gp: [N,k,chi] = [650,2,Mod(451,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.451");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,-2,-1,-2,0,-1,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − x 2 − 2 x + 4 x^{4} - x^{3} - x^{2} - 2x + 4 x 4 − x 3 − x 2 − 2 x + 4
x^4 - x^3 - x^2 - 2*x + 4
:
β 1 \beta_{1} β 1 = = =
( ν 3 + ν 2 − ν − 4 ) / 2 ( \nu^{3} + \nu^{2} - \nu - 4 ) / 2 ( ν 3 + ν 2 − ν − 4 ) / 2
(v^3 + v^2 - v - 4) / 2
β 2 \beta_{2} β 2 = = =
( − ν 3 + ν 2 + 3 ν + 2 ) / 2 ( -\nu^{3} + \nu^{2} + 3\nu + 2 ) / 2 ( − ν 3 + ν 2 + 3 ν + 2 ) / 2
(-v^3 + v^2 + 3*v + 2) / 2
β 3 \beta_{3} β 3 = = =
( 3 ν 3 + ν 2 + ν − 8 ) / 2 ( 3\nu^{3} + \nu^{2} + \nu - 8 ) / 2 ( 3 ν 3 + ν 2 + ν − 8 ) / 2
(3*v^3 + v^2 + v - 8) / 2
ν \nu ν = = =
( β 3 + β 2 − 2 β 1 − 1 ) / 3 ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 ( β 3 + β 2 − 2 β 1 − 1 ) / 3
(b3 + b2 - 2*b1 - 1) / 3
ν 2 \nu^{2} ν 2 = = =
( − β 3 + 2 β 2 + 5 β 1 + 4 ) / 3 ( -\beta_{3} + 2\beta_{2} + 5\beta _1 + 4 ) / 3 ( − β 3 + 2 β 2 + 5 β 1 + 4 ) / 3
(-b3 + 2*b2 + 5*b1 + 4) / 3
ν 3 \nu^{3} ν 3 = = =
( 2 β 3 − β 2 − β 1 + 7 ) / 3 ( 2\beta_{3} - \beta_{2} - \beta _1 + 7 ) / 3 ( 2 β 3 − β 2 − β 1 + 7 ) / 3
(2*b3 - b2 - b1 + 7) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
β 1 \beta_{1} β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + T 3 3 + 6 T 3 2 − 5 T 3 + 25 T_{3}^{4} + T_{3}^{3} + 6T_{3}^{2} - 5T_{3} + 25 T 3 4 + T 3 3 + 6 T 3 2 − 5 T 3 + 2 5
T3^4 + T3^3 + 6*T3^2 - 5*T3 + 25
T 7 4 − T 7 3 + 6 T 7 2 + 5 T 7 + 25 T_{7}^{4} - T_{7}^{3} + 6T_{7}^{2} + 5T_{7} + 25 T 7 4 − T 7 3 + 6 T 7 2 + 5 T 7 + 2 5
T7^4 - T7^3 + 6*T7^2 + 5*T7 + 25
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
3 3 3
T 4 + T 3 + ⋯ + 25 T^{4} + T^{3} + \cdots + 25 T 4 + T 3 + ⋯ + 2 5
T^4 + T^3 + 6*T^2 - 5*T + 25
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 − T 3 + ⋯ + 25 T^{4} - T^{3} + \cdots + 25 T 4 − T 3 + ⋯ + 2 5
T^4 - T^3 + 6*T^2 + 5*T + 25
11 11 1 1
T 4 − 3 T 3 + ⋯ + 9 T^{4} - 3 T^{3} + \cdots + 9 T 4 − 3 T 3 + ⋯ + 9
T^4 - 3*T^3 + 12*T^2 + 9*T + 9
13 13 1 3
( T 2 − 7 T + 13 ) 2 (T^{2} - 7 T + 13)^{2} ( T 2 − 7 T + 1 3 ) 2
(T^2 - 7*T + 13)^2
17 17 1 7
T 4 − 3 T 3 + ⋯ + 9 T^{4} - 3 T^{3} + \cdots + 9 T 4 − 3 T 3 + ⋯ + 9
T^4 - 3*T^3 + 12*T^2 + 9*T + 9
19 19 1 9
( T 2 + 5 T + 25 ) 2 (T^{2} + 5 T + 25)^{2} ( T 2 + 5 T + 2 5 ) 2
(T^2 + 5*T + 25)^2
23 23 2 3
T 4 + 21 T 2 + 441 T^{4} + 21T^{2} + 441 T 4 + 2 1 T 2 + 4 4 1
T^4 + 21*T^2 + 441
29 29 2 9
T 4 − 3 T 3 + ⋯ + 9 T^{4} - 3 T^{3} + \cdots + 9 T 4 − 3 T 3 + ⋯ + 9
T^4 - 3*T^3 + 12*T^2 + 9*T + 9
31 31 3 1
( T 2 − 10 T + 4 ) 2 (T^{2} - 10 T + 4)^{2} ( T 2 − 1 0 T + 4 ) 2
(T^2 - 10*T + 4)^2
37 37 3 7
T 4 − T 3 + ⋯ + 2209 T^{4} - T^{3} + \cdots + 2209 T 4 − T 3 + ⋯ + 2 2 0 9
T^4 - T^3 + 48*T^2 + 47*T + 2209
41 41 4 1
T 4 + 6 T 3 + ⋯ + 5625 T^{4} + 6 T^{3} + \cdots + 5625 T 4 + 6 T 3 + ⋯ + 5 6 2 5
T^4 + 6*T^3 + 111*T^2 - 450*T + 5625
43 43 4 3
T 4 − T 3 + ⋯ + 17161 T^{4} - T^{3} + \cdots + 17161 T 4 − T 3 + ⋯ + 1 7 1 6 1
T^4 - T^3 + 132*T^2 + 131*T + 17161
47 47 4 7
( T 2 − 3 T − 3 ) 2 (T^{2} - 3 T - 3)^{2} ( T 2 − 3 T − 3 ) 2
(T^2 - 3*T - 3)^2
53 53 5 3
( T 2 − 21 ) 2 (T^{2} - 21)^{2} ( T 2 − 2 1 ) 2
(T^2 - 21)^2
59 59 5 9
T 4 + 21 T 2 + 441 T^{4} + 21T^{2} + 441 T 4 + 2 1 T 2 + 4 4 1
T^4 + 21*T^2 + 441
61 61 6 1
T 4 − 8 T 3 + ⋯ + 25 T^{4} - 8 T^{3} + \cdots + 25 T 4 − 8 T 3 + ⋯ + 2 5
T^4 - 8*T^3 + 69*T^2 + 40*T + 25
67 67 6 7
( T 2 − 11 T + 121 ) 2 (T^{2} - 11 T + 121)^{2} ( T 2 − 1 1 T + 1 2 1 ) 2
(T^2 - 11*T + 121)^2
71 71 7 1
T 4 + 6 T 3 + ⋯ + 144 T^{4} + 6 T^{3} + \cdots + 144 T 4 + 6 T 3 + ⋯ + 1 4 4
T^4 + 6*T^3 + 48*T^2 - 72*T + 144
73 73 7 3
( T 2 + 4 T − 80 ) 2 (T^{2} + 4 T - 80)^{2} ( T 2 + 4 T − 8 0 ) 2
(T^2 + 4*T - 80)^2
79 79 7 9
( T 2 − 7 T − 119 ) 2 (T^{2} - 7 T - 119)^{2} ( T 2 − 7 T − 1 1 9 ) 2
(T^2 - 7*T - 119)^2
83 83 8 3
( T 2 + 6 T − 75 ) 2 (T^{2} + 6 T - 75)^{2} ( T 2 + 6 T − 7 5 ) 2
(T^2 + 6*T - 75)^2
89 89 8 9
T 4 + 15 T 3 + ⋯ + 81 T^{4} + 15 T^{3} + \cdots + 81 T 4 + 1 5 T 3 + ⋯ + 8 1
T^4 + 15*T^3 + 216*T^2 + 135*T + 81
97 97 9 7
T 4 + 23 T 3 + ⋯ + 16129 T^{4} + 23 T^{3} + \cdots + 16129 T 4 + 2 3 T 3 + ⋯ + 1 6 1 2 9
T^4 + 23*T^3 + 402*T^2 + 2921*T + 16129
show more
show less