Defining parameters
Level: | \( N \) | = | \( 64 = 2^{6} \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(2304\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(64))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1060 | 587 | 473 |
Cusp forms | 988 | 565 | 423 |
Eisenstein series | 72 | 22 | 50 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(64))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(64))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(64)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)