Properties

Label 64.9
Level 64
Weight 9
Dimension 565
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 2304
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 64 = 2^{6} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(2304\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(64))\).

Total New Old
Modular forms 1060 587 473
Cusp forms 988 565 423
Eisenstein series 72 22 50

Trace form

\( 565 q - 8 q^{2} - 6 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 4 q^{7} - 8 q^{8} + 6551 q^{9} - 8 q^{10} + 19770 q^{11} - 8 q^{12} - 51400 q^{13} - 8 q^{14} - 8 q^{15} - 8 q^{16} + 154546 q^{17} - 8 q^{18} - 167558 q^{19}+ \cdots - 184785790 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(64))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
64.9.c \(\chi_{64}(63, \cdot)\) 64.9.c.a 1 1
64.9.c.b 2
64.9.c.c 2
64.9.c.d 2
64.9.c.e 4
64.9.c.f 4
64.9.d \(\chi_{64}(31, \cdot)\) 64.9.d.a 4 1
64.9.d.b 12
64.9.f \(\chi_{64}(15, \cdot)\) 64.9.f.a 30 2
64.9.h \(\chi_{64}(7, \cdot)\) None 0 4
64.9.j \(\chi_{64}(3, \cdot)\) 64.9.j.a 504 8

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(64))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(64)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)