Properties

Label 650.2.e.d
Level 650650
Weight 22
Character orbit 650.e
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-1,-2,0,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{-7})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q2β3q3+β1q4+(β3β2)q6+(β3β2β1)q7+q8+(β3β2+2β1)q9+(β3+β1+1)q11++(4β27)q99+O(q100) q + ( - \beta_1 - 1) q^{2} - \beta_{3} q^{3} + \beta_1 q^{4} + (\beta_{3} - \beta_{2}) q^{6} + (\beta_{3} - \beta_{2} - \beta_1) q^{7} + q^{8} + (\beta_{3} - \beta_{2} + 2 \beta_1) q^{9} + (\beta_{3} + \beta_1 + 1) q^{11}+ \cdots + ( - 4 \beta_{2} - 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2q32q4q6+q7+4q85q9+3q11+2q12+14q132q142q16+3q17+10q1810q19+20q21+3q22q2410q26+36q99+O(q100) 4 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{6} + q^{7} + 4 q^{8} - 5 q^{9} + 3 q^{11} + 2 q^{12} + 14 q^{13} - 2 q^{14} - 2 q^{16} + 3 q^{17} + 10 q^{18} - 10 q^{19} + 20 q^{21} + 3 q^{22} - q^{24} - 10 q^{26}+ \cdots - 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν3+ν2ν4)/2 ( \nu^{3} + \nu^{2} - \nu - 4 ) / 2 Copy content Toggle raw display
β2\beta_{2}== (ν3+ν2+3ν+2)/2 ( -\nu^{3} + \nu^{2} + 3\nu + 2 ) / 2 Copy content Toggle raw display
β3\beta_{3}== (3ν3+ν2+ν8)/2 ( 3\nu^{3} + \nu^{2} + \nu - 8 ) / 2 Copy content Toggle raw display
ν\nu== (β3+β22β11)/3 ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β3+2β2+5β1+4)/3 ( -\beta_{3} + 2\beta_{2} + 5\beta _1 + 4 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β3β2β1+7)/3 ( 2\beta_{3} - \beta_{2} - \beta _1 + 7 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 11 β1\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
451.1
1.39564 0.228425i
−0.895644 + 1.09445i
1.39564 + 0.228425i
−0.895644 1.09445i
−0.500000 + 0.866025i −1.39564 + 2.41733i −0.500000 0.866025i 0 −1.39564 2.41733i −0.895644 1.55130i 1.00000 −2.39564 4.14938i 0
451.2 −0.500000 + 0.866025i 0.895644 1.55130i −0.500000 0.866025i 0 0.895644 + 1.55130i 1.39564 + 2.41733i 1.00000 −0.104356 0.180750i 0
601.1 −0.500000 0.866025i −1.39564 2.41733i −0.500000 + 0.866025i 0 −1.39564 + 2.41733i −0.895644 + 1.55130i 1.00000 −2.39564 + 4.14938i 0
601.2 −0.500000 0.866025i 0.895644 + 1.55130i −0.500000 + 0.866025i 0 0.895644 1.55130i 1.39564 2.41733i 1.00000 −0.104356 + 0.180750i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.e.d 4
5.b even 2 1 650.2.e.i yes 4
5.c odd 4 2 650.2.o.f 8
13.c even 3 1 inner 650.2.e.d 4
13.c even 3 1 8450.2.a.bk 2
13.e even 6 1 8450.2.a.be 2
65.l even 6 1 8450.2.a.bh 2
65.n even 6 1 650.2.e.i yes 4
65.n even 6 1 8450.2.a.bb 2
65.q odd 12 2 650.2.o.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.e.d 4 1.a even 1 1 trivial
650.2.e.d 4 13.c even 3 1 inner
650.2.e.i yes 4 5.b even 2 1
650.2.e.i yes 4 65.n even 6 1
650.2.o.f 8 5.c odd 4 2
650.2.o.f 8 65.q odd 12 2
8450.2.a.bb 2 65.n even 6 1
8450.2.a.be 2 13.e even 6 1
8450.2.a.bh 2 65.l even 6 1
8450.2.a.bk 2 13.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T34+T33+6T325T3+25 T_{3}^{4} + T_{3}^{3} + 6T_{3}^{2} - 5T_{3} + 25 Copy content Toggle raw display
T74T73+6T72+5T7+25 T_{7}^{4} - T_{7}^{3} + 6T_{7}^{2} + 5T_{7} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
33 T4+T3++25 T^{4} + T^{3} + \cdots + 25 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4T3++25 T^{4} - T^{3} + \cdots + 25 Copy content Toggle raw display
1111 T43T3++9 T^{4} - 3 T^{3} + \cdots + 9 Copy content Toggle raw display
1313 (T27T+13)2 (T^{2} - 7 T + 13)^{2} Copy content Toggle raw display
1717 T43T3++9 T^{4} - 3 T^{3} + \cdots + 9 Copy content Toggle raw display
1919 (T2+5T+25)2 (T^{2} + 5 T + 25)^{2} Copy content Toggle raw display
2323 T4+21T2+441 T^{4} + 21T^{2} + 441 Copy content Toggle raw display
2929 T43T3++9 T^{4} - 3 T^{3} + \cdots + 9 Copy content Toggle raw display
3131 (T210T+4)2 (T^{2} - 10 T + 4)^{2} Copy content Toggle raw display
3737 T4T3++2209 T^{4} - T^{3} + \cdots + 2209 Copy content Toggle raw display
4141 T4+6T3++5625 T^{4} + 6 T^{3} + \cdots + 5625 Copy content Toggle raw display
4343 T4T3++17161 T^{4} - T^{3} + \cdots + 17161 Copy content Toggle raw display
4747 (T23T3)2 (T^{2} - 3 T - 3)^{2} Copy content Toggle raw display
5353 (T221)2 (T^{2} - 21)^{2} Copy content Toggle raw display
5959 T4+21T2+441 T^{4} + 21T^{2} + 441 Copy content Toggle raw display
6161 T48T3++25 T^{4} - 8 T^{3} + \cdots + 25 Copy content Toggle raw display
6767 (T211T+121)2 (T^{2} - 11 T + 121)^{2} Copy content Toggle raw display
7171 T4+6T3++144 T^{4} + 6 T^{3} + \cdots + 144 Copy content Toggle raw display
7373 (T2+4T80)2 (T^{2} + 4 T - 80)^{2} Copy content Toggle raw display
7979 (T27T119)2 (T^{2} - 7 T - 119)^{2} Copy content Toggle raw display
8383 (T2+6T75)2 (T^{2} + 6 T - 75)^{2} Copy content Toggle raw display
8989 T4+15T3++81 T^{4} + 15 T^{3} + \cdots + 81 Copy content Toggle raw display
9797 T4+23T3++16129 T^{4} + 23 T^{3} + \cdots + 16129 Copy content Toggle raw display
show more
show less