Properties

Label 650.2.e.d.601.1
Level $650$
Weight $2$
Character 650.601
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-1,-2,0,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.1
Root \(1.39564 + 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 650.601
Dual form 650.2.e.d.451.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.39564 - 2.41733i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.39564 + 2.41733i) q^{6} +(-0.895644 + 1.55130i) q^{7} +1.00000 q^{8} +(-2.39564 + 4.14938i) q^{9} +(1.89564 + 3.28335i) q^{11} +2.79129 q^{12} +(3.50000 - 0.866025i) q^{13} +1.79129 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.395644 + 0.685275i) q^{17} +4.79129 q^{18} +(-2.50000 + 4.33013i) q^{19} +5.00000 q^{21} +(1.89564 - 3.28335i) q^{22} +(2.29129 + 3.96863i) q^{23} +(-1.39564 - 2.41733i) q^{24} +(-2.50000 - 2.59808i) q^{26} +5.00000 q^{27} +(-0.895644 - 1.55130i) q^{28} +(1.89564 + 3.28335i) q^{29} +9.58258 q^{31} +(-0.500000 + 0.866025i) q^{32} +(5.29129 - 9.16478i) q^{33} +0.791288 q^{34} +(-2.39564 - 4.14938i) q^{36} +(-3.18693 - 5.51993i) q^{37} +5.00000 q^{38} +(-6.97822 - 7.25198i) q^{39} +(-6.08258 - 10.5353i) q^{41} +(-2.50000 - 4.33013i) q^{42} +(-5.47822 + 9.48855i) q^{43} -3.79129 q^{44} +(2.29129 - 3.96863i) q^{46} -0.791288 q^{47} +(-1.39564 + 2.41733i) q^{48} +(1.89564 + 3.28335i) q^{49} +2.20871 q^{51} +(-1.00000 + 3.46410i) q^{52} -4.58258 q^{53} +(-2.50000 - 4.33013i) q^{54} +(-0.895644 + 1.55130i) q^{56} +13.9564 q^{57} +(1.89564 - 3.28335i) q^{58} +(2.29129 - 3.96863i) q^{59} +(4.29129 - 7.43273i) q^{61} +(-4.79129 - 8.29875i) q^{62} +(-4.29129 - 7.43273i) q^{63} +1.00000 q^{64} -10.5826 q^{66} +(5.50000 + 9.52628i) q^{67} +(-0.395644 - 0.685275i) q^{68} +(6.39564 - 11.0776i) q^{69} +(-3.79129 + 6.56670i) q^{71} +(-2.39564 + 4.14938i) q^{72} +7.16515 q^{73} +(-3.18693 + 5.51993i) q^{74} +(-2.50000 - 4.33013i) q^{76} -6.79129 q^{77} +(-2.79129 + 9.66930i) q^{78} +14.9564 q^{79} +(0.208712 + 0.361500i) q^{81} +(-6.08258 + 10.5353i) q^{82} +6.16515 q^{83} +(-2.50000 + 4.33013i) q^{84} +10.9564 q^{86} +(5.29129 - 9.16478i) q^{87} +(1.89564 + 3.28335i) q^{88} +(-0.313068 - 0.542250i) q^{89} +(-1.79129 + 6.20520i) q^{91} -4.58258 q^{92} +(-13.3739 - 23.1642i) q^{93} +(0.395644 + 0.685275i) q^{94} +2.79129 q^{96} +(-4.60436 + 7.97498i) q^{97} +(1.89564 - 3.28335i) q^{98} -18.1652 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{6} + q^{7} + 4 q^{8} - 5 q^{9} + 3 q^{11} + 2 q^{12} + 14 q^{13} - 2 q^{14} - 2 q^{16} + 3 q^{17} + 10 q^{18} - 10 q^{19} + 20 q^{21} + 3 q^{22} - q^{24} - 10 q^{26}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.39564 2.41733i −0.805775 1.39564i −0.915766 0.401711i \(-0.868416\pi\)
0.109991 0.993933i \(-0.464918\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) −1.39564 + 2.41733i −0.569769 + 0.986869i
\(7\) −0.895644 + 1.55130i −0.338522 + 0.586337i −0.984155 0.177311i \(-0.943260\pi\)
0.645633 + 0.763648i \(0.276593\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.39564 + 4.14938i −0.798548 + 1.38313i
\(10\) 0 0
\(11\) 1.89564 + 3.28335i 0.571558 + 0.989968i 0.996406 + 0.0847031i \(0.0269942\pi\)
−0.424848 + 0.905265i \(0.639672\pi\)
\(12\) 2.79129 0.805775
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 1.79129 0.478742
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.395644 + 0.685275i −0.0959577 + 0.166204i −0.910008 0.414591i \(-0.863925\pi\)
0.814050 + 0.580795i \(0.197258\pi\)
\(18\) 4.79129 1.12932
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) 1.89564 3.28335i 0.404153 0.700013i
\(23\) 2.29129 + 3.96863i 0.477767 + 0.827516i 0.999675 0.0254855i \(-0.00811315\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(24\) −1.39564 2.41733i −0.284885 0.493435i
\(25\) 0 0
\(26\) −2.50000 2.59808i −0.490290 0.509525i
\(27\) 5.00000 0.962250
\(28\) −0.895644 1.55130i −0.169261 0.293168i
\(29\) 1.89564 + 3.28335i 0.352012 + 0.609703i 0.986602 0.163146i \(-0.0521642\pi\)
−0.634590 + 0.772849i \(0.718831\pi\)
\(30\) 0 0
\(31\) 9.58258 1.72108 0.860541 0.509382i \(-0.170126\pi\)
0.860541 + 0.509382i \(0.170126\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 5.29129 9.16478i 0.921095 1.59538i
\(34\) 0.791288 0.135705
\(35\) 0 0
\(36\) −2.39564 4.14938i −0.399274 0.691563i
\(37\) −3.18693 5.51993i −0.523928 0.907471i −0.999612 0.0278541i \(-0.991133\pi\)
0.475684 0.879616i \(-0.342201\pi\)
\(38\) 5.00000 0.811107
\(39\) −6.97822 7.25198i −1.11741 1.16125i
\(40\) 0 0
\(41\) −6.08258 10.5353i −0.949939 1.64534i −0.745547 0.666453i \(-0.767812\pi\)
−0.204392 0.978889i \(-0.565522\pi\)
\(42\) −2.50000 4.33013i −0.385758 0.668153i
\(43\) −5.47822 + 9.48855i −0.835421 + 1.44699i 0.0582668 + 0.998301i \(0.481443\pi\)
−0.893687 + 0.448690i \(0.851891\pi\)
\(44\) −3.79129 −0.571558
\(45\) 0 0
\(46\) 2.29129 3.96863i 0.337832 0.585142i
\(47\) −0.791288 −0.115421 −0.0577106 0.998333i \(-0.518380\pi\)
−0.0577106 + 0.998333i \(0.518380\pi\)
\(48\) −1.39564 + 2.41733i −0.201444 + 0.348911i
\(49\) 1.89564 + 3.28335i 0.270806 + 0.469050i
\(50\) 0 0
\(51\) 2.20871 0.309282
\(52\) −1.00000 + 3.46410i −0.138675 + 0.480384i
\(53\) −4.58258 −0.629465 −0.314733 0.949180i \(-0.601915\pi\)
−0.314733 + 0.949180i \(0.601915\pi\)
\(54\) −2.50000 4.33013i −0.340207 0.589256i
\(55\) 0 0
\(56\) −0.895644 + 1.55130i −0.119685 + 0.207301i
\(57\) 13.9564 1.84858
\(58\) 1.89564 3.28335i 0.248910 0.431125i
\(59\) 2.29129 3.96863i 0.298300 0.516671i −0.677447 0.735572i \(-0.736914\pi\)
0.975747 + 0.218900i \(0.0702470\pi\)
\(60\) 0 0
\(61\) 4.29129 7.43273i 0.549443 0.951663i −0.448870 0.893597i \(-0.648173\pi\)
0.998313 0.0580661i \(-0.0184934\pi\)
\(62\) −4.79129 8.29875i −0.608494 1.05394i
\(63\) −4.29129 7.43273i −0.540651 0.936436i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −10.5826 −1.30263
\(67\) 5.50000 + 9.52628i 0.671932 + 1.16382i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) −0.395644 0.685275i −0.0479789 0.0831018i
\(69\) 6.39564 11.0776i 0.769945 1.33358i
\(70\) 0 0
\(71\) −3.79129 + 6.56670i −0.449943 + 0.779324i −0.998382 0.0568665i \(-0.981889\pi\)
0.548439 + 0.836191i \(0.315222\pi\)
\(72\) −2.39564 + 4.14938i −0.282329 + 0.489009i
\(73\) 7.16515 0.838618 0.419309 0.907844i \(-0.362272\pi\)
0.419309 + 0.907844i \(0.362272\pi\)
\(74\) −3.18693 + 5.51993i −0.370473 + 0.641679i
\(75\) 0 0
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) −6.79129 −0.773939
\(78\) −2.79129 + 9.66930i −0.316051 + 1.09483i
\(79\) 14.9564 1.68273 0.841365 0.540467i \(-0.181752\pi\)
0.841365 + 0.540467i \(0.181752\pi\)
\(80\) 0 0
\(81\) 0.208712 + 0.361500i 0.0231902 + 0.0401667i
\(82\) −6.08258 + 10.5353i −0.671708 + 1.16343i
\(83\) 6.16515 0.676713 0.338357 0.941018i \(-0.390129\pi\)
0.338357 + 0.941018i \(0.390129\pi\)
\(84\) −2.50000 + 4.33013i −0.272772 + 0.472456i
\(85\) 0 0
\(86\) 10.9564 1.18146
\(87\) 5.29129 9.16478i 0.567286 0.982567i
\(88\) 1.89564 + 3.28335i 0.202076 + 0.350006i
\(89\) −0.313068 0.542250i −0.0331852 0.0574784i 0.848956 0.528464i \(-0.177232\pi\)
−0.882141 + 0.470985i \(0.843898\pi\)
\(90\) 0 0
\(91\) −1.79129 + 6.20520i −0.187778 + 0.650482i
\(92\) −4.58258 −0.477767
\(93\) −13.3739 23.1642i −1.38681 2.40202i
\(94\) 0.395644 + 0.685275i 0.0408076 + 0.0706808i
\(95\) 0 0
\(96\) 2.79129 0.284885
\(97\) −4.60436 + 7.97498i −0.467502 + 0.809736i −0.999311 0.0371279i \(-0.988179\pi\)
0.531809 + 0.846864i \(0.321512\pi\)
\(98\) 1.89564 3.28335i 0.191489 0.331669i
\(99\) −18.1652 −1.82567
\(100\) 0 0
\(101\) 9.87386 + 17.1020i 0.982486 + 1.70172i 0.652614 + 0.757690i \(0.273672\pi\)
0.329872 + 0.944026i \(0.392995\pi\)
\(102\) −1.10436 1.91280i −0.109348 0.189396i
\(103\) 2.58258 0.254469 0.127234 0.991873i \(-0.459390\pi\)
0.127234 + 0.991873i \(0.459390\pi\)
\(104\) 3.50000 0.866025i 0.343203 0.0849208i
\(105\) 0 0
\(106\) 2.29129 + 3.96863i 0.222550 + 0.385467i
\(107\) −5.20871 9.02175i −0.503545 0.872166i −0.999992 0.00409850i \(-0.998695\pi\)
0.496446 0.868067i \(-0.334638\pi\)
\(108\) −2.50000 + 4.33013i −0.240563 + 0.416667i
\(109\) 1.83485 0.175747 0.0878733 0.996132i \(-0.471993\pi\)
0.0878733 + 0.996132i \(0.471993\pi\)
\(110\) 0 0
\(111\) −8.89564 + 15.4077i −0.844337 + 1.46243i
\(112\) 1.79129 0.169261
\(113\) −0.313068 + 0.542250i −0.0294510 + 0.0510106i −0.880375 0.474278i \(-0.842709\pi\)
0.850924 + 0.525288i \(0.176043\pi\)
\(114\) −6.97822 12.0866i −0.653570 1.13202i
\(115\) 0 0
\(116\) −3.79129 −0.352012
\(117\) −4.79129 + 16.5975i −0.442955 + 1.53444i
\(118\) −4.58258 −0.421860
\(119\) −0.708712 1.22753i −0.0649675 0.112527i
\(120\) 0 0
\(121\) −1.68693 + 2.92185i −0.153357 + 0.265623i
\(122\) −8.58258 −0.777030
\(123\) −16.9782 + 29.4071i −1.53087 + 2.65155i
\(124\) −4.79129 + 8.29875i −0.430270 + 0.745250i
\(125\) 0 0
\(126\) −4.29129 + 7.43273i −0.382298 + 0.662160i
\(127\) 8.18693 + 14.1802i 0.726473 + 1.25829i 0.958365 + 0.285546i \(0.0921750\pi\)
−0.231892 + 0.972741i \(0.574492\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 30.5826 2.69265
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 5.29129 + 9.16478i 0.460547 + 0.797692i
\(133\) −4.47822 7.75650i −0.388311 0.672574i
\(134\) 5.50000 9.52628i 0.475128 0.822945i
\(135\) 0 0
\(136\) −0.395644 + 0.685275i −0.0339262 + 0.0587619i
\(137\) 7.58258 13.1334i 0.647823 1.12206i −0.335819 0.941927i \(-0.609013\pi\)
0.983642 0.180136i \(-0.0576538\pi\)
\(138\) −12.7913 −1.08887
\(139\) −10.7913 + 18.6911i −0.915305 + 1.58535i −0.108851 + 0.994058i \(0.534717\pi\)
−0.806454 + 0.591297i \(0.798616\pi\)
\(140\) 0 0
\(141\) 1.10436 + 1.91280i 0.0930036 + 0.161087i
\(142\) 7.58258 0.636316
\(143\) 9.47822 + 9.85005i 0.792609 + 0.823703i
\(144\) 4.79129 0.399274
\(145\) 0 0
\(146\) −3.58258 6.20520i −0.296496 0.513546i
\(147\) 5.29129 9.16478i 0.436418 0.755898i
\(148\) 6.37386 0.523928
\(149\) 1.97822 3.42638i 0.162062 0.280700i −0.773546 0.633740i \(-0.781519\pi\)
0.935608 + 0.353040i \(0.114852\pi\)
\(150\) 0 0
\(151\) −6.37386 −0.518698 −0.259349 0.965784i \(-0.583508\pi\)
−0.259349 + 0.965784i \(0.583508\pi\)
\(152\) −2.50000 + 4.33013i −0.202777 + 0.351220i
\(153\) −1.89564 3.28335i −0.153254 0.265443i
\(154\) 3.39564 + 5.88143i 0.273629 + 0.473939i
\(155\) 0 0
\(156\) 9.76951 2.41733i 0.782187 0.193541i
\(157\) −5.16515 −0.412224 −0.206112 0.978528i \(-0.566081\pi\)
−0.206112 + 0.978528i \(0.566081\pi\)
\(158\) −7.47822 12.9527i −0.594935 1.03046i
\(159\) 6.39564 + 11.0776i 0.507208 + 0.878509i
\(160\) 0 0
\(161\) −8.20871 −0.646937
\(162\) 0.208712 0.361500i 0.0163980 0.0284021i
\(163\) −2.31307 + 4.00635i −0.181173 + 0.313802i −0.942280 0.334825i \(-0.891323\pi\)
0.761107 + 0.648626i \(0.224656\pi\)
\(164\) 12.1652 0.949939
\(165\) 0 0
\(166\) −3.08258 5.33918i −0.239254 0.414401i
\(167\) −0.708712 1.22753i −0.0548418 0.0949888i 0.837301 0.546742i \(-0.184132\pi\)
−0.892143 + 0.451753i \(0.850799\pi\)
\(168\) 5.00000 0.385758
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) −11.9782 20.7469i −0.915997 1.58655i
\(172\) −5.47822 9.48855i −0.417710 0.723496i
\(173\) −9.56080 + 16.5598i −0.726894 + 1.25902i 0.231296 + 0.972883i \(0.425703\pi\)
−0.958190 + 0.286134i \(0.907630\pi\)
\(174\) −10.5826 −0.802263
\(175\) 0 0
\(176\) 1.89564 3.28335i 0.142890 0.247492i
\(177\) −12.7913 −0.961452
\(178\) −0.313068 + 0.542250i −0.0234655 + 0.0406434i
\(179\) −3.00000 5.19615i −0.224231 0.388379i 0.731858 0.681457i \(-0.238654\pi\)
−0.956088 + 0.293079i \(0.905320\pi\)
\(180\) 0 0
\(181\) 7.37386 0.548095 0.274047 0.961716i \(-0.411637\pi\)
0.274047 + 0.961716i \(0.411637\pi\)
\(182\) 6.26951 1.55130i 0.464727 0.114990i
\(183\) −23.9564 −1.77091
\(184\) 2.29129 + 3.96863i 0.168916 + 0.292571i
\(185\) 0 0
\(186\) −13.3739 + 23.1642i −0.980619 + 1.69848i
\(187\) −3.00000 −0.219382
\(188\) 0.395644 0.685275i 0.0288553 0.0499788i
\(189\) −4.47822 + 7.75650i −0.325743 + 0.564203i
\(190\) 0 0
\(191\) 0.873864 1.51358i 0.0632305 0.109519i −0.832677 0.553759i \(-0.813193\pi\)
0.895908 + 0.444240i \(0.146526\pi\)
\(192\) −1.39564 2.41733i −0.100722 0.174455i
\(193\) 8.97822 + 15.5507i 0.646266 + 1.11937i 0.984007 + 0.178127i \(0.0570038\pi\)
−0.337741 + 0.941239i \(0.609663\pi\)
\(194\) 9.20871 0.661147
\(195\) 0 0
\(196\) −3.79129 −0.270806
\(197\) −4.97822 8.62253i −0.354683 0.614330i 0.632380 0.774658i \(-0.282078\pi\)
−0.987064 + 0.160328i \(0.948745\pi\)
\(198\) 9.08258 + 15.7315i 0.645471 + 1.11799i
\(199\) 7.06080 12.2297i 0.500527 0.866937i −0.499473 0.866329i \(-0.666473\pi\)
1.00000 0.000608067i \(-0.000193554\pi\)
\(200\) 0 0
\(201\) 15.3521 26.5906i 1.08285 1.87556i
\(202\) 9.87386 17.1020i 0.694723 1.20329i
\(203\) −6.79129 −0.476655
\(204\) −1.10436 + 1.91280i −0.0773204 + 0.133923i
\(205\) 0 0
\(206\) −1.29129 2.23658i −0.0899683 0.155830i
\(207\) −21.9564 −1.52608
\(208\) −2.50000 2.59808i −0.173344 0.180144i
\(209\) −18.9564 −1.31124
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 2.29129 3.96863i 0.157366 0.272566i
\(213\) 21.1652 1.45021
\(214\) −5.20871 + 9.02175i −0.356060 + 0.616714i
\(215\) 0 0
\(216\) 5.00000 0.340207
\(217\) −8.58258 + 14.8655i −0.582623 + 1.00913i
\(218\) −0.917424 1.58903i −0.0621358 0.107622i
\(219\) −10.0000 17.3205i −0.675737 1.17041i
\(220\) 0 0
\(221\) −0.791288 + 2.74110i −0.0532278 + 0.184386i
\(222\) 17.7913 1.19407
\(223\) 4.87386 + 8.44178i 0.326378 + 0.565303i 0.981790 0.189968i \(-0.0608384\pi\)
−0.655412 + 0.755271i \(0.727505\pi\)
\(224\) −0.895644 1.55130i −0.0598427 0.103651i
\(225\) 0 0
\(226\) 0.626136 0.0416500
\(227\) 8.29129 14.3609i 0.550312 0.953169i −0.447940 0.894064i \(-0.647842\pi\)
0.998252 0.0591047i \(-0.0188246\pi\)
\(228\) −6.97822 + 12.0866i −0.462144 + 0.800457i
\(229\) −12.3739 −0.817688 −0.408844 0.912604i \(-0.634068\pi\)
−0.408844 + 0.912604i \(0.634068\pi\)
\(230\) 0 0
\(231\) 9.47822 + 16.4168i 0.623621 + 1.08014i
\(232\) 1.89564 + 3.28335i 0.124455 + 0.215563i
\(233\) 15.0000 0.982683 0.491341 0.870967i \(-0.336507\pi\)
0.491341 + 0.870967i \(0.336507\pi\)
\(234\) 16.7695 4.14938i 1.09626 0.271253i
\(235\) 0 0
\(236\) 2.29129 + 3.96863i 0.149150 + 0.258336i
\(237\) −20.8739 36.1546i −1.35590 2.34849i
\(238\) −0.708712 + 1.22753i −0.0459390 + 0.0795687i
\(239\) −18.1652 −1.17501 −0.587503 0.809222i \(-0.699889\pi\)
−0.587503 + 0.809222i \(0.699889\pi\)
\(240\) 0 0
\(241\) 3.50000 6.06218i 0.225455 0.390499i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291877i \(0.0942799\pi\)
\(242\) 3.37386 0.216880
\(243\) 8.08258 13.9994i 0.518497 0.898064i
\(244\) 4.29129 + 7.43273i 0.274722 + 0.475832i
\(245\) 0 0
\(246\) 33.9564 2.16498
\(247\) −5.00000 + 17.3205i −0.318142 + 1.10208i
\(248\) 9.58258 0.608494
\(249\) −8.60436 14.9032i −0.545279 0.944451i
\(250\) 0 0
\(251\) 10.1869 17.6443i 0.642993 1.11370i −0.341768 0.939784i \(-0.611026\pi\)
0.984761 0.173913i \(-0.0556411\pi\)
\(252\) 8.58258 0.540651
\(253\) −8.68693 + 15.0462i −0.546143 + 0.945947i
\(254\) 8.18693 14.1802i 0.513694 0.889744i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.4564 + 19.8431i 0.714633 + 1.23778i 0.963101 + 0.269141i \(0.0867396\pi\)
−0.248468 + 0.968640i \(0.579927\pi\)
\(258\) −15.2913 26.4853i −0.951994 1.64890i
\(259\) 11.4174 0.709444
\(260\) 0 0
\(261\) −18.1652 −1.12439
\(262\) 7.50000 + 12.9904i 0.463352 + 0.802548i
\(263\) −4.97822 8.62253i −0.306970 0.531688i 0.670728 0.741704i \(-0.265982\pi\)
−0.977698 + 0.210016i \(0.932649\pi\)
\(264\) 5.29129 9.16478i 0.325656 0.564053i
\(265\) 0 0
\(266\) −4.47822 + 7.75650i −0.274577 + 0.475582i
\(267\) −0.873864 + 1.51358i −0.0534796 + 0.0926294i
\(268\) −11.0000 −0.671932
\(269\) 7.66515 13.2764i 0.467353 0.809478i −0.531952 0.846775i \(-0.678541\pi\)
0.999304 + 0.0372964i \(0.0118746\pi\)
\(270\) 0 0
\(271\) −5.58258 9.66930i −0.339117 0.587368i 0.645150 0.764056i \(-0.276795\pi\)
−0.984267 + 0.176688i \(0.943462\pi\)
\(272\) 0.791288 0.0479789
\(273\) 17.5000 4.33013i 1.05915 0.262071i
\(274\) −15.1652 −0.916160
\(275\) 0 0
\(276\) 6.39564 + 11.0776i 0.384973 + 0.666792i
\(277\) −3.81307 + 6.60443i −0.229105 + 0.396822i −0.957543 0.288290i \(-0.906913\pi\)
0.728438 + 0.685112i \(0.240247\pi\)
\(278\) 21.5826 1.29444
\(279\) −22.9564 + 39.7617i −1.37437 + 2.38047i
\(280\) 0 0
\(281\) −14.5390 −0.867325 −0.433662 0.901075i \(-0.642779\pi\)
−0.433662 + 0.901075i \(0.642779\pi\)
\(282\) 1.10436 1.91280i 0.0657634 0.113906i
\(283\) −6.26951 10.8591i −0.372684 0.645507i 0.617294 0.786733i \(-0.288229\pi\)
−0.989977 + 0.141226i \(0.954896\pi\)
\(284\) −3.79129 6.56670i −0.224972 0.389662i
\(285\) 0 0
\(286\) 3.79129 13.1334i 0.224184 0.776595i
\(287\) 21.7913 1.28630
\(288\) −2.39564 4.14938i −0.141165 0.244504i
\(289\) 8.18693 + 14.1802i 0.481584 + 0.834128i
\(290\) 0 0
\(291\) 25.7042 1.50680
\(292\) −3.58258 + 6.20520i −0.209654 + 0.363132i
\(293\) 3.31307 5.73840i 0.193552 0.335241i −0.752873 0.658166i \(-0.771333\pi\)
0.946425 + 0.322925i \(0.104666\pi\)
\(294\) −10.5826 −0.617188
\(295\) 0 0
\(296\) −3.18693 5.51993i −0.185237 0.320839i
\(297\) 9.47822 + 16.4168i 0.549982 + 0.952597i
\(298\) −3.95644 −0.229190
\(299\) 11.4564 + 11.9059i 0.662543 + 0.688535i
\(300\) 0 0
\(301\) −9.81307 16.9967i −0.565616 0.979675i
\(302\) 3.18693 + 5.51993i 0.183387 + 0.317636i
\(303\) 27.5608 47.7367i 1.58333 2.74240i
\(304\) 5.00000 0.286770
\(305\) 0 0
\(306\) −1.89564 + 3.28335i −0.108367 + 0.187697i
\(307\) 13.1652 0.751375 0.375687 0.926746i \(-0.377407\pi\)
0.375687 + 0.926746i \(0.377407\pi\)
\(308\) 3.39564 5.88143i 0.193485 0.335125i
\(309\) −3.60436 6.24293i −0.205045 0.355148i
\(310\) 0 0
\(311\) −17.3739 −0.985181 −0.492591 0.870261i \(-0.663950\pi\)
−0.492591 + 0.870261i \(0.663950\pi\)
\(312\) −6.97822 7.25198i −0.395064 0.410562i
\(313\) 4.62614 0.261485 0.130742 0.991416i \(-0.458264\pi\)
0.130742 + 0.991416i \(0.458264\pi\)
\(314\) 2.58258 + 4.47315i 0.145743 + 0.252435i
\(315\) 0 0
\(316\) −7.47822 + 12.9527i −0.420683 + 0.728644i
\(317\) −26.5390 −1.49058 −0.745290 0.666741i \(-0.767689\pi\)
−0.745290 + 0.666741i \(0.767689\pi\)
\(318\) 6.39564 11.0776i 0.358650 0.621200i
\(319\) −7.18693 + 12.4481i −0.402391 + 0.696962i
\(320\) 0 0
\(321\) −14.5390 + 25.1823i −0.811489 + 1.40554i
\(322\) 4.10436 + 7.10895i 0.228727 + 0.396166i
\(323\) −1.97822 3.42638i −0.110071 0.190649i
\(324\) −0.417424 −0.0231902
\(325\) 0 0
\(326\) 4.62614 0.256218
\(327\) −2.56080 4.43543i −0.141612 0.245280i
\(328\) −6.08258 10.5353i −0.335854 0.581716i
\(329\) 0.708712 1.22753i 0.0390726 0.0676757i
\(330\) 0 0
\(331\) −5.97822 + 10.3546i −0.328593 + 0.569139i −0.982233 0.187666i \(-0.939908\pi\)
0.653640 + 0.756805i \(0.273241\pi\)
\(332\) −3.08258 + 5.33918i −0.169178 + 0.293025i
\(333\) 30.5390 1.67353
\(334\) −0.708712 + 1.22753i −0.0387790 + 0.0671672i
\(335\) 0 0
\(336\) −2.50000 4.33013i −0.136386 0.236228i
\(337\) −0.252273 −0.0137422 −0.00687109 0.999976i \(-0.502187\pi\)
−0.00687109 + 0.999976i \(0.502187\pi\)
\(338\) −11.0000 6.92820i −0.598321 0.376845i
\(339\) 1.74773 0.0949235
\(340\) 0 0
\(341\) 18.1652 + 31.4630i 0.983698 + 1.70382i
\(342\) −11.9782 + 20.7469i −0.647708 + 1.12186i
\(343\) −19.3303 −1.04374
\(344\) −5.47822 + 9.48855i −0.295366 + 0.511589i
\(345\) 0 0
\(346\) 19.1216 1.02798
\(347\) 14.2913 24.7532i 0.767197 1.32882i −0.171881 0.985118i \(-0.554984\pi\)
0.939077 0.343706i \(-0.111682\pi\)
\(348\) 5.29129 + 9.16478i 0.283643 + 0.491284i
\(349\) −13.4782 23.3450i −0.721473 1.24963i −0.960410 0.278592i \(-0.910132\pi\)
0.238937 0.971035i \(-0.423201\pi\)
\(350\) 0 0
\(351\) 17.5000 4.33013i 0.934081 0.231125i
\(352\) −3.79129 −0.202076
\(353\) −9.31307 16.1307i −0.495685 0.858551i 0.504303 0.863527i \(-0.331749\pi\)
−0.999988 + 0.00497584i \(0.998416\pi\)
\(354\) 6.39564 + 11.0776i 0.339925 + 0.588767i
\(355\) 0 0
\(356\) 0.626136 0.0331852
\(357\) −1.97822 + 3.42638i −0.104698 + 0.181343i
\(358\) −3.00000 + 5.19615i −0.158555 + 0.274625i
\(359\) −33.7913 −1.78344 −0.891718 0.452591i \(-0.850500\pi\)
−0.891718 + 0.452591i \(0.850500\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −3.68693 6.38595i −0.193781 0.335638i
\(363\) 9.41742 0.494287
\(364\) −4.47822 4.65390i −0.234722 0.243931i
\(365\) 0 0
\(366\) 11.9782 + 20.7469i 0.626112 + 1.08446i
\(367\) 12.3739 + 21.4322i 0.645910 + 1.11875i 0.984090 + 0.177668i \(0.0568554\pi\)
−0.338180 + 0.941081i \(0.609811\pi\)
\(368\) 2.29129 3.96863i 0.119442 0.206879i
\(369\) 58.2867 3.03429
\(370\) 0 0
\(371\) 4.10436 7.10895i 0.213088 0.369078i
\(372\) 26.7477 1.38681
\(373\) −6.58258 + 11.4014i −0.340833 + 0.590340i −0.984588 0.174892i \(-0.944042\pi\)
0.643755 + 0.765232i \(0.277376\pi\)
\(374\) 1.50000 + 2.59808i 0.0775632 + 0.134343i
\(375\) 0 0
\(376\) −0.791288 −0.0408076
\(377\) 9.47822 + 9.85005i 0.488153 + 0.507304i
\(378\) 8.95644 0.460670
\(379\) −8.50000 14.7224i −0.436616 0.756241i 0.560810 0.827944i \(-0.310490\pi\)
−0.997426 + 0.0717038i \(0.977156\pi\)
\(380\) 0 0
\(381\) 22.8521 39.5810i 1.17075 2.02779i
\(382\) −1.74773 −0.0894215
\(383\) 0.873864 1.51358i 0.0446523 0.0773401i −0.842835 0.538171i \(-0.819115\pi\)
0.887488 + 0.460831i \(0.152449\pi\)
\(384\) −1.39564 + 2.41733i −0.0712212 + 0.123359i
\(385\) 0 0
\(386\) 8.97822 15.5507i 0.456979 0.791511i
\(387\) −26.2477 45.4624i −1.33425 2.31098i
\(388\) −4.60436 7.97498i −0.233751 0.404868i
\(389\) −6.33030 −0.320959 −0.160480 0.987039i \(-0.551304\pi\)
−0.160480 + 0.987039i \(0.551304\pi\)
\(390\) 0 0
\(391\) −3.62614 −0.183382
\(392\) 1.89564 + 3.28335i 0.0957445 + 0.165834i
\(393\) 20.9347 + 36.2599i 1.05601 + 1.82907i
\(394\) −4.97822 + 8.62253i −0.250799 + 0.434397i
\(395\) 0 0
\(396\) 9.08258 15.7315i 0.456417 0.790537i
\(397\) −3.10436 + 5.37690i −0.155803 + 0.269859i −0.933351 0.358965i \(-0.883130\pi\)
0.777548 + 0.628824i \(0.216463\pi\)
\(398\) −14.1216 −0.707851
\(399\) −12.5000 + 21.6506i −0.625783 + 1.08389i
\(400\) 0 0
\(401\) 10.1869 + 17.6443i 0.508711 + 0.881113i 0.999949 + 0.0100881i \(0.00321119\pi\)
−0.491238 + 0.871025i \(0.663455\pi\)
\(402\) −30.7042 −1.53138
\(403\) 33.5390 8.29875i 1.67070 0.413390i
\(404\) −19.7477 −0.982486
\(405\) 0 0
\(406\) 3.39564 + 5.88143i 0.168523 + 0.291890i
\(407\) 12.0826 20.9276i 0.598911 1.03734i
\(408\) 2.20871 0.109348
\(409\) 11.2477 19.4816i 0.556164 0.963305i −0.441648 0.897189i \(-0.645606\pi\)
0.997812 0.0661162i \(-0.0210608\pi\)
\(410\) 0 0
\(411\) −42.3303 −2.08800
\(412\) −1.29129 + 2.23658i −0.0636172 + 0.110188i
\(413\) 4.10436 + 7.10895i 0.201962 + 0.349809i
\(414\) 10.9782 + 19.0148i 0.539550 + 0.934528i
\(415\) 0 0
\(416\) −1.00000 + 3.46410i −0.0490290 + 0.169842i
\(417\) 60.2432 2.95012
\(418\) 9.47822 + 16.4168i 0.463595 + 0.802970i
\(419\) 1.73049 + 2.99730i 0.0845401 + 0.146428i 0.905195 0.424996i \(-0.139725\pi\)
−0.820655 + 0.571424i \(0.806391\pi\)
\(420\) 0 0
\(421\) 1.04356 0.0508600 0.0254300 0.999677i \(-0.491905\pi\)
0.0254300 + 0.999677i \(0.491905\pi\)
\(422\) −2.50000 + 4.33013i −0.121698 + 0.210787i
\(423\) 1.89564 3.28335i 0.0921694 0.159642i
\(424\) −4.58258 −0.222550
\(425\) 0 0
\(426\) −10.5826 18.3296i −0.512727 0.888070i
\(427\) 7.68693 + 13.3142i 0.371997 + 0.644317i
\(428\) 10.4174 0.503545
\(429\) 10.5826 36.6591i 0.510932 1.76992i
\(430\) 0 0
\(431\) 3.39564 + 5.88143i 0.163562 + 0.283298i 0.936144 0.351617i \(-0.114368\pi\)
−0.772581 + 0.634916i \(0.781035\pi\)
\(432\) −2.50000 4.33013i −0.120281 0.208333i
\(433\) 15.2913 26.4853i 0.734852 1.27280i −0.219936 0.975514i \(-0.570585\pi\)
0.954788 0.297287i \(-0.0960819\pi\)
\(434\) 17.1652 0.823954
\(435\) 0 0
\(436\) −0.917424 + 1.58903i −0.0439367 + 0.0761005i
\(437\) −22.9129 −1.09607
\(438\) −10.0000 + 17.3205i −0.477818 + 0.827606i
\(439\) 8.79129 + 15.2270i 0.419585 + 0.726743i 0.995898 0.0904865i \(-0.0288422\pi\)
−0.576312 + 0.817229i \(0.695509\pi\)
\(440\) 0 0
\(441\) −18.1652 −0.865007
\(442\) 2.76951 0.685275i 0.131732 0.0325952i
\(443\) −2.04356 −0.0970925 −0.0485463 0.998821i \(-0.515459\pi\)
−0.0485463 + 0.998821i \(0.515459\pi\)
\(444\) −8.89564 15.4077i −0.422169 0.731217i
\(445\) 0 0
\(446\) 4.87386 8.44178i 0.230784 0.399730i
\(447\) −11.0436 −0.522343
\(448\) −0.895644 + 1.55130i −0.0423152 + 0.0732921i
\(449\) −16.1869 + 28.0366i −0.763909 + 1.32313i 0.176913 + 0.984226i \(0.443389\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(450\) 0 0
\(451\) 23.0608 39.9425i 1.08589 1.88082i
\(452\) −0.313068 0.542250i −0.0147255 0.0255053i
\(453\) 8.89564 + 15.4077i 0.417954 + 0.723917i
\(454\) −16.5826 −0.778259
\(455\) 0 0
\(456\) 13.9564 0.653570
\(457\) 3.68693 + 6.38595i 0.172467 + 0.298722i 0.939282 0.343146i \(-0.111493\pi\)
−0.766815 + 0.641869i \(0.778159\pi\)
\(458\) 6.18693 + 10.7161i 0.289096 + 0.500730i
\(459\) −1.97822 + 3.42638i −0.0923354 + 0.159930i
\(460\) 0 0
\(461\) −14.6044 + 25.2955i −0.680193 + 1.17813i 0.294729 + 0.955581i \(0.404771\pi\)
−0.974922 + 0.222547i \(0.928563\pi\)
\(462\) 9.47822 16.4168i 0.440967 0.763777i
\(463\) −17.9564 −0.834507 −0.417253 0.908790i \(-0.637007\pi\)
−0.417253 + 0.908790i \(0.637007\pi\)
\(464\) 1.89564 3.28335i 0.0880031 0.152426i
\(465\) 0 0
\(466\) −7.50000 12.9904i −0.347431 0.601768i
\(467\) 8.37386 0.387496 0.193748 0.981051i \(-0.437936\pi\)
0.193748 + 0.981051i \(0.437936\pi\)
\(468\) −11.9782 12.4481i −0.553693 0.575415i
\(469\) −19.7042 −0.909854
\(470\) 0 0
\(471\) 7.20871 + 12.4859i 0.332160 + 0.575318i
\(472\) 2.29129 3.96863i 0.105465 0.182671i
\(473\) −41.5390 −1.90997
\(474\) −20.8739 + 36.1546i −0.958768 + 1.66064i
\(475\) 0 0
\(476\) 1.41742 0.0649675
\(477\) 10.9782 19.0148i 0.502658 0.870629i
\(478\) 9.08258 + 15.7315i 0.415427 + 0.719541i
\(479\) −9.47822 16.4168i −0.433071 0.750101i 0.564065 0.825730i \(-0.309237\pi\)
−0.997136 + 0.0756295i \(0.975903\pi\)
\(480\) 0 0
\(481\) −15.9347 16.5598i −0.726558 0.755061i
\(482\) −7.00000 −0.318841
\(483\) 11.4564 + 19.8431i 0.521286 + 0.902894i
\(484\) −1.68693 2.92185i −0.0766787 0.132811i
\(485\) 0 0
\(486\) −16.1652 −0.733266
\(487\) 10.5608 18.2918i 0.478555 0.828882i −0.521142 0.853470i \(-0.674494\pi\)
0.999698 + 0.0245876i \(0.00782728\pi\)
\(488\) 4.29129 7.43273i 0.194257 0.336464i
\(489\) 12.9129 0.583941
\(490\) 0 0
\(491\) −17.4564 30.2354i −0.787798 1.36451i −0.927313 0.374286i \(-0.877888\pi\)
0.139515 0.990220i \(-0.455446\pi\)
\(492\) −16.9782 29.4071i −0.765437 1.32578i
\(493\) −3.00000 −0.135113
\(494\) 17.5000 4.33013i 0.787362 0.194822i
\(495\) 0 0
\(496\) −4.79129 8.29875i −0.215135 0.372625i
\(497\) −6.79129 11.7629i −0.304631 0.527636i
\(498\) −8.60436 + 14.9032i −0.385570 + 0.667828i
\(499\) 9.74773 0.436368 0.218184 0.975908i \(-0.429987\pi\)
0.218184 + 0.975908i \(0.429987\pi\)
\(500\) 0 0
\(501\) −1.97822 + 3.42638i −0.0883803 + 0.153079i
\(502\) −20.3739 −0.909330
\(503\) −21.9564 + 38.0297i −0.978989 + 1.69566i −0.312902 + 0.949786i \(0.601301\pi\)
−0.666088 + 0.745874i \(0.732032\pi\)
\(504\) −4.29129 7.43273i −0.191149 0.331080i
\(505\) 0 0
\(506\) 17.3739 0.772362
\(507\) −30.7042 19.3386i −1.36362 0.858858i
\(508\) −16.3739 −0.726473
\(509\) −12.9564 22.4412i −0.574284 0.994689i −0.996119 0.0880165i \(-0.971947\pi\)
0.421835 0.906673i \(-0.361386\pi\)
\(510\) 0 0
\(511\) −6.41742 + 11.1153i −0.283890 + 0.491712i
\(512\) 1.00000 0.0441942
\(513\) −12.5000 + 21.6506i −0.551888 + 0.955899i
\(514\) 11.4564 19.8431i 0.505322 0.875243i
\(515\) 0 0
\(516\) −15.2913 + 26.4853i −0.673161 + 1.16595i
\(517\) −1.50000 2.59808i −0.0659699 0.114263i
\(518\) −5.70871 9.88778i −0.250826 0.434444i
\(519\) 53.3739 2.34285
\(520\) 0 0
\(521\) 36.3303 1.59166 0.795830 0.605520i \(-0.207035\pi\)
0.795830 + 0.605520i \(0.207035\pi\)
\(522\) 9.08258 + 15.7315i 0.397534 + 0.688548i
\(523\) 7.00000 + 12.1244i 0.306089 + 0.530161i 0.977503 0.210921i \(-0.0676463\pi\)
−0.671414 + 0.741082i \(0.734313\pi\)
\(524\) 7.50000 12.9904i 0.327639 0.567487i
\(525\) 0 0
\(526\) −4.97822 + 8.62253i −0.217061 + 0.375960i
\(527\) −3.79129 + 6.56670i −0.165151 + 0.286050i
\(528\) −10.5826 −0.460547
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 0 0
\(531\) 10.9782 + 19.0148i 0.476414 + 0.825174i
\(532\) 8.95644 0.388311
\(533\) −30.4129 31.6060i −1.31733 1.36901i
\(534\) 1.74773 0.0756315
\(535\) 0 0
\(536\) 5.50000 + 9.52628i 0.237564 + 0.411473i
\(537\) −8.37386 + 14.5040i −0.361359 + 0.625892i
\(538\) −15.3303 −0.660936
\(539\) −7.18693 + 12.4481i −0.309563 + 0.536179i
\(540\) 0 0
\(541\) 27.9129 1.20007 0.600034 0.799974i \(-0.295154\pi\)
0.600034 + 0.799974i \(0.295154\pi\)
\(542\) −5.58258 + 9.66930i −0.239792 + 0.415332i
\(543\) −10.2913 17.8250i −0.441641 0.764945i
\(544\) −0.395644 0.685275i −0.0169631 0.0293809i
\(545\) 0 0
\(546\) −12.5000 12.9904i −0.534951 0.555937i
\(547\) −41.3303 −1.76716 −0.883578 0.468284i \(-0.844872\pi\)
−0.883578 + 0.468284i \(0.844872\pi\)
\(548\) 7.58258 + 13.1334i 0.323912 + 0.561031i
\(549\) 20.5608 + 35.6123i 0.877513 + 1.51990i
\(550\) 0 0
\(551\) −18.9564 −0.807571
\(552\) 6.39564 11.0776i 0.272217 0.471493i
\(553\) −13.3956 + 23.2019i −0.569641 + 0.986647i
\(554\) 7.62614 0.324003
\(555\) 0 0
\(556\) −10.7913 18.6911i −0.457653 0.792677i
\(557\) 9.62614 + 16.6730i 0.407872 + 0.706456i 0.994651 0.103292i \(-0.0329375\pi\)
−0.586779 + 0.809747i \(0.699604\pi\)
\(558\) 45.9129 1.94365
\(559\) −10.9564 + 37.9542i −0.463408 + 1.60529i
\(560\) 0 0
\(561\) 4.18693 + 7.25198i 0.176772 + 0.306179i
\(562\) 7.26951 + 12.5912i 0.306646 + 0.531126i
\(563\) 7.35208 12.7342i 0.309853 0.536682i −0.668477 0.743733i \(-0.733053\pi\)
0.978330 + 0.207051i \(0.0663867\pi\)
\(564\) −2.20871 −0.0930036
\(565\) 0 0
\(566\) −6.26951 + 10.8591i −0.263527 + 0.456442i
\(567\) −0.747727 −0.0314016
\(568\) −3.79129 + 6.56670i −0.159079 + 0.275533i
\(569\) −3.31307 5.73840i −0.138891 0.240566i 0.788186 0.615437i \(-0.211020\pi\)
−0.927077 + 0.374871i \(0.877687\pi\)
\(570\) 0 0
\(571\) −6.37386 −0.266738 −0.133369 0.991066i \(-0.542580\pi\)
−0.133369 + 0.991066i \(0.542580\pi\)
\(572\) −13.2695 + 3.28335i −0.554826 + 0.137284i
\(573\) −4.87841 −0.203798
\(574\) −10.8956 18.8718i −0.454775 0.787694i
\(575\) 0 0
\(576\) −2.39564 + 4.14938i −0.0998185 + 0.172891i
\(577\) 2.25227 0.0937633 0.0468817 0.998900i \(-0.485072\pi\)
0.0468817 + 0.998900i \(0.485072\pi\)
\(578\) 8.18693 14.1802i 0.340531 0.589818i
\(579\) 25.0608 43.4066i 1.04149 1.80392i
\(580\) 0 0
\(581\) −5.52178 + 9.56400i −0.229082 + 0.396782i
\(582\) −12.8521 22.2605i −0.532736 0.922726i
\(583\) −8.68693 15.0462i −0.359776 0.623150i
\(584\) 7.16515 0.296496
\(585\) 0 0
\(586\) −6.62614 −0.273723
\(587\) 11.1434 + 19.3009i 0.459936 + 0.796633i 0.998957 0.0456596i \(-0.0145390\pi\)
−0.539021 + 0.842292i \(0.681206\pi\)
\(588\) 5.29129 + 9.16478i 0.218209 + 0.377949i
\(589\) −23.9564 + 41.4938i −0.987108 + 1.70972i
\(590\) 0 0
\(591\) −13.8956 + 24.0680i −0.571590 + 0.990024i
\(592\) −3.18693 + 5.51993i −0.130982 + 0.226868i
\(593\) −1.58258 −0.0649886 −0.0324943 0.999472i \(-0.510345\pi\)
−0.0324943 + 0.999472i \(0.510345\pi\)
\(594\) 9.47822 16.4168i 0.388896 0.673588i
\(595\) 0 0
\(596\) 1.97822 + 3.42638i 0.0810310 + 0.140350i
\(597\) −39.4174 −1.61325
\(598\) 4.58258 15.8745i 0.187395 0.649157i
\(599\) 7.74773 0.316564 0.158282 0.987394i \(-0.449405\pi\)
0.158282 + 0.987394i \(0.449405\pi\)
\(600\) 0 0
\(601\) 8.87386 + 15.3700i 0.361972 + 0.626955i 0.988285 0.152617i \(-0.0487701\pi\)
−0.626313 + 0.779572i \(0.715437\pi\)
\(602\) −9.81307 + 16.9967i −0.399951 + 0.692735i
\(603\) −52.7042 −2.14628
\(604\) 3.18693 5.51993i 0.129674 0.224603i
\(605\) 0 0
\(606\) −55.1216 −2.23916
\(607\) 2.50000 4.33013i 0.101472 0.175754i −0.810819 0.585296i \(-0.800978\pi\)
0.912291 + 0.409542i \(0.134311\pi\)
\(608\) −2.50000 4.33013i −0.101388 0.175610i
\(609\) 9.47822 + 16.4168i 0.384077 + 0.665241i
\(610\) 0 0
\(611\) −2.76951 + 0.685275i −0.112042 + 0.0277233i
\(612\) 3.79129 0.153254
\(613\) 4.79129 + 8.29875i 0.193518 + 0.335184i 0.946414 0.322957i \(-0.104677\pi\)
−0.752895 + 0.658140i \(0.771343\pi\)
\(614\) −6.58258 11.4014i −0.265651 0.460121i
\(615\) 0 0
\(616\) −6.79129 −0.273629
\(617\) 15.0826 26.1238i 0.607202 1.05170i −0.384498 0.923126i \(-0.625625\pi\)
0.991699 0.128578i \(-0.0410413\pi\)
\(618\) −3.60436 + 6.24293i −0.144988 + 0.251127i
\(619\) 31.2087 1.25438 0.627192 0.778865i \(-0.284204\pi\)
0.627192 + 0.778865i \(0.284204\pi\)
\(620\) 0 0
\(621\) 11.4564 + 19.8431i 0.459731 + 0.796278i
\(622\) 8.68693 + 15.0462i 0.348314 + 0.603298i
\(623\) 1.12159 0.0449356
\(624\) −2.79129 + 9.66930i −0.111741 + 0.387082i
\(625\) 0 0
\(626\) −2.31307 4.00635i −0.0924488 0.160126i
\(627\) 26.4564 + 45.8239i 1.05657 + 1.83003i
\(628\) 2.58258 4.47315i 0.103056 0.178498i
\(629\) 5.04356 0.201100
\(630\) 0 0
\(631\) −5.18693 + 8.98403i −0.206488 + 0.357649i −0.950606 0.310400i \(-0.899537\pi\)
0.744117 + 0.668049i \(0.232870\pi\)
\(632\) 14.9564 0.594935
\(633\) −6.97822 + 12.0866i −0.277359 + 0.480400i
\(634\) 13.2695 + 22.9835i 0.526999 + 0.912790i
\(635\) 0 0
\(636\) −12.7913 −0.507208
\(637\) 9.47822 + 9.85005i 0.375541 + 0.390273i
\(638\) 14.3739 0.569067
\(639\) −18.1652 31.4630i −0.718602 1.24466i
\(640\) 0 0
\(641\) 1.89564 3.28335i 0.0748734 0.129685i −0.826158 0.563439i \(-0.809478\pi\)
0.901031 + 0.433754i \(0.142811\pi\)
\(642\) 29.0780 1.14762
\(643\) −1.12614 + 1.95053i −0.0444105 + 0.0769212i −0.887376 0.461046i \(-0.847474\pi\)
0.842966 + 0.537967i \(0.180808\pi\)
\(644\) 4.10436 7.10895i 0.161734 0.280132i
\(645\) 0 0
\(646\) −1.97822 + 3.42638i −0.0778320 + 0.134809i
\(647\) 22.9782 + 39.7994i 0.903367 + 1.56468i 0.823094 + 0.567905i \(0.192246\pi\)
0.0802727 + 0.996773i \(0.474421\pi\)
\(648\) 0.208712 + 0.361500i 0.00819899 + 0.0142011i
\(649\) 17.3739 0.681984
\(650\) 0 0
\(651\) 47.9129 1.87785
\(652\) −2.31307 4.00635i −0.0905867 0.156901i
\(653\) −15.7087 27.2083i −0.614729 1.06474i −0.990432 0.138002i \(-0.955932\pi\)
0.375703 0.926740i \(-0.377401\pi\)
\(654\) −2.56080 + 4.43543i −0.100135 + 0.173439i
\(655\) 0 0
\(656\) −6.08258 + 10.5353i −0.237485 + 0.411336i
\(657\) −17.1652 + 29.7309i −0.669676 + 1.15991i
\(658\) −1.41742 −0.0552570
\(659\) −10.7477 + 18.6156i −0.418672 + 0.725161i −0.995806 0.0914882i \(-0.970838\pi\)
0.577134 + 0.816649i \(0.304171\pi\)
\(660\) 0 0
\(661\) 3.97822 + 6.89048i 0.154735 + 0.268009i 0.932962 0.359974i \(-0.117214\pi\)
−0.778228 + 0.627982i \(0.783881\pi\)
\(662\) 11.9564 0.464700
\(663\) 7.73049 1.91280i 0.300227 0.0742870i
\(664\) 6.16515 0.239254
\(665\) 0 0
\(666\) −15.2695 26.4476i −0.591681 1.02482i
\(667\) −8.68693 + 15.0462i −0.336359 + 0.582591i
\(668\) 1.41742 0.0548418
\(669\) 13.6044 23.5634i 0.525975 0.911015i
\(670\) 0 0
\(671\) 32.5390 1.25615
\(672\) −2.50000 + 4.33013i −0.0964396 + 0.167038i
\(673\) −11.9564 20.7092i −0.460887 0.798279i 0.538119 0.842869i \(-0.319135\pi\)
−0.999005 + 0.0445897i \(0.985802\pi\)
\(674\) 0.126136 + 0.218475i 0.00485859 + 0.00841533i
\(675\) 0 0
\(676\) −0.500000 + 12.9904i −0.0192308 + 0.499630i
\(677\) 4.25227 0.163428 0.0817141 0.996656i \(-0.473961\pi\)
0.0817141 + 0.996656i \(0.473961\pi\)
\(678\) −0.873864 1.51358i −0.0335605 0.0581285i
\(679\) −8.24773 14.2855i −0.316519 0.548226i
\(680\) 0 0
\(681\) −46.2867 −1.77371
\(682\) 18.1652 31.4630i 0.695580 1.20478i
\(683\) −14.4564 + 25.0393i −0.553160 + 0.958102i 0.444884 + 0.895588i \(0.353245\pi\)
−0.998044 + 0.0625134i \(0.980088\pi\)
\(684\) 23.9564 0.915997
\(685\) 0 0
\(686\) 9.66515 + 16.7405i 0.369017 + 0.639157i
\(687\) 17.2695 + 29.9117i 0.658873 + 1.14120i
\(688\) 10.9564 0.417710
\(689\) −16.0390 + 3.96863i −0.611038 + 0.151193i
\(690\) 0 0
\(691\) −1.62614 2.81655i −0.0618611 0.107147i 0.833436 0.552616i \(-0.186370\pi\)
−0.895297 + 0.445469i \(0.853037\pi\)
\(692\) −9.56080 16.5598i −0.363447 0.629509i
\(693\) 16.2695 28.1796i 0.618027 1.07046i
\(694\) −28.5826 −1.08498
\(695\) 0 0
\(696\) 5.29129 9.16478i 0.200566 0.347390i
\(697\) 9.62614 0.364616
\(698\) −13.4782 + 23.3450i −0.510158 + 0.883620i
\(699\) −20.9347 36.2599i −0.791822 1.37148i
\(700\) 0 0
\(701\) 4.87841 0.184255 0.0921275 0.995747i \(-0.470633\pi\)
0.0921275 + 0.995747i \(0.470633\pi\)
\(702\) −12.5000 12.9904i −0.471782 0.490290i
\(703\) 31.8693 1.20197
\(704\) 1.89564 + 3.28335i 0.0714448 + 0.123746i
\(705\) 0 0
\(706\) −9.31307 + 16.1307i −0.350502 + 0.607087i
\(707\) −35.3739 −1.33037
\(708\) 6.39564 11.0776i 0.240363 0.416321i
\(709\) 5.39564 9.34553i 0.202638 0.350979i −0.746740 0.665116i \(-0.768382\pi\)
0.949377 + 0.314138i \(0.101715\pi\)
\(710\) 0 0
\(711\) −35.8303 + 62.0599i −1.34374 + 2.32743i
\(712\) −0.313068 0.542250i −0.0117327 0.0203217i
\(713\) 21.9564 + 38.0297i 0.822275 + 1.42422i
\(714\) 3.95644 0.148066
\(715\) 0 0
\(716\) 6.00000 0.224231
\(717\) 25.3521 + 43.9111i 0.946791 + 1.63989i
\(718\) 16.8956 + 29.2641i 0.630540 + 1.09213i
\(719\) −5.76951 + 9.99308i −0.215166 + 0.372679i −0.953324 0.301949i \(-0.902363\pi\)
0.738158 + 0.674628i \(0.235696\pi\)
\(720\) 0 0
\(721\) −2.31307 + 4.00635i −0.0861432 + 0.149204i
\(722\) −3.00000 + 5.19615i −0.111648 + 0.193381i
\(723\) −19.5390 −0.726664
\(724\) −3.68693 + 6.38595i −0.137024 + 0.237332i
\(725\) 0 0
\(726\) −4.70871 8.15573i −0.174757 0.302687i
\(727\) −23.1652 −0.859148 −0.429574 0.903032i \(-0.641336\pi\)
−0.429574 + 0.903032i \(0.641336\pi\)
\(728\) −1.79129 + 6.20520i −0.0663895 + 0.229980i
\(729\) −43.8693 −1.62479
\(730\) 0 0
\(731\) −4.33485 7.50818i −0.160330 0.277700i
\(732\) 11.9782 20.7469i 0.442728 0.766827i
\(733\) −19.3739 −0.715590 −0.357795 0.933800i \(-0.616471\pi\)
−0.357795 + 0.933800i \(0.616471\pi\)
\(734\) 12.3739 21.4322i 0.456728 0.791075i
\(735\) 0 0
\(736\) −4.58258 −0.168916
\(737\) −20.8521 + 36.1169i −0.768096 + 1.33038i
\(738\) −29.1434 50.4778i −1.07278 1.85811i
\(739\) −17.1869 29.7686i −0.632232 1.09506i −0.987095 0.160139i \(-0.948806\pi\)
0.354863 0.934918i \(-0.384528\pi\)
\(740\) 0 0
\(741\) 48.8475 12.0866i 1.79446 0.444013i
\(742\) −8.20871 −0.301351
\(743\) −21.0000 36.3731i −0.770415 1.33440i −0.937336 0.348428i \(-0.886716\pi\)
0.166920 0.985970i \(-0.446618\pi\)
\(744\) −13.3739 23.1642i −0.490310 0.849241i
\(745\) 0 0
\(746\) 13.1652 0.482010
\(747\) −14.7695 + 25.5815i −0.540388 + 0.935980i
\(748\) 1.50000 2.59808i 0.0548454 0.0949951i
\(749\) 18.6606 0.681844
\(750\) 0 0
\(751\) −1.24773 2.16113i −0.0455302 0.0788606i 0.842362 0.538912i \(-0.181164\pi\)
−0.887892 + 0.460051i \(0.847831\pi\)
\(752\) 0.395644 + 0.685275i 0.0144276 + 0.0249894i
\(753\) −56.8693 −2.07243
\(754\) 3.79129 13.1334i 0.138071 0.478290i
\(755\) 0 0
\(756\) −4.47822 7.75650i −0.162871 0.282101i
\(757\) −23.8739 41.3507i −0.867710 1.50292i −0.864331 0.502924i \(-0.832258\pi\)
−0.00337974 0.999994i \(-0.501076\pi\)
\(758\) −8.50000 + 14.7224i −0.308734 + 0.534743i
\(759\) 48.4955 1.76027
\(760\) 0 0
\(761\) 5.45644 9.45083i 0.197796 0.342592i −0.750018 0.661418i \(-0.769955\pi\)
0.947813 + 0.318825i \(0.103288\pi\)
\(762\) −45.7042 −1.65569
\(763\) −1.64337 + 2.84640i −0.0594940 + 0.103047i
\(764\) 0.873864 + 1.51358i 0.0316153 + 0.0547593i
\(765\) 0 0
\(766\) −1.74773 −0.0631479
\(767\) 4.58258 15.8745i 0.165467 0.573195i
\(768\) 2.79129 0.100722
\(769\) −18.3739 31.8245i −0.662578 1.14762i −0.979936 0.199314i \(-0.936129\pi\)
0.317357 0.948306i \(-0.397205\pi\)
\(770\) 0 0
\(771\) 31.9782 55.3879i 1.15167 1.99475i
\(772\) −17.9564 −0.646266
\(773\) 18.3303 31.7490i 0.659295 1.14193i −0.321503 0.946908i \(-0.604188\pi\)
0.980798 0.195024i \(-0.0624786\pi\)
\(774\) −26.2477 + 45.4624i −0.943455 + 1.63411i
\(775\) 0 0
\(776\) −4.60436 + 7.97498i −0.165287 + 0.286285i
\(777\) −15.9347 27.5996i −0.571653 0.990132i
\(778\) 3.16515 + 5.48220i 0.113476 + 0.196547i
\(779\) 60.8258 2.17931
\(780\) 0 0
\(781\) −28.7477 −1.02867
\(782\) 1.81307 + 3.14033i 0.0648352 + 0.112298i
\(783\) 9.47822 + 16.4168i 0.338724 + 0.586687i
\(784\) 1.89564 3.28335i 0.0677016 0.117263i
\(785\) 0 0
\(786\) 20.9347 36.2599i 0.746715 1.29335i
\(787\) 21.7695 37.7059i 0.775999 1.34407i −0.158232 0.987402i \(-0.550579\pi\)
0.934231 0.356668i \(-0.116087\pi\)
\(788\) 9.95644 0.354683
\(789\) −13.8956 + 24.0680i −0.494698 + 0.856842i
\(790\) 0 0
\(791\) −0.560795 0.971326i −0.0199396 0.0345364i
\(792\) −18.1652 −0.645471
\(793\) 8.58258 29.7309i 0.304776 1.05578i
\(794\) 6.20871 0.220339
\(795\) 0 0
\(796\) 7.06080 + 12.2297i 0.250263 + 0.433469i
\(797\) 22.0390 38.1727i 0.780662 1.35215i −0.150895 0.988550i \(-0.548215\pi\)
0.931557 0.363596i \(-0.118451\pi\)
\(798\) 25.0000 0.884990
\(799\) 0.313068 0.542250i 0.0110756 0.0191834i
\(800\) 0 0
\(801\) 3.00000 0.106000
\(802\) 10.1869 17.6443i 0.359713 0.623041i
\(803\) 13.5826 + 23.5257i 0.479319 + 0.830204i
\(804\) 15.3521 + 26.5906i 0.541426 + 0.937778i
\(805\) 0 0
\(806\) −23.9564 24.8963i −0.843830 0.876933i
\(807\) −42.7913 −1.50632
\(808\) 9.87386 + 17.1020i 0.347361 + 0.601647i
\(809\) 3.00000 + 5.19615i 0.105474 + 0.182687i 0.913932 0.405868i \(-0.133031\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) 0 0
\(811\) −18.7042 −0.656792 −0.328396 0.944540i \(-0.606508\pi\)
−0.328396 + 0.944540i \(0.606508\pi\)
\(812\) 3.39564 5.88143i 0.119164 0.206398i
\(813\) −15.5826 + 26.9898i −0.546505 + 0.946574i
\(814\) −24.1652 −0.846988
\(815\) 0 0
\(816\) −1.10436 1.91280i −0.0386602 0.0669614i
\(817\) −27.3911 47.4428i −0.958293 1.65981i
\(818\) −22.4955 −0.786535
\(819\) −21.4564 22.2982i −0.749749 0.779162i
\(820\) 0 0
\(821\) −5.45644 9.45083i −0.190431 0.329836i 0.754962 0.655768i \(-0.227655\pi\)
−0.945393 + 0.325932i \(0.894322\pi\)
\(822\) 21.1652 + 36.6591i 0.738219 + 1.27863i
\(823\) 10.6261 18.4050i 0.370404 0.641558i −0.619224 0.785215i \(-0.712553\pi\)
0.989628 + 0.143656i \(0.0458860\pi\)
\(824\) 2.58258 0.0899683
\(825\) 0 0
\(826\) 4.10436 7.10895i 0.142809 0.247352i
\(827\) 45.3303 1.57629 0.788145 0.615490i \(-0.211042\pi\)
0.788145 + 0.615490i \(0.211042\pi\)
\(828\) 10.9782 19.0148i 0.381520 0.660811i
\(829\) 22.1434 + 38.3534i 0.769071 + 1.33207i 0.938067 + 0.346453i \(0.112614\pi\)
−0.168996 + 0.985617i \(0.554053\pi\)
\(830\) 0 0
\(831\) 21.2867 0.738429
\(832\) 3.50000 0.866025i 0.121341 0.0300240i
\(833\) −3.00000 −0.103944
\(834\) −30.1216 52.1721i −1.04303 1.80657i
\(835\) 0 0
\(836\) 9.47822 16.4168i 0.327811 0.567785i
\(837\) 47.9129 1.65611
\(838\) 1.73049 2.99730i 0.0597789 0.103540i
\(839\) 2.85208 4.93995i 0.0984648 0.170546i −0.812585 0.582843i \(-0.801940\pi\)
0.911049 + 0.412297i \(0.135273\pi\)
\(840\) 0 0
\(841\) 7.31307 12.6666i 0.252175 0.436780i
\(842\) −0.521780 0.903750i −0.0179817 0.0311453i
\(843\) 20.2913 + 35.1455i 0.698869 + 1.21048i
\(844\) 5.00000 0.172107
\(845\) 0 0
\(846\) −3.79129 −0.130347
\(847\) −3.02178 5.23388i −0.103830 0.179838i
\(848\) 2.29129 + 3.96863i 0.0786831 + 0.136283i
\(849\) −17.5000 + 30.3109i −0.600598 + 1.04027i
\(850\) 0 0
\(851\) 14.6044 25.2955i 0.500631 0.867118i
\(852\) −10.5826 + 18.3296i −0.362553 + 0.627960i
\(853\) 32.1216 1.09982 0.549911 0.835223i \(-0.314662\pi\)
0.549911 + 0.835223i \(0.314662\pi\)
\(854\) 7.68693 13.3142i 0.263041 0.455601i
\(855\) 0 0
\(856\) −5.20871 9.02175i −0.178030 0.308357i
\(857\) 24.1652 0.825466 0.412733 0.910852i \(-0.364574\pi\)
0.412733 + 0.910852i \(0.364574\pi\)
\(858\) −37.0390 + 9.16478i −1.26449 + 0.312880i
\(859\) 21.2867 0.726294 0.363147 0.931732i \(-0.381702\pi\)
0.363147 + 0.931732i \(0.381702\pi\)
\(860\) 0 0
\(861\) −30.4129 52.6767i −1.03647 1.79522i
\(862\) 3.39564 5.88143i 0.115656 0.200322i
\(863\) 22.5826 0.768720 0.384360 0.923183i \(-0.374422\pi\)
0.384360 + 0.923183i \(0.374422\pi\)
\(864\) −2.50000 + 4.33013i −0.0850517 + 0.147314i
\(865\) 0 0
\(866\) −30.5826 −1.03924
\(867\) 22.8521 39.5810i 0.776097 1.34424i
\(868\) −8.58258 14.8655i −0.291312 0.504566i
\(869\) 28.3521 + 49.1072i 0.961779 + 1.66585i
\(870\) 0 0
\(871\) 27.5000 + 28.5788i 0.931802 + 0.968357i
\(872\) 1.83485 0.0621358
\(873\) −22.0608 38.2104i −0.746645 1.29323i
\(874\) 11.4564 + 19.8431i 0.387520 + 0.671204i
\(875\) 0 0
\(876\) 20.0000 0.675737
\(877\) 9.12614 15.8069i 0.308168 0.533762i −0.669794 0.742547i \(-0.733618\pi\)
0.977962 + 0.208785i \(0.0669509\pi\)
\(878\) 8.79129 15.2270i 0.296692 0.513885i
\(879\) −18.4955 −0.623836
\(880\) 0 0
\(881\) 2.52178 + 4.36785i 0.0849609 + 0.147157i 0.905375 0.424614i \(-0.139590\pi\)
−0.820414 + 0.571770i \(0.806257\pi\)
\(882\) 9.08258 + 15.7315i 0.305826 + 0.529707i
\(883\) 19.9564 0.671588 0.335794 0.941936i \(-0.390995\pi\)
0.335794 + 0.941936i \(0.390995\pi\)
\(884\) −1.97822 2.05583i −0.0665347 0.0691449i
\(885\) 0 0
\(886\) 1.02178 + 1.76978i 0.0343274 + 0.0594568i
\(887\) 25.5826 + 44.3103i 0.858979 + 1.48779i 0.872904 + 0.487892i \(0.162234\pi\)
−0.0139252 + 0.999903i \(0.504433\pi\)
\(888\) −8.89564 + 15.4077i −0.298518 + 0.517049i
\(889\) −29.3303 −0.983707
\(890\) 0 0
\(891\) −0.791288 + 1.37055i −0.0265091 + 0.0459152i
\(892\) −9.74773 −0.326378
\(893\) 1.97822 3.42638i 0.0661986 0.114659i
\(894\) 5.52178 + 9.56400i 0.184676 + 0.319868i
\(895\) 0 0
\(896\) 1.79129 0.0598427
\(897\) 12.7913 44.3103i 0.427089 1.47948i
\(898\) 32.3739 1.08033
\(899\) 18.1652 + 31.4630i 0.605842 + 1.04935i
\(900\) 0 0
\(901\) 1.81307 3.14033i 0.0604021 0.104619i
\(902\) −46.1216 −1.53568
\(903\) −27.3911 + 47.4428i −0.911519 + 1.57880i
\(904\) −0.313068 + 0.542250i −0.0104125 + 0.0180350i
\(905\) 0 0
\(906\) 8.89564 15.4077i 0.295538 0.511887i
\(907\) 16.2477 + 28.1419i 0.539497 + 0.934436i 0.998931 + 0.0462243i \(0.0147189\pi\)
−0.459434 + 0.888212i \(0.651948\pi\)
\(908\) 8.29129 + 14.3609i 0.275156 + 0.476584i
\(909\) −94.6170 −3.13825
\(910\) 0 0
\(911\) 45.3303 1.50186 0.750930 0.660382i \(-0.229606\pi\)
0.750930 + 0.660382i \(0.229606\pi\)
\(912\) −6.97822 12.0866i −0.231072 0.400228i
\(913\) 11.6869 + 20.2424i 0.386781 + 0.669924i
\(914\) 3.68693 6.38595i 0.121953 0.211229i
\(915\) 0 0
\(916\) 6.18693 10.7161i 0.204422 0.354069i
\(917\) 13.4347 23.2695i 0.443652 0.768427i
\(918\) 3.95644 0.130582
\(919\) 22.3739 38.7527i 0.738046 1.27833i −0.215328 0.976542i \(-0.569082\pi\)
0.953374 0.301791i \(-0.0975844\pi\)
\(920\) 0 0
\(921\) −18.3739 31.8245i −0.605439 1.04865i
\(922\) 29.2087 0.961938
\(923\) −7.58258 + 26.2668i −0.249584 + 0.864583i
\(924\) −18.9564 −0.623621
\(925\) 0 0
\(926\) 8.97822 + 15.5507i 0.295043 + 0.511029i
\(927\) −6.18693 + 10.7161i −0.203206 + 0.351962i
\(928\) −3.79129 −0.124455
\(929\) 11.3739 19.7001i 0.373164 0.646340i −0.616886 0.787052i \(-0.711606\pi\)
0.990050 + 0.140713i \(0.0449394\pi\)
\(930\) 0 0
\(931\) −18.9564 −0.621272
\(932\) −7.50000 + 12.9904i −0.245671 + 0.425514i
\(933\) 24.2477 + 41.9983i 0.793835 + 1.37496i
\(934\) −4.18693 7.25198i −0.137001 0.237292i
\(935\) 0 0
\(936\) −4.79129 + 16.5975i −0.156608 + 0.542507i
\(937\) −32.6261 −1.06585 −0.532925 0.846163i \(-0.678907\pi\)
−0.532925 + 0.846163i \(0.678907\pi\)
\(938\) 9.85208 + 17.0643i 0.321682 + 0.557169i
\(939\) −6.45644 11.1829i −0.210698 0.364940i
\(940\) 0 0
\(941\) −47.3739 −1.54434 −0.772172 0.635414i \(-0.780830\pi\)
−0.772172 + 0.635414i \(0.780830\pi\)
\(942\) 7.20871 12.4859i 0.234873 0.406811i
\(943\) 27.8739 48.2789i 0.907698 1.57218i
\(944\) −4.58258 −0.149150
\(945\) 0 0
\(946\) 20.7695 + 35.9738i 0.675275 + 1.16961i
\(947\) −18.3956 31.8622i −0.597778 1.03538i −0.993148 0.116860i \(-0.962717\pi\)
0.395370 0.918522i \(-0.370616\pi\)
\(948\) 41.7477 1.35590
\(949\) 25.0780 6.20520i 0.814067 0.201429i
\(950\) 0 0
\(951\) 37.0390 + 64.1535i 1.20107 + 2.08032i
\(952\) −0.708712 1.22753i −0.0229695 0.0397843i
\(953\) 15.2477 26.4098i 0.493922 0.855499i −0.506053 0.862502i \(-0.668896\pi\)
0.999975 + 0.00700373i \(0.00222937\pi\)
\(954\) −21.9564 −0.710866
\(955\) 0 0
\(956\) 9.08258 15.7315i 0.293751 0.508793i
\(957\) 40.1216 1.29695
\(958\) −9.47822 + 16.4168i −0.306227 + 0.530401i
\(959\) 13.5826 + 23.5257i 0.438604 + 0.759685i
\(960\) 0 0
\(961\) 60.8258 1.96212
\(962\) −6.37386 + 22.0797i −0.205502 + 0.711878i
\(963\) 49.9129 1.60842
\(964\) 3.50000 + 6.06218i 0.112727 + 0.195250i
\(965\) 0 0
\(966\) 11.4564 19.8431i 0.368605 0.638442i
\(967\) −6.74773 −0.216992 −0.108496 0.994097i \(-0.534604\pi\)
−0.108496 + 0.994097i \(0.534604\pi\)
\(968\) −1.68693 + 2.92185i −0.0542200 + 0.0939119i
\(969\) −5.52178 + 9.56400i −0.177385 + 0.307240i
\(970\) 0 0
\(971\) −9.24773 + 16.0175i −0.296774 + 0.514027i −0.975396 0.220460i \(-0.929244\pi\)
0.678622 + 0.734487i \(0.262577\pi\)
\(972\) 8.08258 + 13.9994i 0.259249 + 0.449032i
\(973\) −19.3303 33.4811i −0.619701 1.07335i
\(974\) −21.1216 −0.676779
\(975\) 0 0
\(976\) −8.58258 −0.274722
\(977\) −5.29129 9.16478i −0.169283 0.293207i 0.768885 0.639387i \(-0.220812\pi\)
−0.938168 + 0.346180i \(0.887479\pi\)
\(978\) −6.45644 11.1829i −0.206454 0.357589i
\(979\) 1.18693 2.05583i 0.0379345 0.0657045i
\(980\) 0 0
\(981\) −4.39564 + 7.61348i −0.140342 + 0.243080i
\(982\) −17.4564 + 30.2354i −0.557057 + 0.964852i
\(983\) 18.4610 0.588814 0.294407 0.955680i \(-0.404878\pi\)
0.294407 + 0.955680i \(0.404878\pi\)
\(984\) −16.9782 + 29.4071i −0.541246 + 0.937465i
\(985\) 0 0
\(986\) 1.50000 + 2.59808i 0.0477697 + 0.0827396i
\(987\) −3.95644 −0.125935
\(988\) −12.5000 12.9904i −0.397678 0.413279i
\(989\) −50.2087 −1.59654
\(990\) 0 0
\(991\) −13.0000 22.5167i −0.412959 0.715265i 0.582253 0.813008i \(-0.302171\pi\)
−0.995212 + 0.0977423i \(0.968838\pi\)
\(992\) −4.79129 + 8.29875i −0.152124 + 0.263486i
\(993\) 33.3739 1.05909
\(994\) −6.79129 + 11.7629i −0.215407 + 0.373095i
\(995\) 0 0
\(996\) 17.2087 0.545279
\(997\) −2.56080 + 4.43543i −0.0811012 + 0.140471i −0.903723 0.428117i \(-0.859177\pi\)
0.822622 + 0.568589i \(0.192510\pi\)
\(998\) −4.87386 8.44178i −0.154279 0.267220i
\(999\) −15.9347 27.5996i −0.504150 0.873214i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.d.601.1 yes 4
5.2 odd 4 650.2.o.f.549.3 8
5.3 odd 4 650.2.o.f.549.2 8
5.4 even 2 650.2.e.i.601.2 yes 4
13.3 even 3 8450.2.a.bk.1.2 2
13.9 even 3 inner 650.2.e.d.451.1 4
13.10 even 6 8450.2.a.be.1.2 2
65.9 even 6 650.2.e.i.451.2 yes 4
65.22 odd 12 650.2.o.f.399.2 8
65.29 even 6 8450.2.a.bb.1.1 2
65.48 odd 12 650.2.o.f.399.3 8
65.49 even 6 8450.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.e.d.451.1 4 13.9 even 3 inner
650.2.e.d.601.1 yes 4 1.1 even 1 trivial
650.2.e.i.451.2 yes 4 65.9 even 6
650.2.e.i.601.2 yes 4 5.4 even 2
650.2.o.f.399.2 8 65.22 odd 12
650.2.o.f.399.3 8 65.48 odd 12
650.2.o.f.549.2 8 5.3 odd 4
650.2.o.f.549.3 8 5.2 odd 4
8450.2.a.bb.1.1 2 65.29 even 6
8450.2.a.be.1.2 2 13.10 even 6
8450.2.a.bh.1.1 2 65.49 even 6
8450.2.a.bk.1.2 2 13.3 even 3