Properties

Label 637.2.f.b
Level $637$
Weight $2$
Character orbit 637.f
Analytic conductor $5.086$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + \zeta_{6} q^{4} + 3 q^{5} + 3 \zeta_{6} q^{6} -3 q^{8} -6 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + \zeta_{6} q^{4} + 3 q^{5} + 3 \zeta_{6} q^{6} -3 q^{8} -6 \zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{10} + ( 3 - 3 \zeta_{6} ) q^{11} + 3 q^{12} + ( 1 - 4 \zeta_{6} ) q^{13} + ( 9 - 9 \zeta_{6} ) q^{15} + ( 1 - \zeta_{6} ) q^{16} + 2 \zeta_{6} q^{17} + 6 q^{18} + \zeta_{6} q^{19} + 3 \zeta_{6} q^{20} + 3 \zeta_{6} q^{22} + ( -9 + 9 \zeta_{6} ) q^{24} + 4 q^{25} + ( 3 + \zeta_{6} ) q^{26} -9 q^{27} + ( -7 + 7 \zeta_{6} ) q^{29} + 9 \zeta_{6} q^{30} + 3 q^{31} -5 \zeta_{6} q^{32} -9 \zeta_{6} q^{33} -2 q^{34} + ( 6 - 6 \zeta_{6} ) q^{36} + ( -2 + 2 \zeta_{6} ) q^{37} - q^{38} + ( -9 - 3 \zeta_{6} ) q^{39} -9 q^{40} + ( -3 + 3 \zeta_{6} ) q^{41} + 7 \zeta_{6} q^{43} + 3 q^{44} -18 \zeta_{6} q^{45} + q^{47} -3 \zeta_{6} q^{48} + ( -4 + 4 \zeta_{6} ) q^{50} + 6 q^{51} + ( 4 - 3 \zeta_{6} ) q^{52} + 3 q^{53} + ( 9 - 9 \zeta_{6} ) q^{54} + ( 9 - 9 \zeta_{6} ) q^{55} + 3 q^{57} -7 \zeta_{6} q^{58} + 4 \zeta_{6} q^{59} + 9 q^{60} + 13 \zeta_{6} q^{61} + ( -3 + 3 \zeta_{6} ) q^{62} + 7 q^{64} + ( 3 - 12 \zeta_{6} ) q^{65} + 9 q^{66} + ( 3 - 3 \zeta_{6} ) q^{67} + ( -2 + 2 \zeta_{6} ) q^{68} -13 \zeta_{6} q^{71} + 18 \zeta_{6} q^{72} -13 q^{73} -2 \zeta_{6} q^{74} + ( 12 - 12 \zeta_{6} ) q^{75} + ( -1 + \zeta_{6} ) q^{76} + ( 12 - 9 \zeta_{6} ) q^{78} -3 q^{79} + ( 3 - 3 \zeta_{6} ) q^{80} + ( -9 + 9 \zeta_{6} ) q^{81} -3 \zeta_{6} q^{82} + 6 \zeta_{6} q^{85} -7 q^{86} + 21 \zeta_{6} q^{87} + ( -9 + 9 \zeta_{6} ) q^{88} + ( -6 + 6 \zeta_{6} ) q^{89} + 18 q^{90} + ( 9 - 9 \zeta_{6} ) q^{93} + ( -1 + \zeta_{6} ) q^{94} + 3 \zeta_{6} q^{95} -15 q^{96} + 5 \zeta_{6} q^{97} -18 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + 3q^{3} + q^{4} + 6q^{5} + 3q^{6} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 2q - q^{2} + 3q^{3} + q^{4} + 6q^{5} + 3q^{6} - 6q^{8} - 6q^{9} - 3q^{10} + 3q^{11} + 6q^{12} - 2q^{13} + 9q^{15} + q^{16} + 2q^{17} + 12q^{18} + q^{19} + 3q^{20} + 3q^{22} - 9q^{24} + 8q^{25} + 7q^{26} - 18q^{27} - 7q^{29} + 9q^{30} + 6q^{31} - 5q^{32} - 9q^{33} - 4q^{34} + 6q^{36} - 2q^{37} - 2q^{38} - 21q^{39} - 18q^{40} - 3q^{41} + 7q^{43} + 6q^{44} - 18q^{45} + 2q^{47} - 3q^{48} - 4q^{50} + 12q^{51} + 5q^{52} + 6q^{53} + 9q^{54} + 9q^{55} + 6q^{57} - 7q^{58} + 4q^{59} + 18q^{60} + 13q^{61} - 3q^{62} + 14q^{64} - 6q^{65} + 18q^{66} + 3q^{67} - 2q^{68} - 13q^{71} + 18q^{72} - 26q^{73} - 2q^{74} + 12q^{75} - q^{76} + 15q^{78} - 6q^{79} + 3q^{80} - 9q^{81} - 3q^{82} + 6q^{85} - 14q^{86} + 21q^{87} - 9q^{88} - 6q^{89} + 36q^{90} + 9q^{93} - q^{94} + 3q^{95} - 30q^{96} + 5q^{97} - 36q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
295.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 1.50000 2.59808i 0.500000 + 0.866025i 3.00000 1.50000 + 2.59808i 0 −3.00000 −3.00000 5.19615i −1.50000 + 2.59808i
393.1 −0.500000 0.866025i 1.50000 + 2.59808i 0.500000 0.866025i 3.00000 1.50000 2.59808i 0 −3.00000 −3.00000 + 5.19615i −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.f.b 2
7.b odd 2 1 637.2.f.a 2
7.c even 3 1 91.2.g.a 2
7.c even 3 1 91.2.h.a yes 2
7.d odd 6 1 637.2.g.a 2
7.d odd 6 1 637.2.h.a 2
13.c even 3 1 inner 637.2.f.b 2
13.c even 3 1 8281.2.a.i 1
13.e even 6 1 8281.2.a.c 1
21.h odd 6 1 819.2.n.c 2
21.h odd 6 1 819.2.s.a 2
91.g even 3 1 91.2.h.a yes 2
91.g even 3 1 1183.2.e.a 2
91.h even 3 1 91.2.g.a 2
91.h even 3 1 1183.2.e.a 2
91.k even 6 1 1183.2.e.c 2
91.m odd 6 1 637.2.h.a 2
91.n odd 6 1 637.2.f.a 2
91.n odd 6 1 8281.2.a.j 1
91.t odd 6 1 8281.2.a.g 1
91.u even 6 1 1183.2.e.c 2
91.v odd 6 1 637.2.g.a 2
273.s odd 6 1 819.2.n.c 2
273.bm odd 6 1 819.2.s.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.g.a 2 7.c even 3 1
91.2.g.a 2 91.h even 3 1
91.2.h.a yes 2 7.c even 3 1
91.2.h.a yes 2 91.g even 3 1
637.2.f.a 2 7.b odd 2 1
637.2.f.a 2 91.n odd 6 1
637.2.f.b 2 1.a even 1 1 trivial
637.2.f.b 2 13.c even 3 1 inner
637.2.g.a 2 7.d odd 6 1
637.2.g.a 2 91.v odd 6 1
637.2.h.a 2 7.d odd 6 1
637.2.h.a 2 91.m odd 6 1
819.2.n.c 2 21.h odd 6 1
819.2.n.c 2 273.s odd 6 1
819.2.s.a 2 21.h odd 6 1
819.2.s.a 2 273.bm odd 6 1
1183.2.e.a 2 91.g even 3 1
1183.2.e.a 2 91.h even 3 1
1183.2.e.c 2 91.k even 6 1
1183.2.e.c 2 91.u even 6 1
8281.2.a.c 1 13.e even 6 1
8281.2.a.g 1 91.t odd 6 1
8281.2.a.i 1 13.c even 3 1
8281.2.a.j 1 91.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \)
\( T_{3}^{2} - 3 T_{3} + 9 \)
\( T_{5} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 9 - 3 T + T^{2} \)
$5$ \( ( -3 + T )^{2} \)
$7$ \( T^{2} \)
$11$ \( 9 - 3 T + T^{2} \)
$13$ \( 13 + 2 T + T^{2} \)
$17$ \( 4 - 2 T + T^{2} \)
$19$ \( 1 - T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( 49 + 7 T + T^{2} \)
$31$ \( ( -3 + T )^{2} \)
$37$ \( 4 + 2 T + T^{2} \)
$41$ \( 9 + 3 T + T^{2} \)
$43$ \( 49 - 7 T + T^{2} \)
$47$ \( ( -1 + T )^{2} \)
$53$ \( ( -3 + T )^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( 169 - 13 T + T^{2} \)
$67$ \( 9 - 3 T + T^{2} \)
$71$ \( 169 + 13 T + T^{2} \)
$73$ \( ( 13 + T )^{2} \)
$79$ \( ( 3 + T )^{2} \)
$83$ \( T^{2} \)
$89$ \( 36 + 6 T + T^{2} \)
$97$ \( 25 - 5 T + T^{2} \)
show more
show less