Properties

Label 64.9.c
Level $64$
Weight $9$
Character orbit 64.c
Rep. character $\chi_{64}(63,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $6$
Sturm bound $72$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 64.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(72\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).

Total New Old
Modular forms 70 17 53
Cusp forms 58 15 43
Eisenstein series 12 2 10

Trace form

\( 15 q + 2 q^{5} - 28433 q^{9} + O(q^{10}) \) \( 15 q + 2 q^{5} - 28433 q^{9} - 51390 q^{13} - 77282 q^{17} - 256768 q^{21} + 505229 q^{25} + 1066178 q^{29} - 1639552 q^{33} - 1928702 q^{37} - 4938530 q^{41} - 13044158 q^{45} - 7411889 q^{49} - 9916798 q^{53} + 7071360 q^{57} + 40770242 q^{61} + 21835580 q^{65} + 65021696 q^{69} - 3806882 q^{73} - 135634176 q^{77} + 19187279 q^{81} - 38526972 q^{85} + 28472542 q^{89} + 230724608 q^{93} - 123027042 q^{97} + O(q^{100}) \)

Decomposition of \(S_{9}^{\mathrm{new}}(64, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
64.9.c.a 64.c 4.b $1$ $26.072$ \(\Q\) \(\Q(\sqrt{-1}) \) 4.9.b.a \(0\) \(0\) \(1054\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+1054q^{5}+3^{8}q^{9}+478q^{13}-63358q^{17}+\cdots\)
64.9.c.b 64.c 4.b $2$ $26.072$ \(\Q(\sqrt{-39}) \) None 4.9.b.b \(0\) \(0\) \(-1220\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}-610q^{5}+14\beta q^{7}-3423q^{9}+\cdots\)
64.9.c.c 64.c 4.b $2$ $26.072$ \(\Q(\sqrt{-3}) \) None 16.9.c.b \(0\) \(0\) \(-516\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{6}q^{3}-258q^{5}+238\zeta_{6}q^{7}+6369q^{9}+\cdots\)
64.9.c.d 64.c 4.b $2$ $26.072$ \(\Q(\sqrt{-35}) \) None 16.9.c.a \(0\) \(0\) \(1020\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+510q^{5}-18\beta q^{7}-13599q^{9}+\cdots\)
64.9.c.e 64.c 4.b $4$ $26.072$ \(\Q(i, \sqrt{19})\) None 32.9.c.b \(0\) \(0\) \(-1064\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+(-266-3\beta _{2})q^{5}+(7\beta _{1}+\cdots)q^{7}+\cdots\)
64.9.c.f 64.c 4.b $4$ $26.072$ \(\Q(i, \sqrt{39})\) None 32.9.c.a \(0\) \(0\) \(728\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(182-\beta _{2})q^{5}+(-17\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(64, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)