Newspace parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(26.0722310439\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-35}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 9 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{4}\cdot 3 \) |
Twist minimal: | no (minimal twist has level 16) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 24\sqrt{-35}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).
\(n\) | \(5\) | \(63\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
63.1 |
|
0 | − | 141.986i | 0 | 510.000 | 0 | − | 2555.75i | 0 | −13599.0 | 0 | ||||||||||||||||||||||
63.2 | 0 | 141.986i | 0 | 510.000 | 0 | 2555.75i | 0 | −13599.0 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 64.9.c.d | 2 | |
4.b | odd | 2 | 1 | inner | 64.9.c.d | 2 | |
8.b | even | 2 | 1 | 16.9.c.a | ✓ | 2 | |
8.d | odd | 2 | 1 | 16.9.c.a | ✓ | 2 | |
16.e | even | 4 | 2 | 256.9.d.f | 4 | ||
16.f | odd | 4 | 2 | 256.9.d.f | 4 | ||
24.f | even | 2 | 1 | 144.9.g.g | 2 | ||
24.h | odd | 2 | 1 | 144.9.g.g | 2 | ||
40.e | odd | 2 | 1 | 400.9.b.c | 2 | ||
40.f | even | 2 | 1 | 400.9.b.c | 2 | ||
40.i | odd | 4 | 2 | 400.9.h.b | 4 | ||
40.k | even | 4 | 2 | 400.9.h.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
16.9.c.a | ✓ | 2 | 8.b | even | 2 | 1 | |
16.9.c.a | ✓ | 2 | 8.d | odd | 2 | 1 | |
64.9.c.d | 2 | 1.a | even | 1 | 1 | trivial | |
64.9.c.d | 2 | 4.b | odd | 2 | 1 | inner | |
144.9.g.g | 2 | 24.f | even | 2 | 1 | ||
144.9.g.g | 2 | 24.h | odd | 2 | 1 | ||
256.9.d.f | 4 | 16.e | even | 4 | 2 | ||
256.9.d.f | 4 | 16.f | odd | 4 | 2 | ||
400.9.b.c | 2 | 40.e | odd | 2 | 1 | ||
400.9.b.c | 2 | 40.f | even | 2 | 1 | ||
400.9.h.b | 4 | 40.i | odd | 4 | 2 | ||
400.9.h.b | 4 | 40.k | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 20160 \)
acting on \(S_{9}^{\mathrm{new}}(64, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 20160 \)
$5$
\( (T - 510)^{2} \)
$7$
\( T^{2} + 6531840 \)
$11$
\( T^{2} + 367416000 \)
$13$
\( (T - 27710)^{2} \)
$17$
\( (T - 50370)^{2} \)
$19$
\( T^{2} + 11798136000 \)
$23$
\( T^{2} + 31098090240 \)
$29$
\( (T + 54978)^{2} \)
$31$
\( T^{2} + 1382137344000 \)
$37$
\( (T + 793730)^{2} \)
$41$
\( (T + 75582)^{2} \)
$43$
\( T^{2} + 249648557760 \)
$47$
\( T^{2} + 8222828866560 \)
$53$
\( (T + 11166210)^{2} \)
$59$
\( T^{2} + \cdots + 476656492536000 \)
$61$
\( (T - 23826622)^{2} \)
$67$
\( T^{2} + 56170925496000 \)
$71$
\( T^{2} + \cdots + 101655189216000 \)
$73$
\( (T - 6516610)^{2} \)
$79$
\( T^{2} + 23\!\cdots\!00 \)
$83$
\( T^{2} + 53\!\cdots\!40 \)
$89$
\( (T - 86795778)^{2} \)
$97$
\( (T + 46670270)^{2} \)
show more
show less