Properties

Label 637.2.f
Level $637$
Weight $2$
Character orbit 637.f
Rep. character $\chi_{637}(295,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $84$
Newform subspaces $12$
Sturm bound $130$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 12 \)
Sturm bound: \(130\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(637, [\chi])\).

Total New Old
Modular forms 148 104 44
Cusp forms 116 84 32
Eisenstein series 32 20 12

Trace form

\( 84 q + 2 q^{2} - 34 q^{4} + 8 q^{5} - 6 q^{6} - 24 q^{8} - 26 q^{9} + O(q^{10}) \) \( 84 q + 2 q^{2} - 34 q^{4} + 8 q^{5} - 6 q^{6} - 24 q^{8} - 26 q^{9} + 2 q^{10} - 2 q^{11} - 4 q^{12} + 2 q^{13} - 10 q^{15} - 10 q^{16} - 10 q^{17} - 20 q^{18} + 8 q^{19} + 10 q^{20} - 4 q^{22} + 6 q^{23} - 28 q^{24} + 60 q^{25} + 12 q^{26} + 36 q^{27} - 8 q^{29} + 24 q^{30} + 4 q^{31} + 6 q^{32} - 22 q^{33} + 8 q^{34} - 26 q^{36} - 30 q^{37} + 52 q^{38} - 12 q^{39} + 8 q^{40} - 16 q^{41} + 56 q^{44} + 10 q^{45} + 48 q^{46} - 28 q^{47} - 26 q^{48} + 24 q^{50} + 40 q^{51} - 78 q^{52} + 28 q^{53} - 6 q^{55} - 10 q^{58} + 10 q^{59} - 12 q^{60} - 24 q^{61} + 4 q^{62} - 72 q^{64} - 56 q^{65} - 12 q^{66} + 16 q^{67} - 66 q^{68} + 4 q^{69} - 14 q^{71} + 22 q^{72} + 16 q^{73} + 50 q^{74} - 14 q^{75} + 18 q^{76} + 110 q^{78} - 72 q^{79} + 34 q^{80} + 54 q^{81} - 28 q^{82} - 12 q^{83} + 42 q^{85} - 64 q^{86} - 10 q^{87} + 30 q^{88} + 32 q^{89} - 116 q^{90} - 36 q^{92} + 36 q^{93} + 52 q^{94} - 14 q^{95} + 212 q^{96} + 26 q^{97} - 96 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(637, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
637.2.f.a 637.f 13.c $2$ $5.086$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(-1\) \(-3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
637.2.f.b 637.f 13.c $2$ $5.086$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(-1\) \(3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(3-3\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
637.2.f.c 637.f 13.c $4$ $5.086$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 91.2.f.a \(-3\) \(-3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}-\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{3})q^{3}+\cdots\)
637.2.f.d 637.f 13.c $4$ $5.086$ \(\Q(\zeta_{12})\) None 91.2.f.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{2}+(\beta_{2}+\beta_1)q^{3}+(\beta_1-1)q^{4}+\cdots\)
637.2.f.e 637.f 13.c $4$ $5.086$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 637.2.f.e \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}-\beta _{1}q^{3}+(2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
637.2.f.f 637.f 13.c $4$ $5.086$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 637.2.f.e \(2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+\beta _{1}q^{3}+(2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
637.2.f.g 637.f 13.c $8$ $5.086$ 8.0.\(\cdots\).7 None 637.2.f.g \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2})q^{2}+\beta _{6}q^{3}+\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\)
637.2.f.h 637.f 13.c $8$ $5.086$ 8.0.\(\cdots\).6 None 637.2.f.h \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2}-\beta _{6})q^{2}+(-\beta _{3}+\beta _{7})q^{3}+\cdots\)
637.2.f.i 637.f 13.c $8$ $5.086$ 8.0.\(\cdots\).1 None 91.2.f.c \(1\) \(1\) \(14\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
637.2.f.j 637.f 13.c $12$ $5.086$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(2\) \(-1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{5}+\beta _{11})q^{2}-\beta _{11}q^{3}+\cdots\)
637.2.f.k 637.f 13.c $12$ $5.086$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(2\) \(1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{5}+\beta _{11})q^{2}+\beta _{11}q^{3}+\cdots\)
637.2.f.l 637.f 13.c $16$ $5.086$ 16.0.\(\cdots\).2 None 637.2.f.l \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{4}+\beta _{10})q^{2}+(\beta _{8}-\beta _{15})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(637, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(637, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)