (T^{2} - 90)^{2} Copy content Toggle raw display
8989 T42T3++1521 T^{4} - 2 T^{3} + \cdots + 1521 Copy content Toggle raw display
9797 T44T3++7396 T^{4} - 4 T^{3} + \cdots + 7396 Copy content Toggle raw display
show more
show less