Defining parameters
Level: | \( N \) | \(=\) | \( 1690 = 2 \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1690.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(546\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1690))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 53 | 247 |
Cusp forms | 245 | 53 | 192 |
Eisenstein series | 55 | 0 | 55 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | $+$ | \(9\) |
\(+\) | \(+\) | \(-\) | $-$ | \(5\) |
\(+\) | \(-\) | \(+\) | $-$ | \(8\) |
\(+\) | \(-\) | \(-\) | $+$ | \(5\) |
\(-\) | \(+\) | \(+\) | $-$ | \(8\) |
\(-\) | \(+\) | \(-\) | $+$ | \(5\) |
\(-\) | \(-\) | \(+\) | $+$ | \(2\) |
\(-\) | \(-\) | \(-\) | $-$ | \(11\) |
Plus space | \(+\) | \(21\) | ||
Minus space | \(-\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1690))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1690))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1690)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(845))\)\(^{\oplus 2}\)