Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 70 | 17 | 53 |
Cusp forms | 58 | 15 | 43 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(64, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
64.9.c.a | $1$ | $26.072$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(1054\) | \(0\) | \(q+1054q^{5}+3^{8}q^{9}+478q^{13}-63358q^{17}+\cdots\) |
64.9.c.b | $2$ | $26.072$ | \(\Q(\sqrt{-39}) \) | None | \(0\) | \(0\) | \(-1220\) | \(0\) | \(q-\beta q^{3}-610q^{5}+14\beta q^{7}-3423q^{9}+\cdots\) |
64.9.c.c | $2$ | $26.072$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-516\) | \(0\) | \(q-\zeta_{6}q^{3}-258q^{5}+238\zeta_{6}q^{7}+6369q^{9}+\cdots\) |
64.9.c.d | $2$ | $26.072$ | \(\Q(\sqrt{-35}) \) | None | \(0\) | \(0\) | \(1020\) | \(0\) | \(q-\beta q^{3}+510q^{5}-18\beta q^{7}-13599q^{9}+\cdots\) |
64.9.c.e | $4$ | $26.072$ | \(\Q(i, \sqrt{19})\) | None | \(0\) | \(0\) | \(-1064\) | \(0\) | \(q+\beta _{3}q^{3}+(-266-3\beta _{2})q^{5}+(7\beta _{1}+\cdots)q^{7}+\cdots\) |
64.9.c.f | $4$ | $26.072$ | \(\Q(i, \sqrt{39})\) | None | \(0\) | \(0\) | \(728\) | \(0\) | \(q+(\beta _{1}+\beta _{3})q^{3}+(182-\beta _{2})q^{5}+(-17\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(64, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)