Properties

Label 1690.2.a.k
Level $1690$
Weight $2$
Character orbit 1690.a
Self dual yes
Analytic conductor $13.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} + q^{5} - \beta q^{6} + q^{7} - q^{8} + 7 q^{9} - q^{10} + ( - \beta + 1) q^{11} + \beta q^{12} - q^{14} + \beta q^{15} + q^{16} + ( - \beta - 2) q^{17} - 7 q^{18} + \cdots + ( - 7 \beta + 7) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} + 2 q^{7} - 2 q^{8} + 14 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{14} + 2 q^{16} - 4 q^{17} - 14 q^{18} + 10 q^{19} + 2 q^{20} - 2 q^{22} + 12 q^{23} + 2 q^{25} + 2 q^{28} + 8 q^{29}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
−1.00000 −3.16228 1.00000 1.00000 3.16228 1.00000 −1.00000 7.00000 −1.00000
1.2 −1.00000 3.16228 1.00000 1.00000 −3.16228 1.00000 −1.00000 7.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.a.k 2
5.b even 2 1 8450.2.a.bj 2
13.b even 2 1 1690.2.a.n 2
13.c even 3 2 1690.2.e.m 4
13.d odd 4 2 1690.2.d.g 4
13.e even 6 2 130.2.e.c 4
13.f odd 12 4 1690.2.l.k 8
39.h odd 6 2 1170.2.i.q 4
52.i odd 6 2 1040.2.q.m 4
65.d even 2 1 8450.2.a.bc 2
65.l even 6 2 650.2.e.h 4
65.r odd 12 4 650.2.o.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.c 4 13.e even 6 2
650.2.e.h 4 65.l even 6 2
650.2.o.g 8 65.r odd 12 4
1040.2.q.m 4 52.i odd 6 2
1170.2.i.q 4 39.h odd 6 2
1690.2.a.k 2 1.a even 1 1 trivial
1690.2.a.n 2 13.b even 2 1
1690.2.d.g 4 13.d odd 4 2
1690.2.e.m 4 13.c even 3 2
1690.2.l.k 8 13.f odd 12 4
8450.2.a.bc 2 65.d even 2 1
8450.2.a.bj 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\):

\( T_{3}^{2} - 10 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 9 \) Copy content Toggle raw display
\( T_{31}^{2} + 8T_{31} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 10 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 9 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 6 \) Copy content Toggle raw display
$19$ \( T^{2} - 10T + 15 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 8T - 24 \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 6 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 1 \) Copy content Toggle raw display
$41$ \( T^{2} - 8T - 24 \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 9 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 24 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 86 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 24 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 26 \) Copy content Toggle raw display
$79$ \( T^{2} + 8T - 74 \) Copy content Toggle raw display
$83$ \( T^{2} - 90 \) Copy content Toggle raw display
$89$ \( T^{2} - 2T - 39 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 86 \) Copy content Toggle raw display
show more
show less