Properties

Label 637.2.f.b.393.1
Level $637$
Weight $2$
Character 637.393
Analytic conductor $5.086$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(295,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,3,1,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 637.393
Dual form 637.2.f.b.295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.50000 + 2.59808i) q^{3} +(0.500000 - 0.866025i) q^{4} +3.00000 q^{5} +(1.50000 - 2.59808i) q^{6} -3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(1.50000 + 2.59808i) q^{11} +3.00000 q^{12} +(-1.00000 + 3.46410i) q^{13} +(4.50000 + 7.79423i) q^{15} +(0.500000 + 0.866025i) q^{16} +(1.00000 - 1.73205i) q^{17} +6.00000 q^{18} +(0.500000 - 0.866025i) q^{19} +(1.50000 - 2.59808i) q^{20} +(1.50000 - 2.59808i) q^{22} +(-4.50000 - 7.79423i) q^{24} +4.00000 q^{25} +(3.50000 - 0.866025i) q^{26} -9.00000 q^{27} +(-3.50000 - 6.06218i) q^{29} +(4.50000 - 7.79423i) q^{30} +3.00000 q^{31} +(-2.50000 + 4.33013i) q^{32} +(-4.50000 + 7.79423i) q^{33} -2.00000 q^{34} +(3.00000 + 5.19615i) q^{36} +(-1.00000 - 1.73205i) q^{37} -1.00000 q^{38} +(-10.5000 + 2.59808i) q^{39} -9.00000 q^{40} +(-1.50000 - 2.59808i) q^{41} +(3.50000 - 6.06218i) q^{43} +3.00000 q^{44} +(-9.00000 + 15.5885i) q^{45} +1.00000 q^{47} +(-1.50000 + 2.59808i) q^{48} +(-2.00000 - 3.46410i) q^{50} +6.00000 q^{51} +(2.50000 + 2.59808i) q^{52} +3.00000 q^{53} +(4.50000 + 7.79423i) q^{54} +(4.50000 + 7.79423i) q^{55} +3.00000 q^{57} +(-3.50000 + 6.06218i) q^{58} +(2.00000 - 3.46410i) q^{59} +9.00000 q^{60} +(6.50000 - 11.2583i) q^{61} +(-1.50000 - 2.59808i) q^{62} +7.00000 q^{64} +(-3.00000 + 10.3923i) q^{65} +9.00000 q^{66} +(1.50000 + 2.59808i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(-6.50000 + 11.2583i) q^{71} +(9.00000 - 15.5885i) q^{72} -13.0000 q^{73} +(-1.00000 + 1.73205i) q^{74} +(6.00000 + 10.3923i) q^{75} +(-0.500000 - 0.866025i) q^{76} +(7.50000 + 7.79423i) q^{78} -3.00000 q^{79} +(1.50000 + 2.59808i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-1.50000 + 2.59808i) q^{82} +(3.00000 - 5.19615i) q^{85} -7.00000 q^{86} +(10.5000 - 18.1865i) q^{87} +(-4.50000 - 7.79423i) q^{88} +(-3.00000 - 5.19615i) q^{89} +18.0000 q^{90} +(4.50000 + 7.79423i) q^{93} +(-0.500000 - 0.866025i) q^{94} +(1.50000 - 2.59808i) q^{95} -15.0000 q^{96} +(2.50000 - 4.33013i) q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{3} + q^{4} + 6 q^{5} + 3 q^{6} - 6 q^{8} - 6 q^{9} - 3 q^{10} + 3 q^{11} + 6 q^{12} - 2 q^{13} + 9 q^{15} + q^{16} + 2 q^{17} + 12 q^{18} + q^{19} + 3 q^{20} + 3 q^{22} - 9 q^{24}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 1.50000 + 2.59808i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 1.50000 2.59808i 0.612372 1.06066i
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 3.00000 0.866025
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 4.50000 + 7.79423i 1.16190 + 2.01246i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 6.00000 1.41421
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 1.50000 2.59808i 0.335410 0.580948i
\(21\) 0 0
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) −4.50000 7.79423i −0.918559 1.59099i
\(25\) 4.00000 0.800000
\(26\) 3.50000 0.866025i 0.686406 0.169842i
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) −3.50000 6.06218i −0.649934 1.12572i −0.983138 0.182864i \(-0.941463\pi\)
0.333205 0.942855i \(-0.391870\pi\)
\(30\) 4.50000 7.79423i 0.821584 1.42302i
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) −4.50000 + 7.79423i −0.783349 + 1.35680i
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 3.00000 + 5.19615i 0.500000 + 0.866025i
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) −1.00000 −0.162221
\(39\) −10.5000 + 2.59808i −1.68135 + 0.416025i
\(40\) −9.00000 −1.42302
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 3.50000 6.06218i 0.533745 0.924473i −0.465478 0.885059i \(-0.654118\pi\)
0.999223 0.0394140i \(-0.0125491\pi\)
\(44\) 3.00000 0.452267
\(45\) −9.00000 + 15.5885i −1.34164 + 2.32379i
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) −1.50000 + 2.59808i −0.216506 + 0.375000i
\(49\) 0 0
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) 6.00000 0.840168
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 4.50000 + 7.79423i 0.612372 + 1.06066i
\(55\) 4.50000 + 7.79423i 0.606780 + 1.05097i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) −3.50000 + 6.06218i −0.459573 + 0.796003i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 9.00000 1.16190
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) −1.50000 2.59808i −0.190500 0.329956i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −3.00000 + 10.3923i −0.372104 + 1.28901i
\(66\) 9.00000 1.10782
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.50000 + 11.2583i −0.771408 + 1.33612i 0.165383 + 0.986229i \(0.447114\pi\)
−0.936791 + 0.349889i \(0.886219\pi\)
\(72\) 9.00000 15.5885i 1.06066 1.83712i
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) −1.00000 + 1.73205i −0.116248 + 0.201347i
\(75\) 6.00000 + 10.3923i 0.692820 + 1.20000i
\(76\) −0.500000 0.866025i −0.0573539 0.0993399i
\(77\) 0 0
\(78\) 7.50000 + 7.79423i 0.849208 + 0.882523i
\(79\) −3.00000 −0.337526 −0.168763 0.985657i \(-0.553977\pi\)
−0.168763 + 0.985657i \(0.553977\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) −7.00000 −0.754829
\(87\) 10.5000 18.1865i 1.12572 1.94980i
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 18.0000 1.89737
\(91\) 0 0
\(92\) 0 0
\(93\) 4.50000 + 7.79423i 0.466628 + 0.808224i
\(94\) −0.500000 0.866025i −0.0515711 0.0893237i
\(95\) 1.50000 2.59808i 0.153897 0.266557i
\(96\) −15.0000 −1.53093
\(97\) 2.50000 4.33013i 0.253837 0.439658i −0.710742 0.703452i \(-0.751641\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) −18.0000 −1.80907
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 2.50000 + 4.33013i 0.248759 + 0.430864i 0.963182 0.268851i \(-0.0866439\pi\)
−0.714423 + 0.699715i \(0.753311\pi\)
\(102\) −3.00000 5.19615i −0.297044 0.514496i
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) 3.00000 10.3923i 0.294174 1.01905i
\(105\) 0 0
\(106\) −1.50000 2.59808i −0.145693 0.252347i
\(107\) −4.00000 6.92820i −0.386695 0.669775i 0.605308 0.795991i \(-0.293050\pi\)
−0.992003 + 0.126217i \(0.959717\pi\)
\(108\) −4.50000 + 7.79423i −0.433013 + 0.750000i
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 4.50000 7.79423i 0.429058 0.743151i
\(111\) 3.00000 5.19615i 0.284747 0.493197i
\(112\) 0 0
\(113\) −7.50000 + 12.9904i −0.705541 + 1.22203i 0.260955 + 0.965351i \(0.415962\pi\)
−0.966496 + 0.256681i \(0.917371\pi\)
\(114\) −1.50000 2.59808i −0.140488 0.243332i
\(115\) 0 0
\(116\) −7.00000 −0.649934
\(117\) −15.0000 15.5885i −1.38675 1.44115i
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) −13.5000 23.3827i −1.23238 2.13454i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −13.0000 −1.17696
\(123\) 4.50000 7.79423i 0.405751 0.702782i
\(124\) 1.50000 2.59808i 0.134704 0.233314i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −5.50000 9.52628i −0.488046 0.845321i 0.511859 0.859069i \(-0.328957\pi\)
−0.999905 + 0.0137486i \(0.995624\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) 21.0000 1.84895
\(130\) 10.5000 2.59808i 0.920911 0.227866i
\(131\) 5.00000 0.436852 0.218426 0.975854i \(-0.429908\pi\)
0.218426 + 0.975854i \(0.429908\pi\)
\(132\) 4.50000 + 7.79423i 0.391675 + 0.678401i
\(133\) 0 0
\(134\) 1.50000 2.59808i 0.129580 0.224440i
\(135\) −27.0000 −2.32379
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) −5.00000 + 8.66025i −0.427179 + 0.739895i −0.996621 0.0821359i \(-0.973826\pi\)
0.569442 + 0.822031i \(0.307159\pi\)
\(138\) 0 0
\(139\) 7.50000 12.9904i 0.636142 1.10183i −0.350130 0.936701i \(-0.613863\pi\)
0.986272 0.165129i \(-0.0528040\pi\)
\(140\) 0 0
\(141\) 1.50000 + 2.59808i 0.126323 + 0.218797i
\(142\) 13.0000 1.09094
\(143\) −10.5000 + 2.59808i −0.878054 + 0.217262i
\(144\) −6.00000 −0.500000
\(145\) −10.5000 18.1865i −0.871978 1.51031i
\(146\) 6.50000 + 11.2583i 0.537944 + 0.931746i
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) 6.00000 10.3923i 0.489898 0.848528i
\(151\) −21.0000 −1.70896 −0.854478 0.519488i \(-0.826123\pi\)
−0.854478 + 0.519488i \(0.826123\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) 6.00000 + 10.3923i 0.485071 + 0.840168i
\(154\) 0 0
\(155\) 9.00000 0.722897
\(156\) −3.00000 + 10.3923i −0.240192 + 0.832050i
\(157\) 19.0000 1.51637 0.758183 0.652042i \(-0.226088\pi\)
0.758183 + 0.652042i \(0.226088\pi\)
\(158\) 1.50000 + 2.59808i 0.119334 + 0.206692i
\(159\) 4.50000 + 7.79423i 0.356873 + 0.618123i
\(160\) −7.50000 + 12.9904i −0.592927 + 1.02698i
\(161\) 0 0
\(162\) −4.50000 + 7.79423i −0.353553 + 0.612372i
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) −3.00000 −0.234261
\(165\) −13.5000 + 23.3827i −1.05097 + 1.82034i
\(166\) 0 0
\(167\) 6.50000 + 11.2583i 0.502985 + 0.871196i 0.999994 + 0.00345033i \(0.00109828\pi\)
−0.497009 + 0.867745i \(0.665568\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) −6.00000 −0.460179
\(171\) 3.00000 + 5.19615i 0.229416 + 0.397360i
\(172\) −3.50000 6.06218i −0.266872 0.462237i
\(173\) −9.50000 + 16.4545i −0.722272 + 1.25101i 0.237816 + 0.971310i \(0.423569\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(174\) −21.0000 −1.59201
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 12.0000 0.901975
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) −8.50000 14.7224i −0.635320 1.10041i −0.986447 0.164079i \(-0.947535\pi\)
0.351127 0.936328i \(-0.385798\pi\)
\(180\) 9.00000 + 15.5885i 0.670820 + 1.16190i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 39.0000 2.88296
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 4.50000 7.79423i 0.329956 0.571501i
\(187\) 6.00000 0.438763
\(188\) 0.500000 0.866025i 0.0364662 0.0631614i
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) 8.50000 14.7224i 0.615038 1.06528i −0.375339 0.926887i \(-0.622474\pi\)
0.990378 0.138390i \(-0.0441928\pi\)
\(192\) 10.5000 + 18.1865i 0.757772 + 1.31250i
\(193\) −3.50000 6.06218i −0.251936 0.436365i 0.712123 0.702055i \(-0.247734\pi\)
−0.964059 + 0.265689i \(0.914400\pi\)
\(194\) −5.00000 −0.358979
\(195\) −31.5000 + 7.79423i −2.25576 + 0.558156i
\(196\) 0 0
\(197\) 0.500000 + 0.866025i 0.0356235 + 0.0617018i 0.883287 0.468832i \(-0.155325\pi\)
−0.847664 + 0.530534i \(0.821992\pi\)
\(198\) 9.00000 + 15.5885i 0.639602 + 1.10782i
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) −12.0000 −0.848528
\(201\) −4.50000 + 7.79423i −0.317406 + 0.549762i
\(202\) 2.50000 4.33013i 0.175899 0.304667i
\(203\) 0 0
\(204\) 3.00000 5.19615i 0.210042 0.363803i
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) −2.50000 4.33013i −0.174183 0.301694i
\(207\) 0 0
\(208\) −3.50000 + 0.866025i −0.242681 + 0.0600481i
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −3.50000 6.06218i −0.240950 0.417338i 0.720035 0.693938i \(-0.244126\pi\)
−0.960985 + 0.276600i \(0.910792\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −39.0000 −2.67224
\(214\) −4.00000 + 6.92820i −0.273434 + 0.473602i
\(215\) 10.5000 18.1865i 0.716094 1.24031i
\(216\) 27.0000 1.83712
\(217\) 0 0
\(218\) −3.50000 6.06218i −0.237050 0.410582i
\(219\) −19.5000 33.7750i −1.31769 2.28230i
\(220\) 9.00000 0.606780
\(221\) 5.00000 + 5.19615i 0.336336 + 0.349531i
\(222\) −6.00000 −0.402694
\(223\) 4.50000 + 7.79423i 0.301342 + 0.521940i 0.976440 0.215788i \(-0.0692320\pi\)
−0.675098 + 0.737728i \(0.735899\pi\)
\(224\) 0 0
\(225\) −12.0000 + 20.7846i −0.800000 + 1.38564i
\(226\) 15.0000 0.997785
\(227\) 2.00000 3.46410i 0.132745 0.229920i −0.791989 0.610535i \(-0.790954\pi\)
0.924734 + 0.380615i \(0.124288\pi\)
\(228\) 1.50000 2.59808i 0.0993399 0.172062i
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.5000 + 18.1865i 0.689359 + 1.19400i
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) −6.00000 + 20.7846i −0.392232 + 1.35873i
\(235\) 3.00000 0.195698
\(236\) −2.00000 3.46410i −0.130189 0.225494i
\(237\) −4.50000 7.79423i −0.292306 0.506290i
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −4.50000 + 7.79423i −0.290474 + 0.503115i
\(241\) 13.0000 22.5167i 0.837404 1.45043i −0.0546547 0.998505i \(-0.517406\pi\)
0.892058 0.451920i \(-0.149261\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) −6.50000 11.2583i −0.416120 0.720741i
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) 2.50000 + 2.59808i 0.159071 + 0.165312i
\(248\) −9.00000 −0.571501
\(249\) 0 0
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) 11.5000 19.9186i 0.725874 1.25725i −0.232740 0.972539i \(-0.574769\pi\)
0.958613 0.284711i \(-0.0918976\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −5.50000 + 9.52628i −0.345101 + 0.597732i
\(255\) 18.0000 1.12720
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 1.00000 + 1.73205i 0.0623783 + 0.108042i 0.895528 0.445005i \(-0.146798\pi\)
−0.833150 + 0.553047i \(0.813465\pi\)
\(258\) −10.5000 18.1865i −0.653701 1.13224i
\(259\) 0 0
\(260\) 7.50000 + 7.79423i 0.465130 + 0.483378i
\(261\) 42.0000 2.59973
\(262\) −2.50000 4.33013i −0.154451 0.267516i
\(263\) 13.5000 + 23.3827i 0.832446 + 1.44184i 0.896093 + 0.443866i \(0.146393\pi\)
−0.0636476 + 0.997972i \(0.520273\pi\)
\(264\) 13.5000 23.3827i 0.830868 1.43910i
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 9.00000 15.5885i 0.550791 0.953998i
\(268\) 3.00000 0.183254
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 13.5000 + 23.3827i 0.821584 + 1.42302i
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 6.00000 + 10.3923i 0.361814 + 0.626680i
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) −15.0000 −0.899640
\(279\) −9.00000 + 15.5885i −0.538816 + 0.933257i
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 6.50000 + 11.2583i 0.385704 + 0.668059i
\(285\) 9.00000 0.533114
\(286\) 7.50000 + 7.79423i 0.443484 + 0.460882i
\(287\) 0 0
\(288\) −15.0000 25.9808i −0.883883 1.53093i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) −10.5000 + 18.1865i −0.616581 + 1.06795i
\(291\) 15.0000 0.879316
\(292\) −6.50000 + 11.2583i −0.380384 + 0.658844i
\(293\) −5.50000 + 9.52628i −0.321313 + 0.556531i −0.980759 0.195221i \(-0.937458\pi\)
0.659446 + 0.751752i \(0.270791\pi\)
\(294\) 0 0
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) −13.5000 23.3827i −0.783349 1.35680i
\(298\) 15.0000 0.868927
\(299\) 0 0
\(300\) 12.0000 0.692820
\(301\) 0 0
\(302\) 10.5000 + 18.1865i 0.604207 + 1.04652i
\(303\) −7.50000 + 12.9904i −0.430864 + 0.746278i
\(304\) 1.00000 0.0573539
\(305\) 19.5000 33.7750i 1.11657 1.93395i
\(306\) 6.00000 10.3923i 0.342997 0.594089i
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 7.50000 + 12.9904i 0.426660 + 0.738997i
\(310\) −4.50000 7.79423i −0.255583 0.442682i
\(311\) −9.00000 −0.510343 −0.255172 0.966896i \(-0.582132\pi\)
−0.255172 + 0.966896i \(0.582132\pi\)
\(312\) 31.5000 7.79423i 1.78334 0.441261i
\(313\) 19.0000 1.07394 0.536972 0.843600i \(-0.319568\pi\)
0.536972 + 0.843600i \(0.319568\pi\)
\(314\) −9.50000 16.4545i −0.536116 0.928580i
\(315\) 0 0
\(316\) −1.50000 + 2.59808i −0.0843816 + 0.146153i
\(317\) −9.00000 −0.505490 −0.252745 0.967533i \(-0.581333\pi\)
−0.252745 + 0.967533i \(0.581333\pi\)
\(318\) 4.50000 7.79423i 0.252347 0.437079i
\(319\) 10.5000 18.1865i 0.587887 1.01825i
\(320\) 21.0000 1.17394
\(321\) 12.0000 20.7846i 0.669775 1.16008i
\(322\) 0 0
\(323\) −1.00000 1.73205i −0.0556415 0.0963739i
\(324\) −9.00000 −0.500000
\(325\) −4.00000 + 13.8564i −0.221880 + 0.768615i
\(326\) −1.00000 −0.0553849
\(327\) 10.5000 + 18.1865i 0.580651 + 1.00572i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) 0 0
\(330\) 27.0000 1.48630
\(331\) 14.5000 25.1147i 0.796992 1.38043i −0.124574 0.992210i \(-0.539757\pi\)
0.921567 0.388221i \(-0.126910\pi\)
\(332\) 0 0
\(333\) 12.0000 0.657596
\(334\) 6.50000 11.2583i 0.355664 0.616028i
\(335\) 4.50000 + 7.79423i 0.245861 + 0.425844i
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −0.500000 + 12.9904i −0.0271964 + 0.706584i
\(339\) −45.0000 −2.44406
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 4.50000 + 7.79423i 0.243689 + 0.422081i
\(342\) 3.00000 5.19615i 0.162221 0.280976i
\(343\) 0 0
\(344\) −10.5000 + 18.1865i −0.566122 + 0.980552i
\(345\) 0 0
\(346\) 19.0000 1.02145
\(347\) 4.00000 6.92820i 0.214731 0.371925i −0.738458 0.674299i \(-0.764446\pi\)
0.953189 + 0.302374i \(0.0977791\pi\)
\(348\) −10.5000 18.1865i −0.562859 0.974901i
\(349\) −11.5000 19.9186i −0.615581 1.06622i −0.990282 0.139072i \(-0.955588\pi\)
0.374701 0.927146i \(-0.377745\pi\)
\(350\) 0 0
\(351\) 9.00000 31.1769i 0.480384 1.66410i
\(352\) −15.0000 −0.799503
\(353\) 12.5000 + 21.6506i 0.665308 + 1.15235i 0.979202 + 0.202889i \(0.0650330\pi\)
−0.313894 + 0.949458i \(0.601634\pi\)
\(354\) −6.00000 10.3923i −0.318896 0.552345i
\(355\) −19.5000 + 33.7750i −1.03495 + 1.79259i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −8.50000 + 14.7224i −0.449239 + 0.778105i
\(359\) 17.0000 0.897226 0.448613 0.893726i \(-0.351918\pi\)
0.448613 + 0.893726i \(0.351918\pi\)
\(360\) 27.0000 46.7654i 1.42302 2.46475i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 11.0000 + 19.0526i 0.578147 + 1.00138i
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) −39.0000 −2.04135
\(366\) −19.5000 33.7750i −1.01928 1.76545i
\(367\) 15.5000 + 26.8468i 0.809093 + 1.40139i 0.913493 + 0.406855i \(0.133375\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 18.0000 0.937043
\(370\) −3.00000 + 5.19615i −0.155963 + 0.270135i
\(371\) 0 0
\(372\) 9.00000 0.466628
\(373\) 4.50000 7.79423i 0.233001 0.403570i −0.725689 0.688023i \(-0.758479\pi\)
0.958690 + 0.284453i \(0.0918121\pi\)
\(374\) −3.00000 5.19615i −0.155126 0.268687i
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) −3.00000 −0.154713
\(377\) 24.5000 6.06218i 1.26181 0.312218i
\(378\) 0 0
\(379\) 16.5000 + 28.5788i 0.847548 + 1.46800i 0.883390 + 0.468639i \(0.155255\pi\)
−0.0358418 + 0.999357i \(0.511411\pi\)
\(380\) −1.50000 2.59808i −0.0769484 0.133278i
\(381\) 16.5000 28.5788i 0.845321 1.46414i
\(382\) −17.0000 −0.869796
\(383\) 10.5000 18.1865i 0.536525 0.929288i −0.462563 0.886586i \(-0.653070\pi\)
0.999088 0.0427020i \(-0.0135966\pi\)
\(384\) −4.50000 + 7.79423i −0.229640 + 0.397748i
\(385\) 0 0
\(386\) −3.50000 + 6.06218i −0.178145 + 0.308557i
\(387\) 21.0000 + 36.3731i 1.06749 + 1.84895i
\(388\) −2.50000 4.33013i −0.126918 0.219829i
\(389\) −33.0000 −1.67317 −0.836583 0.547840i \(-0.815450\pi\)
−0.836583 + 0.547840i \(0.815450\pi\)
\(390\) 22.5000 + 23.3827i 1.13933 + 1.18403i
\(391\) 0 0
\(392\) 0 0
\(393\) 7.50000 + 12.9904i 0.378325 + 0.655278i
\(394\) 0.500000 0.866025i 0.0251896 0.0436297i
\(395\) −9.00000 −0.452839
\(396\) −9.00000 + 15.5885i −0.452267 + 0.783349i
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 1.00000 + 1.73205i 0.0499376 + 0.0864945i 0.889914 0.456129i \(-0.150764\pi\)
−0.839976 + 0.542623i \(0.817431\pi\)
\(402\) 9.00000 0.448879
\(403\) −3.00000 + 10.3923i −0.149441 + 0.517678i
\(404\) 5.00000 0.248759
\(405\) −13.5000 23.3827i −0.670820 1.16190i
\(406\) 0 0
\(407\) 3.00000 5.19615i 0.148704 0.257564i
\(408\) −18.0000 −0.891133
\(409\) −7.00000 + 12.1244i −0.346128 + 0.599511i −0.985558 0.169338i \(-0.945837\pi\)
0.639430 + 0.768849i \(0.279170\pi\)
\(410\) −4.50000 + 7.79423i −0.222239 + 0.384930i
\(411\) −30.0000 −1.47979
\(412\) 2.50000 4.33013i 0.123166 0.213330i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −12.5000 12.9904i −0.612863 0.636906i
\(417\) 45.0000 2.20366
\(418\) −1.50000 2.59808i −0.0733674 0.127076i
\(419\) 12.5000 + 21.6506i 0.610665 + 1.05770i 0.991129 + 0.132907i \(0.0424311\pi\)
−0.380464 + 0.924796i \(0.624236\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) −3.50000 + 6.06218i −0.170377 + 0.295102i
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) −9.00000 −0.437079
\(425\) 4.00000 6.92820i 0.194029 0.336067i
\(426\) 19.5000 + 33.7750i 0.944778 + 1.63640i
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) −22.5000 23.3827i −1.08631 1.12893i
\(430\) −21.0000 −1.01271
\(431\) −4.50000 7.79423i −0.216757 0.375435i 0.737057 0.675830i \(-0.236215\pi\)
−0.953815 + 0.300395i \(0.902881\pi\)
\(432\) −4.50000 7.79423i −0.216506 0.375000i
\(433\) −13.5000 + 23.3827i −0.648769 + 1.12370i 0.334649 + 0.942343i \(0.391382\pi\)
−0.983417 + 0.181357i \(0.941951\pi\)
\(434\) 0 0
\(435\) 31.5000 54.5596i 1.51031 2.61593i
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) 0 0
\(438\) −19.5000 + 33.7750i −0.931746 + 1.61383i
\(439\) 8.00000 + 13.8564i 0.381819 + 0.661330i 0.991322 0.131453i \(-0.0419644\pi\)
−0.609503 + 0.792784i \(0.708631\pi\)
\(440\) −13.5000 23.3827i −0.643587 1.11473i
\(441\) 0 0
\(442\) 2.00000 6.92820i 0.0951303 0.329541i
\(443\) −11.0000 −0.522626 −0.261313 0.965254i \(-0.584155\pi\)
−0.261313 + 0.965254i \(0.584155\pi\)
\(444\) −3.00000 5.19615i −0.142374 0.246598i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 4.50000 7.79423i 0.213081 0.369067i
\(447\) −45.0000 −2.12843
\(448\) 0 0
\(449\) −7.50000 + 12.9904i −0.353947 + 0.613054i −0.986937 0.161106i \(-0.948494\pi\)
0.632990 + 0.774160i \(0.281827\pi\)
\(450\) 24.0000 1.13137
\(451\) 4.50000 7.79423i 0.211897 0.367016i
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) −31.5000 54.5596i −1.48000 2.56343i
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) −9.00000 −0.421464
\(457\) 9.00000 + 15.5885i 0.421002 + 0.729197i 0.996038 0.0889312i \(-0.0283451\pi\)
−0.575036 + 0.818128i \(0.695012\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) −9.00000 + 15.5885i −0.420084 + 0.727607i
\(460\) 0 0
\(461\) −17.5000 + 30.3109i −0.815056 + 1.41172i 0.0942312 + 0.995550i \(0.469961\pi\)
−0.909288 + 0.416169i \(0.863373\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 3.50000 6.06218i 0.162483 0.281430i
\(465\) 13.5000 + 23.3827i 0.626048 + 1.08435i
\(466\) 10.5000 + 18.1865i 0.486403 + 0.842475i
\(467\) −7.00000 −0.323921 −0.161961 0.986797i \(-0.551782\pi\)
−0.161961 + 0.986797i \(0.551782\pi\)
\(468\) −21.0000 + 5.19615i −0.970725 + 0.240192i
\(469\) 0 0
\(470\) −1.50000 2.59808i −0.0691898 0.119840i
\(471\) 28.5000 + 49.3634i 1.31321 + 2.27455i
\(472\) −6.00000 + 10.3923i −0.276172 + 0.478345i
\(473\) 21.0000 0.965581
\(474\) −4.50000 + 7.79423i −0.206692 + 0.358001i
\(475\) 2.00000 3.46410i 0.0917663 0.158944i
\(476\) 0 0
\(477\) −9.00000 + 15.5885i −0.412082 + 0.713746i
\(478\) 2.00000 + 3.46410i 0.0914779 + 0.158444i
\(479\) 17.5000 + 30.3109i 0.799595 + 1.38494i 0.919880 + 0.392200i \(0.128286\pi\)
−0.120284 + 0.992739i \(0.538381\pi\)
\(480\) −45.0000 −2.05396
\(481\) 7.00000 1.73205i 0.319173 0.0789747i
\(482\) −26.0000 −1.18427
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 7.50000 12.9904i 0.340557 0.589863i
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) −19.5000 + 33.7750i −0.882724 + 1.52892i
\(489\) 3.00000 0.135665
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) −4.50000 7.79423i −0.202876 0.351391i
\(493\) −14.0000 −0.630528
\(494\) 1.00000 3.46410i 0.0449921 0.155857i
\(495\) −54.0000 −2.42712
\(496\) 1.50000 + 2.59808i 0.0673520 + 0.116657i
\(497\) 0 0
\(498\) 0 0
\(499\) −31.0000 −1.38775 −0.693875 0.720095i \(-0.744098\pi\)
−0.693875 + 0.720095i \(0.744098\pi\)
\(500\) −1.50000 + 2.59808i −0.0670820 + 0.116190i
\(501\) −19.5000 + 33.7750i −0.871196 + 1.50896i
\(502\) −23.0000 −1.02654
\(503\) 15.5000 26.8468i 0.691111 1.19704i −0.280363 0.959894i \(-0.590455\pi\)
0.971474 0.237145i \(-0.0762117\pi\)
\(504\) 0 0
\(505\) 7.50000 + 12.9904i 0.333746 + 0.578064i
\(506\) 0 0
\(507\) 1.50000 38.9711i 0.0666173 1.73077i
\(508\) −11.0000 −0.488046
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) −9.00000 15.5885i −0.398527 0.690268i
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) −4.50000 + 7.79423i −0.198680 + 0.344124i
\(514\) 1.00000 1.73205i 0.0441081 0.0763975i
\(515\) 15.0000 0.660979
\(516\) 10.5000 18.1865i 0.462237 0.800617i
\(517\) 1.50000 + 2.59808i 0.0659699 + 0.114263i
\(518\) 0 0
\(519\) −57.0000 −2.50202
\(520\) 9.00000 31.1769i 0.394676 1.36720i
\(521\) −17.0000 −0.744784 −0.372392 0.928076i \(-0.621462\pi\)
−0.372392 + 0.928076i \(0.621462\pi\)
\(522\) −21.0000 36.3731i −0.919145 1.59201i
\(523\) −2.00000 3.46410i −0.0874539 0.151475i 0.818980 0.573822i \(-0.194540\pi\)
−0.906434 + 0.422347i \(0.861206\pi\)
\(524\) 2.50000 4.33013i 0.109213 0.189162i
\(525\) 0 0
\(526\) 13.5000 23.3827i 0.588628 1.01953i
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) −9.00000 −0.391675
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −4.50000 7.79423i −0.195468 0.338560i
\(531\) 12.0000 + 20.7846i 0.520756 + 0.901975i
\(532\) 0 0
\(533\) 10.5000 2.59808i 0.454805 0.112535i
\(534\) −18.0000 −0.778936
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) −4.50000 7.79423i −0.194370 0.336659i
\(537\) 25.5000 44.1673i 1.10041 1.90596i
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) −13.5000 + 23.3827i −0.580948 + 1.00623i
\(541\) −37.0000 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(542\) 8.00000 13.8564i 0.343629 0.595184i
\(543\) −33.0000 57.1577i −1.41617 2.45287i
\(544\) 5.00000 + 8.66025i 0.214373 + 0.371305i
\(545\) 21.0000 0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 5.00000 + 8.66025i 0.213589 + 0.369948i
\(549\) 39.0000 + 67.5500i 1.66448 + 2.88296i
\(550\) 6.00000 10.3923i 0.255841 0.443129i
\(551\) −7.00000 −0.298210
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 9.00000 15.5885i 0.382029 0.661693i
\(556\) −7.50000 12.9904i −0.318071 0.550915i
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 18.0000 0.762001
\(559\) 17.5000 + 18.1865i 0.740171 + 0.769208i
\(560\) 0 0
\(561\) 9.00000 + 15.5885i 0.379980 + 0.658145i
\(562\) 9.00000 + 15.5885i 0.379642 + 0.657559i
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 3.00000 0.126323
\(565\) −22.5000 + 38.9711i −0.946582 + 1.63953i
\(566\) −0.500000 + 0.866025i −0.0210166 + 0.0364018i
\(567\) 0 0
\(568\) 19.5000 33.7750i 0.818202 1.41717i
\(569\) −5.00000 8.66025i −0.209611 0.363057i 0.741981 0.670421i \(-0.233886\pi\)
−0.951592 + 0.307364i \(0.900553\pi\)
\(570\) −4.50000 7.79423i −0.188484 0.326464i
\(571\) 43.0000 1.79949 0.899747 0.436412i \(-0.143751\pi\)
0.899747 + 0.436412i \(0.143751\pi\)
\(572\) −3.00000 + 10.3923i −0.125436 + 0.434524i
\(573\) 51.0000 2.13056
\(574\) 0 0
\(575\) 0 0
\(576\) −21.0000 + 36.3731i −0.875000 + 1.51554i
\(577\) −1.00000 −0.0416305 −0.0208153 0.999783i \(-0.506626\pi\)
−0.0208153 + 0.999783i \(0.506626\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) 10.5000 18.1865i 0.436365 0.755807i
\(580\) −21.0000 −0.871978
\(581\) 0 0
\(582\) −7.50000 12.9904i −0.310885 0.538469i
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) 39.0000 1.61383
\(585\) −45.0000 46.7654i −1.86052 1.93351i
\(586\) 11.0000 0.454406
\(587\) 16.5000 + 28.5788i 0.681028 + 1.17957i 0.974668 + 0.223659i \(0.0718001\pi\)
−0.293640 + 0.955916i \(0.594867\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) −12.0000 −0.494032
\(591\) −1.50000 + 2.59808i −0.0617018 + 0.106871i
\(592\) 1.00000 1.73205i 0.0410997 0.0711868i
\(593\) 27.0000 1.10876 0.554379 0.832265i \(-0.312956\pi\)
0.554379 + 0.832265i \(0.312956\pi\)
\(594\) −13.5000 + 23.3827i −0.553912 + 0.959403i
\(595\) 0 0
\(596\) 7.50000 + 12.9904i 0.307212 + 0.532107i
\(597\) 60.0000 2.45564
\(598\) 0 0
\(599\) −25.0000 −1.02147 −0.510736 0.859738i \(-0.670627\pi\)
−0.510736 + 0.859738i \(0.670627\pi\)
\(600\) −18.0000 31.1769i −0.734847 1.27279i
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 0 0
\(603\) −18.0000 −0.733017
\(604\) −10.5000 + 18.1865i −0.427239 + 0.740000i
\(605\) 3.00000 5.19615i 0.121967 0.211254i
\(606\) 15.0000 0.609333
\(607\) −5.50000 + 9.52628i −0.223238 + 0.386660i −0.955789 0.294052i \(-0.904996\pi\)
0.732551 + 0.680712i \(0.238329\pi\)
\(608\) 2.50000 + 4.33013i 0.101388 + 0.175610i
\(609\) 0 0
\(610\) −39.0000 −1.57906
\(611\) −1.00000 + 3.46410i −0.0404557 + 0.140143i
\(612\) 12.0000 0.485071
\(613\) 12.5000 + 21.6506i 0.504870 + 0.874461i 0.999984 + 0.00563283i \(0.00179300\pi\)
−0.495114 + 0.868828i \(0.664874\pi\)
\(614\) −6.00000 10.3923i −0.242140 0.419399i
\(615\) 13.5000 23.3827i 0.544373 0.942881i
\(616\) 0 0
\(617\) 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i \(-0.602078\pi\)
0.979484 0.201522i \(-0.0645887\pi\)
\(618\) 7.50000 12.9904i 0.301694 0.522550i
\(619\) 11.0000 0.442127 0.221064 0.975259i \(-0.429047\pi\)
0.221064 + 0.975259i \(0.429047\pi\)
\(620\) 4.50000 7.79423i 0.180724 0.313024i
\(621\) 0 0
\(622\) 4.50000 + 7.79423i 0.180434 + 0.312520i
\(623\) 0 0
\(624\) −7.50000 7.79423i −0.300240 0.312019i
\(625\) −29.0000 −1.16000
\(626\) −9.50000 16.4545i −0.379696 0.657653i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) 9.50000 16.4545i 0.379091 0.656605i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −12.5000 + 21.6506i −0.497617 + 0.861898i −0.999996 0.00274930i \(-0.999125\pi\)
0.502379 + 0.864647i \(0.332458\pi\)
\(632\) 9.00000 0.358001
\(633\) 10.5000 18.1865i 0.417338 0.722850i
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) −16.5000 28.5788i −0.654783 1.13412i
\(636\) 9.00000 0.356873
\(637\) 0 0
\(638\) −21.0000 −0.831398
\(639\) −39.0000 67.5500i −1.54282 2.67224i
\(640\) 4.50000 + 7.79423i 0.177878 + 0.308094i
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) −24.0000 −0.947204
\(643\) 9.50000 16.4545i 0.374643 0.648901i −0.615630 0.788035i \(-0.711098\pi\)
0.990274 + 0.139134i \(0.0444318\pi\)
\(644\) 0 0
\(645\) 63.0000 2.48062
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) 13.5000 + 23.3827i 0.530330 + 0.918559i
\(649\) 12.0000 0.471041
\(650\) 14.0000 3.46410i 0.549125 0.135873i
\(651\) 0 0
\(652\) −0.500000 0.866025i −0.0195815 0.0339162i
\(653\) −9.00000 15.5885i −0.352197 0.610023i 0.634437 0.772975i \(-0.281232\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(654\) 10.5000 18.1865i 0.410582 0.711150i
\(655\) 15.0000 0.586098
\(656\) 1.50000 2.59808i 0.0585652 0.101438i
\(657\) 39.0000 67.5500i 1.52153 2.63538i
\(658\) 0 0
\(659\) −14.5000 + 25.1147i −0.564840 + 0.978331i 0.432225 + 0.901766i \(0.357729\pi\)
−0.997065 + 0.0765653i \(0.975605\pi\)
\(660\) 13.5000 + 23.3827i 0.525487 + 0.910170i
\(661\) 4.50000 + 7.79423i 0.175030 + 0.303160i 0.940172 0.340701i \(-0.110665\pi\)
−0.765142 + 0.643862i \(0.777331\pi\)
\(662\) −29.0000 −1.12712
\(663\) −6.00000 + 20.7846i −0.233021 + 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) −6.00000 10.3923i −0.232495 0.402694i
\(667\) 0 0
\(668\) 13.0000 0.502985
\(669\) −13.5000 + 23.3827i −0.521940 + 0.904027i
\(670\) 4.50000 7.79423i 0.173850 0.301117i
\(671\) 39.0000 1.50558
\(672\) 0 0
\(673\) 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i \(0.123365\pi\)
−0.135615 + 0.990762i \(0.543301\pi\)
\(674\) −7.00000 12.1244i −0.269630 0.467013i
\(675\) −36.0000 −1.38564
\(676\) −11.5000 + 6.06218i −0.442308 + 0.233161i
\(677\) 7.00000 0.269032 0.134516 0.990911i \(-0.457052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(678\) 22.5000 + 38.9711i 0.864107 + 1.49668i
\(679\) 0 0
\(680\) −9.00000 + 15.5885i −0.345134 + 0.597790i
\(681\) 12.0000 0.459841
\(682\) 4.50000 7.79423i 0.172314 0.298456i
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 6.00000 0.229416
\(685\) −15.0000 + 25.9808i −0.573121 + 0.992674i
\(686\) 0 0
\(687\) −19.5000 33.7750i −0.743971 1.28860i
\(688\) 7.00000 0.266872
\(689\) −3.00000 + 10.3923i −0.114291 + 0.395915i
\(690\) 0 0
\(691\) 2.00000 + 3.46410i 0.0760836 + 0.131781i 0.901557 0.432660i \(-0.142425\pi\)
−0.825473 + 0.564441i \(0.809092\pi\)
\(692\) 9.50000 + 16.4545i 0.361136 + 0.625506i
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) 22.5000 38.9711i 0.853474 1.47826i
\(696\) −31.5000 + 54.5596i −1.19400 + 2.06808i
\(697\) −6.00000 −0.227266
\(698\) −11.5000 + 19.9186i −0.435281 + 0.753930i
\(699\) −31.5000 54.5596i −1.19144 2.06363i
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −31.5000 + 7.79423i −1.18889 + 0.294174i
\(703\) −2.00000 −0.0754314
\(704\) 10.5000 + 18.1865i 0.395734 + 0.685431i
\(705\) 4.50000 + 7.79423i 0.169480 + 0.293548i
\(706\) 12.5000 21.6506i 0.470444 0.814832i
\(707\) 0 0
\(708\) 6.00000 10.3923i 0.225494 0.390567i
\(709\) −5.50000 + 9.52628i −0.206557 + 0.357767i −0.950628 0.310334i \(-0.899559\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(710\) 39.0000 1.46364
\(711\) 9.00000 15.5885i 0.337526 0.584613i
\(712\) 9.00000 + 15.5885i 0.337289 + 0.584202i
\(713\) 0 0
\(714\) 0 0
\(715\) −31.5000 + 7.79423i −1.17803 + 0.291488i
\(716\) −17.0000 −0.635320
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) −8.50000 14.7224i −0.317217 0.549436i
\(719\) 4.50000 7.79423i 0.167822 0.290676i −0.769832 0.638247i \(-0.779660\pi\)
0.937654 + 0.347571i \(0.112993\pi\)
\(720\) −18.0000 −0.670820
\(721\) 0 0
\(722\) 9.00000 15.5885i 0.334945 0.580142i
\(723\) 78.0000 2.90085
\(724\) −11.0000 + 19.0526i −0.408812 + 0.708083i
\(725\) −14.0000 24.2487i −0.519947 0.900575i
\(726\) −3.00000 5.19615i −0.111340 0.192847i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 19.5000 + 33.7750i 0.721727 + 1.25007i
\(731\) −7.00000 12.1244i −0.258904 0.448435i
\(732\) 19.5000 33.7750i 0.720741 1.24836i
\(733\) −9.00000 −0.332423 −0.166211 0.986090i \(-0.553153\pi\)
−0.166211 + 0.986090i \(0.553153\pi\)
\(734\) 15.5000 26.8468i 0.572115 0.990933i
\(735\) 0 0
\(736\) 0 0
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) −9.00000 15.5885i −0.331295 0.573819i
\(739\) −0.500000 0.866025i −0.0183928 0.0318573i 0.856683 0.515844i \(-0.172522\pi\)
−0.875075 + 0.483987i \(0.839188\pi\)
\(740\) −6.00000 −0.220564
\(741\) −3.00000 + 10.3923i −0.110208 + 0.381771i
\(742\) 0 0
\(743\) −25.5000 44.1673i −0.935504 1.62034i −0.773732 0.633513i \(-0.781612\pi\)
−0.161772 0.986828i \(-0.551721\pi\)
\(744\) −13.5000 23.3827i −0.494934 0.857251i
\(745\) −22.5000 + 38.9711i −0.824336 + 1.42779i
\(746\) −9.00000 −0.329513
\(747\) 0 0
\(748\) 3.00000 5.19615i 0.109691 0.189990i
\(749\) 0 0
\(750\) −4.50000 + 7.79423i −0.164317 + 0.284605i
\(751\) −14.0000 24.2487i −0.510867 0.884848i −0.999921 0.0125942i \(-0.995991\pi\)
0.489053 0.872254i \(-0.337342\pi\)
\(752\) 0.500000 + 0.866025i 0.0182331 + 0.0315807i
\(753\) 69.0000 2.51450
\(754\) −17.5000 18.1865i −0.637312 0.662314i
\(755\) −63.0000 −2.29280
\(756\) 0 0
\(757\) −1.50000 2.59808i −0.0545184 0.0944287i 0.837478 0.546471i \(-0.184029\pi\)
−0.891997 + 0.452042i \(0.850696\pi\)
\(758\) 16.5000 28.5788i 0.599307 1.03803i
\(759\) 0 0
\(760\) −4.50000 + 7.79423i −0.163232 + 0.282726i
\(761\) 4.50000 7.79423i 0.163125 0.282541i −0.772863 0.634573i \(-0.781176\pi\)
0.935988 + 0.352032i \(0.114509\pi\)
\(762\) −33.0000 −1.19546
\(763\) 0 0
\(764\) −8.50000 14.7224i −0.307519 0.532639i
\(765\) 18.0000 + 31.1769i 0.650791 + 1.12720i
\(766\) −21.0000 −0.758761
\(767\) 10.0000 + 10.3923i 0.361079 + 0.375244i
\(768\) 51.0000 1.84030
\(769\) −9.50000 16.4545i −0.342579 0.593364i 0.642332 0.766426i \(-0.277967\pi\)
−0.984911 + 0.173063i \(0.944634\pi\)
\(770\) 0 0
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) −7.00000 −0.251936
\(773\) 3.00000 5.19615i 0.107903 0.186893i −0.807018 0.590527i \(-0.798920\pi\)
0.914920 + 0.403634i \(0.132253\pi\)
\(774\) 21.0000 36.3731i 0.754829 1.30740i
\(775\) 12.0000 0.431053
\(776\) −7.50000 + 12.9904i −0.269234 + 0.466328i
\(777\) 0 0
\(778\) 16.5000 + 28.5788i 0.591554 + 1.02460i
\(779\) −3.00000 −0.107486
\(780\) −9.00000 + 31.1769i −0.322252 + 1.11631i
\(781\) −39.0000 −1.39553
\(782\) 0 0
\(783\) 31.5000 + 54.5596i 1.12572 + 1.94980i
\(784\) 0 0
\(785\) 57.0000 2.03442
\(786\) 7.50000 12.9904i 0.267516 0.463352i
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) 1.00000 0.0356235
\(789\) −40.5000 + 70.1481i −1.44184 + 2.49734i
\(790\) 4.50000 + 7.79423i 0.160103 + 0.277306i
\(791\) 0 0
\(792\) 54.0000 1.91881
\(793\) 32.5000 + 33.7750i 1.15411 + 1.19939i
\(794\) −1.00000 −0.0354887
\(795\) 13.5000 + 23.3827i 0.478796 + 0.829298i
\(796\) −10.0000 17.3205i −0.354441 0.613909i
\(797\) −1.50000 + 2.59808i −0.0531327 + 0.0920286i −0.891368 0.453279i \(-0.850254\pi\)
0.838236 + 0.545308i \(0.183587\pi\)
\(798\) 0 0
\(799\) 1.00000 1.73205i 0.0353775 0.0612756i
\(800\) −10.0000 + 17.3205i −0.353553 + 0.612372i
\(801\) 36.0000 1.27200
\(802\) 1.00000 1.73205i 0.0353112 0.0611608i
\(803\) −19.5000 33.7750i −0.688140 1.19189i
\(804\) 4.50000 + 7.79423i 0.158703 + 0.274881i
\(805\) 0 0
\(806\) 10.5000 2.59808i 0.369847 0.0915133i
\(807\) −54.0000 −1.90089
\(808\) −7.50000 12.9904i −0.263849 0.457000i
\(809\) −5.50000 9.52628i −0.193370 0.334926i 0.752995 0.658026i \(-0.228608\pi\)
−0.946365 + 0.323100i \(0.895275\pi\)
\(810\) −13.5000 + 23.3827i −0.474342 + 0.821584i
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 0 0
\(813\) −24.0000 + 41.5692i −0.841717 + 1.45790i
\(814\) −6.00000 −0.210300
\(815\) 1.50000 2.59808i 0.0525427 0.0910066i
\(816\) 3.00000 + 5.19615i 0.105021 + 0.181902i
\(817\) −3.50000 6.06218i −0.122449 0.212089i
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) 27.0000 + 46.7654i 0.942306 + 1.63212i 0.761056 + 0.648686i \(0.224681\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(822\) 15.0000 + 25.9808i 0.523185 + 0.906183i
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) −15.0000 −0.522550
\(825\) −18.0000 + 31.1769i −0.626680 + 1.08544i
\(826\) 0 0
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) −5.50000 9.52628i −0.191023 0.330861i 0.754567 0.656223i \(-0.227847\pi\)
−0.945589 + 0.325362i \(0.894514\pi\)
\(830\) 0 0
\(831\) −66.0000 −2.28951
\(832\) −7.00000 + 24.2487i −0.242681 + 0.840673i
\(833\) 0 0
\(834\) −22.5000 38.9711i −0.779111 1.34946i
\(835\) 19.5000 + 33.7750i 0.674825 + 1.16883i
\(836\) 1.50000 2.59808i 0.0518786 0.0898563i
\(837\) −27.0000 −0.933257
\(838\) 12.5000 21.6506i 0.431805 0.747909i
\(839\) −18.5000 + 32.0429i −0.638691 + 1.10625i 0.347029 + 0.937854i \(0.387190\pi\)
−0.985720 + 0.168391i \(0.946143\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) −9.00000 15.5885i −0.310160 0.537214i
\(843\) −27.0000 46.7654i −0.929929 1.61068i
\(844\) −7.00000 −0.240950
\(845\) −33.0000 20.7846i −1.13523 0.715012i
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) 1.50000 + 2.59808i 0.0515102 + 0.0892183i
\(849\) 1.50000 2.59808i 0.0514799 0.0891657i
\(850\) −8.00000 −0.274398
\(851\) 0 0
\(852\) −19.5000 + 33.7750i −0.668059 + 1.15711i
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) 9.00000 + 15.5885i 0.307794 + 0.533114i
\(856\) 12.0000 + 20.7846i 0.410152 + 0.710403i
\(857\) −33.0000 −1.12726 −0.563629 0.826028i \(-0.690595\pi\)
−0.563629 + 0.826028i \(0.690595\pi\)
\(858\) −9.00000 + 31.1769i −0.307255 + 1.06436i
\(859\) 25.0000 0.852989 0.426494 0.904490i \(-0.359748\pi\)
0.426494 + 0.904490i \(0.359748\pi\)
\(860\) −10.5000 18.1865i −0.358047 0.620156i
\(861\) 0 0
\(862\) −4.50000 + 7.79423i −0.153271 + 0.265472i
\(863\) 37.0000 1.25949 0.629747 0.776800i \(-0.283158\pi\)
0.629747 + 0.776800i \(0.283158\pi\)
\(864\) 22.5000 38.9711i 0.765466 1.32583i
\(865\) −28.5000 + 49.3634i −0.969029 + 1.67841i
\(866\) 27.0000 0.917497
\(867\) −19.5000 + 33.7750i −0.662255 + 1.14706i
\(868\) 0 0
\(869\) −4.50000 7.79423i −0.152652 0.264401i
\(870\) −63.0000 −2.13590
\(871\) −10.5000 + 2.59808i −0.355779 + 0.0880325i
\(872\) −21.0000 −0.711150
\(873\) 15.0000 + 25.9808i 0.507673 + 0.879316i
\(874\) 0 0
\(875\) 0 0
\(876\) −39.0000 −1.31769
\(877\) 22.5000 38.9711i 0.759771 1.31596i −0.183196 0.983076i \(-0.558644\pi\)
0.942967 0.332886i \(-0.108022\pi\)
\(878\) 8.00000 13.8564i 0.269987 0.467631i
\(879\) −33.0000 −1.11306
\(880\) −4.50000 + 7.79423i −0.151695 + 0.262743i
\(881\) −7.50000 12.9904i −0.252681 0.437657i 0.711582 0.702603i \(-0.247979\pi\)
−0.964263 + 0.264946i \(0.914646\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 7.00000 1.73205i 0.235435 0.0582552i
\(885\) 36.0000 1.21013
\(886\) 5.50000 + 9.52628i 0.184776 + 0.320042i
\(887\) −12.0000 20.7846i −0.402921 0.697879i 0.591156 0.806557i \(-0.298672\pi\)
−0.994077 + 0.108678i \(0.965338\pi\)
\(888\) −9.00000 + 15.5885i −0.302020 + 0.523114i
\(889\) 0 0
\(890\) −9.00000 + 15.5885i −0.301681 + 0.522526i
\(891\) 13.5000 23.3827i 0.452267 0.783349i
\(892\) 9.00000 0.301342
\(893\) 0.500000 0.866025i 0.0167319 0.0289804i
\(894\) 22.5000 + 38.9711i 0.752513 + 1.30339i
\(895\) −25.5000 44.1673i −0.852371 1.47635i
\(896\) 0 0
\(897\) 0 0
\(898\) 15.0000 0.500556
\(899\) −10.5000 18.1865i −0.350195 0.606555i
\(900\) 12.0000 + 20.7846i 0.400000 + 0.692820i
\(901\) 3.00000 5.19615i 0.0999445 0.173109i
\(902\) −9.00000 −0.299667
\(903\) 0 0
\(904\) 22.5000 38.9711i 0.748339 1.29616i
\(905\) −66.0000 −2.19391
\(906\) −31.5000 + 54.5596i −1.04652 + 1.81262i
\(907\) 23.5000 + 40.7032i 0.780305 + 1.35153i 0.931764 + 0.363064i \(0.118269\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(908\) −2.00000 3.46410i −0.0663723 0.114960i
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 1.50000 + 2.59808i 0.0496700 + 0.0860309i
\(913\) 0 0
\(914\) 9.00000 15.5885i 0.297694 0.515620i
\(915\) 117.000 3.86790
\(916\) −6.50000 + 11.2583i −0.214766 + 0.371986i
\(917\) 0 0
\(918\) 18.0000 0.594089
\(919\) 12.5000 21.6506i 0.412337 0.714189i −0.582808 0.812610i \(-0.698046\pi\)
0.995145 + 0.0984214i \(0.0313793\pi\)
\(920\) 0 0
\(921\) 18.0000 + 31.1769i 0.593120 + 1.02731i
\(922\) 35.0000 1.15266
\(923\) −32.5000 33.7750i −1.06975 1.11172i
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 4.00000 + 6.92820i 0.131448 + 0.227675i
\(927\) −15.0000 + 25.9808i −0.492665 + 0.853320i
\(928\) 35.0000 1.14893
\(929\) 6.50000 11.2583i 0.213258 0.369374i −0.739474 0.673185i \(-0.764926\pi\)
0.952732 + 0.303811i \(0.0982592\pi\)
\(930\) 13.5000 23.3827i 0.442682 0.766748i
\(931\) 0 0
\(932\) −10.5000 + 18.1865i −0.343939 + 0.595720i
\(933\) −13.5000 23.3827i −0.441970 0.765515i
\(934\) 3.50000 + 6.06218i 0.114523 + 0.198361i
\(935\) 18.0000 0.588663
\(936\) 45.0000 + 46.7654i 1.47087 + 1.52857i
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 0 0
\(939\) 28.5000 + 49.3634i 0.930062 + 1.61092i
\(940\) 1.50000 2.59808i 0.0489246 0.0847399i
\(941\) −17.0000 −0.554184 −0.277092 0.960843i \(-0.589371\pi\)
−0.277092 + 0.960843i \(0.589371\pi\)
\(942\) 28.5000 49.3634i 0.928580 1.60835i
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −10.5000 18.1865i −0.341384 0.591295i
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) −9.00000 −0.292306
\(949\) 13.0000 45.0333i 0.421998 1.46184i
\(950\) −4.00000 −0.129777
\(951\) −13.5000 23.3827i −0.437767 0.758236i
\(952\) 0 0
\(953\) 16.5000 28.5788i 0.534487 0.925759i −0.464701 0.885468i \(-0.653838\pi\)
0.999188 0.0402915i \(-0.0128286\pi\)
\(954\) 18.0000 0.582772
\(955\) 25.5000 44.1673i 0.825161 1.42922i
\(956\) −2.00000 + 3.46410i −0.0646846 + 0.112037i
\(957\) 63.0000 2.03650
\(958\) 17.5000 30.3109i 0.565399 0.979300i
\(959\) 0 0
\(960\) 31.5000 + 54.5596i 1.01666 + 1.76090i
\(961\) −22.0000 −0.709677
\(962\) −5.00000 5.19615i −0.161206 0.167531i
\(963\) 48.0000 1.54678
\(964\) −13.0000 22.5167i −0.418702 0.725213i
\(965\) −10.5000 18.1865i −0.338007 0.585445i
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −3.00000 + 5.19615i −0.0964237 + 0.167011i
\(969\) 3.00000 5.19615i 0.0963739 0.166924i
\(970\) −15.0000 −0.481621
\(971\) 0.500000 0.866025i 0.0160458 0.0277921i −0.857891 0.513832i \(-0.828226\pi\)
0.873937 + 0.486040i \(0.161559\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.0000 0.512673
\(975\) −42.0000 + 10.3923i −1.34508 + 0.332820i
\(976\) 13.0000 0.416120
\(977\) 2.50000 + 4.33013i 0.0799821 + 0.138533i 0.903242 0.429132i \(-0.141180\pi\)
−0.823260 + 0.567665i \(0.807847\pi\)
\(978\) −1.50000 2.59808i −0.0479647 0.0830773i
\(979\) 9.00000 15.5885i 0.287641 0.498209i
\(980\) 0 0
\(981\) −21.0000 + 36.3731i −0.670478 + 1.16130i
\(982\) −7.50000 + 12.9904i −0.239335 + 0.414540i
\(983\) 47.0000 1.49907 0.749534 0.661966i \(-0.230278\pi\)
0.749534 + 0.661966i \(0.230278\pi\)
\(984\) −13.5000 + 23.3827i −0.430364 + 0.745413i
\(985\) 1.50000 + 2.59808i 0.0477940 + 0.0827816i
\(986\) 7.00000 + 12.1244i 0.222925 + 0.386118i
\(987\) 0 0
\(988\) 3.50000 0.866025i 0.111350 0.0275519i
\(989\) 0 0
\(990\) 27.0000 + 46.7654i 0.858116 + 1.48630i
\(991\) −6.50000 11.2583i −0.206479 0.357633i 0.744124 0.668042i \(-0.232867\pi\)
−0.950603 + 0.310409i \(0.899534\pi\)
\(992\) −7.50000 + 12.9904i −0.238125 + 0.412445i
\(993\) 87.0000 2.76086
\(994\) 0 0
\(995\) 30.0000 51.9615i 0.951064 1.64729i
\(996\) 0 0
\(997\) −1.00000 + 1.73205i −0.0316703 + 0.0548546i −0.881426 0.472322i \(-0.843416\pi\)
0.849756 + 0.527176i \(0.176749\pi\)
\(998\) 15.5000 + 26.8468i 0.490644 + 0.849820i
\(999\) 9.00000 + 15.5885i 0.284747 + 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.b.393.1 2
7.2 even 3 91.2.g.a.81.1 yes 2
7.3 odd 6 637.2.h.a.471.1 2
7.4 even 3 91.2.h.a.16.1 yes 2
7.5 odd 6 637.2.g.a.263.1 2
7.6 odd 2 637.2.f.a.393.1 2
13.3 even 3 8281.2.a.i.1.1 1
13.9 even 3 inner 637.2.f.b.295.1 2
13.10 even 6 8281.2.a.c.1.1 1
21.2 odd 6 819.2.n.c.172.1 2
21.11 odd 6 819.2.s.a.289.1 2
91.9 even 3 91.2.h.a.74.1 yes 2
91.16 even 3 1183.2.e.a.508.1 2
91.23 even 6 1183.2.e.c.508.1 2
91.48 odd 6 637.2.f.a.295.1 2
91.55 odd 6 8281.2.a.j.1.1 1
91.61 odd 6 637.2.h.a.165.1 2
91.62 odd 6 8281.2.a.g.1.1 1
91.74 even 3 91.2.g.a.9.1 2
91.81 even 3 1183.2.e.a.170.1 2
91.87 odd 6 637.2.g.a.373.1 2
91.88 even 6 1183.2.e.c.170.1 2
273.74 odd 6 819.2.n.c.100.1 2
273.191 odd 6 819.2.s.a.802.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.a.9.1 2 91.74 even 3
91.2.g.a.81.1 yes 2 7.2 even 3
91.2.h.a.16.1 yes 2 7.4 even 3
91.2.h.a.74.1 yes 2 91.9 even 3
637.2.f.a.295.1 2 91.48 odd 6
637.2.f.a.393.1 2 7.6 odd 2
637.2.f.b.295.1 2 13.9 even 3 inner
637.2.f.b.393.1 2 1.1 even 1 trivial
637.2.g.a.263.1 2 7.5 odd 6
637.2.g.a.373.1 2 91.87 odd 6
637.2.h.a.165.1 2 91.61 odd 6
637.2.h.a.471.1 2 7.3 odd 6
819.2.n.c.100.1 2 273.74 odd 6
819.2.n.c.172.1 2 21.2 odd 6
819.2.s.a.289.1 2 21.11 odd 6
819.2.s.a.802.1 2 273.191 odd 6
1183.2.e.a.170.1 2 91.81 even 3
1183.2.e.a.508.1 2 91.16 even 3
1183.2.e.c.170.1 2 91.88 even 6
1183.2.e.c.508.1 2 91.23 even 6
8281.2.a.c.1.1 1 13.10 even 6
8281.2.a.g.1.1 1 91.62 odd 6
8281.2.a.i.1.1 1 13.3 even 3
8281.2.a.j.1.1 1 91.55 odd 6