Properties

Label 819.2.s.a.289.1
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-2,3,0,4,6,0,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.a.802.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} +(1.50000 - 2.59808i) q^{5} +(2.00000 + 1.73205i) q^{7} +3.00000 q^{8} +(-1.50000 + 2.59808i) q^{10} +(-1.50000 + 2.59808i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(-2.00000 - 1.73205i) q^{14} -1.00000 q^{16} +2.00000 q^{17} +(0.500000 + 0.866025i) q^{19} +(-1.50000 + 2.59808i) q^{20} +(1.50000 - 2.59808i) q^{22} +(-2.00000 - 3.46410i) q^{25} +(1.00000 - 3.46410i) q^{26} +(-2.00000 - 1.73205i) q^{28} +(3.50000 + 6.06218i) q^{29} +(-1.50000 - 2.59808i) q^{31} -5.00000 q^{32} -2.00000 q^{34} +(7.50000 - 2.59808i) q^{35} +2.00000 q^{37} +(-0.500000 - 0.866025i) q^{38} +(4.50000 - 7.79423i) q^{40} +(1.50000 + 2.59808i) q^{41} +(3.50000 - 6.06218i) q^{43} +(1.50000 - 2.59808i) q^{44} +(0.500000 - 0.866025i) q^{47} +(1.00000 + 6.92820i) q^{49} +(2.00000 + 3.46410i) q^{50} +(1.00000 - 3.46410i) q^{52} +(1.50000 + 2.59808i) q^{53} +(4.50000 + 7.79423i) q^{55} +(6.00000 + 5.19615i) q^{56} +(-3.50000 - 6.06218i) q^{58} +4.00000 q^{59} +(6.50000 + 11.2583i) q^{61} +(1.50000 + 2.59808i) q^{62} +7.00000 q^{64} +(7.50000 + 7.79423i) q^{65} +(1.50000 - 2.59808i) q^{67} -2.00000 q^{68} +(-7.50000 + 2.59808i) q^{70} +(6.50000 - 11.2583i) q^{71} +(6.50000 + 11.2583i) q^{73} -2.00000 q^{74} +(-0.500000 - 0.866025i) q^{76} +(-7.50000 + 2.59808i) q^{77} +(1.50000 - 2.59808i) q^{79} +(-1.50000 + 2.59808i) q^{80} +(-1.50000 - 2.59808i) q^{82} +(3.00000 - 5.19615i) q^{85} +(-3.50000 + 6.06218i) q^{86} +(-4.50000 + 7.79423i) q^{88} -6.00000 q^{89} +(-8.00000 + 5.19615i) q^{91} +(-0.500000 + 0.866025i) q^{94} +3.00000 q^{95} +(2.50000 - 4.33013i) q^{97} +(-1.00000 - 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} + 3 q^{5} + 4 q^{7} + 6 q^{8} - 3 q^{10} - 3 q^{11} - 2 q^{13} - 4 q^{14} - 2 q^{16} + 4 q^{17} + q^{19} - 3 q^{20} + 3 q^{22} - 4 q^{25} + 2 q^{26} - 4 q^{28} + 7 q^{29} - 3 q^{31}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) −2.00000 1.73205i −0.534522 0.462910i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −1.50000 + 2.59808i −0.335410 + 0.580948i
\(21\) 0 0
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 1.00000 3.46410i 0.196116 0.679366i
\(27\) 0 0
\(28\) −2.00000 1.73205i −0.377964 0.327327i
\(29\) 3.50000 + 6.06218i 0.649934 + 1.12572i 0.983138 + 0.182864i \(0.0585367\pi\)
−0.333205 + 0.942855i \(0.608130\pi\)
\(30\) 0 0
\(31\) −1.50000 2.59808i −0.269408 0.466628i 0.699301 0.714827i \(-0.253495\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 7.50000 2.59808i 1.26773 0.439155i
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −0.500000 0.866025i −0.0811107 0.140488i
\(39\) 0 0
\(40\) 4.50000 7.79423i 0.711512 1.23238i
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) 3.50000 6.06218i 0.533745 0.924473i −0.465478 0.885059i \(-0.654118\pi\)
0.999223 0.0394140i \(-0.0125491\pi\)
\(44\) 1.50000 2.59808i 0.226134 0.391675i
\(45\) 0 0
\(46\) 0 0
\(47\) 0.500000 0.866025i 0.0729325 0.126323i −0.827253 0.561830i \(-0.810098\pi\)
0.900185 + 0.435507i \(0.143431\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 2.00000 + 3.46410i 0.282843 + 0.489898i
\(51\) 0 0
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 4.50000 + 7.79423i 0.606780 + 1.05097i
\(56\) 6.00000 + 5.19615i 0.801784 + 0.694365i
\(57\) 0 0
\(58\) −3.50000 6.06218i −0.459573 0.796003i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 1.50000 + 2.59808i 0.190500 + 0.329956i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 7.50000 + 7.79423i 0.930261 + 0.966755i
\(66\) 0 0
\(67\) 1.50000 2.59808i 0.183254 0.317406i −0.759733 0.650236i \(-0.774670\pi\)
0.942987 + 0.332830i \(0.108004\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) −7.50000 + 2.59808i −0.896421 + 0.310530i
\(71\) 6.50000 11.2583i 0.771408 1.33612i −0.165383 0.986229i \(-0.552886\pi\)
0.936791 0.349889i \(-0.113781\pi\)
\(72\) 0 0
\(73\) 6.50000 + 11.2583i 0.760767 + 1.31769i 0.942455 + 0.334332i \(0.108511\pi\)
−0.181688 + 0.983356i \(0.558156\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −0.500000 0.866025i −0.0573539 0.0993399i
\(77\) −7.50000 + 2.59808i −0.854704 + 0.296078i
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) 0 0
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) −3.50000 + 6.06218i −0.377415 + 0.653701i
\(87\) 0 0
\(88\) −4.50000 + 7.79423i −0.479702 + 0.830868i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 + 5.19615i −0.838628 + 0.544705i
\(92\) 0 0
\(93\) 0 0
\(94\) −0.500000 + 0.866025i −0.0515711 + 0.0893237i
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 2.50000 4.33013i 0.253837 0.439658i −0.710742 0.703452i \(-0.751641\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) −1.00000 6.92820i −0.101015 0.699854i
\(99\) 0 0
\(100\) 2.00000 + 3.46410i 0.200000 + 0.346410i
\(101\) −2.50000 + 4.33013i −0.248759 + 0.430864i −0.963182 0.268851i \(-0.913356\pi\)
0.714423 + 0.699715i \(0.246689\pi\)
\(102\) 0 0
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) −3.00000 + 10.3923i −0.294174 + 1.01905i
\(105\) 0 0
\(106\) −1.50000 2.59808i −0.145693 0.252347i
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −3.50000 6.06218i −0.335239 0.580651i 0.648292 0.761392i \(-0.275484\pi\)
−0.983531 + 0.180741i \(0.942150\pi\)
\(110\) −4.50000 7.79423i −0.429058 0.743151i
\(111\) 0 0
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 7.50000 12.9904i 0.705541 1.22203i −0.260955 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.50000 6.06218i −0.324967 0.562859i
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 4.00000 + 3.46410i 0.366679 + 0.317554i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −6.50000 11.2583i −0.588482 1.01928i
\(123\) 0 0
\(124\) 1.50000 + 2.59808i 0.134704 + 0.233314i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −5.50000 9.52628i −0.488046 0.845321i 0.511859 0.859069i \(-0.328957\pi\)
−0.999905 + 0.0137486i \(0.995624\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) −7.50000 7.79423i −0.657794 0.683599i
\(131\) 2.50000 4.33013i 0.218426 0.378325i −0.735901 0.677089i \(-0.763241\pi\)
0.954327 + 0.298764i \(0.0965744\pi\)
\(132\) 0 0
\(133\) −0.500000 + 2.59808i −0.0433555 + 0.225282i
\(134\) −1.50000 + 2.59808i −0.129580 + 0.224440i
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 7.50000 12.9904i 0.636142 1.10183i −0.350130 0.936701i \(-0.613863\pi\)
0.986272 0.165129i \(-0.0528040\pi\)
\(140\) −7.50000 + 2.59808i −0.633866 + 0.219578i
\(141\) 0 0
\(142\) −6.50000 + 11.2583i −0.545468 + 0.944778i
\(143\) −7.50000 7.79423i −0.627182 0.651786i
\(144\) 0 0
\(145\) 21.0000 1.74396
\(146\) −6.50000 11.2583i −0.537944 0.931746i
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) 10.5000 + 18.1865i 0.854478 + 1.48000i 0.877129 + 0.480256i \(0.159456\pi\)
−0.0226507 + 0.999743i \(0.507211\pi\)
\(152\) 1.50000 + 2.59808i 0.121666 + 0.210732i
\(153\) 0 0
\(154\) 7.50000 2.59808i 0.604367 0.209359i
\(155\) −9.00000 −0.722897
\(156\) 0 0
\(157\) −9.50000 16.4545i −0.758183 1.31321i −0.943777 0.330584i \(-0.892754\pi\)
0.185594 0.982627i \(-0.440579\pi\)
\(158\) −1.50000 + 2.59808i −0.119334 + 0.206692i
\(159\) 0 0
\(160\) −7.50000 + 12.9904i −0.592927 + 1.02698i
\(161\) 0 0
\(162\) 0 0
\(163\) 0.500000 + 0.866025i 0.0391630 + 0.0678323i 0.884943 0.465700i \(-0.154198\pi\)
−0.845780 + 0.533533i \(0.820864\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 0 0
\(167\) −6.50000 11.2583i −0.502985 0.871196i −0.999994 0.00345033i \(-0.998902\pi\)
0.497009 0.867745i \(-0.334432\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) −3.00000 + 5.19615i −0.230089 + 0.398527i
\(171\) 0 0
\(172\) −3.50000 + 6.06218i −0.266872 + 0.462237i
\(173\) 9.50000 + 16.4545i 0.722272 + 1.25101i 0.960087 + 0.279701i \(0.0902353\pi\)
−0.237816 + 0.971310i \(0.576431\pi\)
\(174\) 0 0
\(175\) 2.00000 10.3923i 0.151186 0.785584i
\(176\) 1.50000 2.59808i 0.113067 0.195837i
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 8.50000 14.7224i 0.635320 1.10041i −0.351127 0.936328i \(-0.614202\pi\)
0.986447 0.164079i \(-0.0524651\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 8.00000 5.19615i 0.592999 0.385164i
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) −3.00000 + 5.19615i −0.219382 + 0.379980i
\(188\) −0.500000 + 0.866025i −0.0364662 + 0.0631614i
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) −8.50000 14.7224i −0.615038 1.06528i −0.990378 0.138390i \(-0.955807\pi\)
0.375339 0.926887i \(-0.377526\pi\)
\(192\) 0 0
\(193\) −3.50000 + 6.06218i −0.251936 + 0.436365i −0.964059 0.265689i \(-0.914400\pi\)
0.712123 + 0.702055i \(0.247734\pi\)
\(194\) −2.50000 + 4.33013i −0.179490 + 0.310885i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) −0.500000 0.866025i −0.0356235 0.0617018i 0.847664 0.530534i \(-0.178008\pi\)
−0.883287 + 0.468832i \(0.844675\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) −6.00000 10.3923i −0.424264 0.734847i
\(201\) 0 0
\(202\) 2.50000 4.33013i 0.175899 0.304667i
\(203\) −3.50000 + 18.1865i −0.245652 + 1.27644i
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 2.50000 4.33013i 0.174183 0.301694i
\(207\) 0 0
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −3.50000 6.06218i −0.240950 0.417338i 0.720035 0.693938i \(-0.244126\pi\)
−0.960985 + 0.276600i \(0.910792\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) −10.5000 18.1865i −0.716094 1.24031i
\(216\) 0 0
\(217\) 1.50000 7.79423i 0.101827 0.529107i
\(218\) 3.50000 + 6.06218i 0.237050 + 0.410582i
\(219\) 0 0
\(220\) −4.50000 7.79423i −0.303390 0.525487i
\(221\) −2.00000 + 6.92820i −0.134535 + 0.466041i
\(222\) 0 0
\(223\) 4.50000 + 7.79423i 0.301342 + 0.521940i 0.976440 0.215788i \(-0.0692320\pi\)
−0.675098 + 0.737728i \(0.735899\pi\)
\(224\) −10.0000 8.66025i −0.668153 0.578638i
\(225\) 0 0
\(226\) −7.50000 + 12.9904i −0.498893 + 0.864107i
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.5000 + 18.1865i 0.689359 + 1.19400i
\(233\) −10.5000 + 18.1865i −0.687878 + 1.19144i 0.284645 + 0.958633i \(0.408124\pi\)
−0.972523 + 0.232806i \(0.925209\pi\)
\(234\) 0 0
\(235\) −1.50000 2.59808i −0.0978492 0.169480i
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) −4.00000 3.46410i −0.259281 0.224544i
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) −1.00000 1.73205i −0.0642824 0.111340i
\(243\) 0 0
\(244\) −6.50000 11.2583i −0.416120 0.720741i
\(245\) 19.5000 + 7.79423i 1.24581 + 0.497955i
\(246\) 0 0
\(247\) −3.50000 + 0.866025i −0.222700 + 0.0551039i
\(248\) −4.50000 7.79423i −0.285750 0.494934i
\(249\) 0 0
\(250\) −3.00000 −0.189737
\(251\) −11.5000 + 19.9186i −0.725874 + 1.25725i 0.232740 + 0.972539i \(0.425231\pi\)
−0.958613 + 0.284711i \(0.908102\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 5.50000 + 9.52628i 0.345101 + 0.597732i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 4.00000 + 3.46410i 0.248548 + 0.215249i
\(260\) −7.50000 7.79423i −0.465130 0.483378i
\(261\) 0 0
\(262\) −2.50000 + 4.33013i −0.154451 + 0.267516i
\(263\) −13.5000 + 23.3827i −0.832446 + 1.44184i 0.0636476 + 0.997972i \(0.479727\pi\)
−0.896093 + 0.443866i \(0.853607\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0.500000 2.59808i 0.0306570 0.159298i
\(267\) 0 0
\(268\) −1.50000 + 2.59808i −0.0916271 + 0.158703i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) −7.50000 + 12.9904i −0.449820 + 0.779111i
\(279\) 0 0
\(280\) 22.5000 7.79423i 1.34463 0.465794i
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −0.500000 + 0.866025i −0.0297219 + 0.0514799i −0.880504 0.474039i \(-0.842796\pi\)
0.850782 + 0.525519i \(0.176129\pi\)
\(284\) −6.50000 + 11.2583i −0.385704 + 0.668059i
\(285\) 0 0
\(286\) 7.50000 + 7.79423i 0.443484 + 0.460882i
\(287\) −1.50000 + 7.79423i −0.0885422 + 0.460079i
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −21.0000 −1.23316
\(291\) 0 0
\(292\) −6.50000 11.2583i −0.380384 0.658844i
\(293\) 5.50000 9.52628i 0.321313 0.556531i −0.659446 0.751752i \(-0.729209\pi\)
0.980759 + 0.195221i \(0.0625424\pi\)
\(294\) 0 0
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −7.50000 12.9904i −0.434463 0.752513i
\(299\) 0 0
\(300\) 0 0
\(301\) 17.5000 6.06218i 1.00868 0.349418i
\(302\) −10.5000 18.1865i −0.604207 1.04652i
\(303\) 0 0
\(304\) −0.500000 0.866025i −0.0286770 0.0496700i
\(305\) 39.0000 2.23313
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 7.50000 2.59808i 0.427352 0.148039i
\(309\) 0 0
\(310\) 9.00000 0.511166
\(311\) −4.50000 7.79423i −0.255172 0.441970i 0.709771 0.704433i \(-0.248799\pi\)
−0.964942 + 0.262463i \(0.915465\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 9.50000 + 16.4545i 0.536116 + 0.928580i
\(315\) 0 0
\(316\) −1.50000 + 2.59808i −0.0843816 + 0.146153i
\(317\) −4.50000 + 7.79423i −0.252745 + 0.437767i −0.964281 0.264883i \(-0.914667\pi\)
0.711535 + 0.702650i \(0.248000\pi\)
\(318\) 0 0
\(319\) −21.0000 −1.17577
\(320\) 10.5000 18.1865i 0.586968 1.01666i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.00000 + 1.73205i 0.0556415 + 0.0963739i
\(324\) 0 0
\(325\) 14.0000 3.46410i 0.776580 0.192154i
\(326\) −0.500000 0.866025i −0.0276924 0.0479647i
\(327\) 0 0
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) 2.50000 0.866025i 0.137829 0.0477455i
\(330\) 0 0
\(331\) 14.5000 + 25.1147i 0.796992 + 1.38043i 0.921567 + 0.388221i \(0.126910\pi\)
−0.124574 + 0.992210i \(0.539757\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 6.50000 + 11.2583i 0.355664 + 0.616028i
\(335\) −4.50000 7.79423i −0.245861 0.425844i
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 11.0000 + 6.92820i 0.598321 + 0.376845i
\(339\) 0 0
\(340\) −3.00000 + 5.19615i −0.162698 + 0.281801i
\(341\) 9.00000 0.487377
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 10.5000 18.1865i 0.566122 0.980552i
\(345\) 0 0
\(346\) −9.50000 16.4545i −0.510723 0.884598i
\(347\) 8.00000 0.429463 0.214731 0.976673i \(-0.431112\pi\)
0.214731 + 0.976673i \(0.431112\pi\)
\(348\) 0 0
\(349\) −11.5000 19.9186i −0.615581 1.06622i −0.990282 0.139072i \(-0.955588\pi\)
0.374701 0.927146i \(-0.377745\pi\)
\(350\) −2.00000 + 10.3923i −0.106904 + 0.555492i
\(351\) 0 0
\(352\) 7.50000 12.9904i 0.399751 0.692390i
\(353\) −12.5000 + 21.6506i −0.665308 + 1.15235i 0.313894 + 0.949458i \(0.398366\pi\)
−0.979202 + 0.202889i \(0.934967\pi\)
\(354\) 0 0
\(355\) −19.5000 33.7750i −1.03495 1.79259i
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −8.50000 + 14.7224i −0.449239 + 0.778105i
\(359\) 8.50000 14.7224i 0.448613 0.777020i −0.549683 0.835373i \(-0.685252\pi\)
0.998296 + 0.0583530i \(0.0185849\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) 8.00000 5.19615i 0.419314 0.272352i
\(365\) 39.0000 2.04135
\(366\) 0 0
\(367\) 15.5000 26.8468i 0.809093 1.40139i −0.104399 0.994535i \(-0.533292\pi\)
0.913493 0.406855i \(-0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −3.00000 + 5.19615i −0.155963 + 0.270135i
\(371\) −1.50000 + 7.79423i −0.0778761 + 0.404656i
\(372\) 0 0
\(373\) 4.50000 + 7.79423i 0.233001 + 0.403570i 0.958690 0.284453i \(-0.0918121\pi\)
−0.725689 + 0.688023i \(0.758479\pi\)
\(374\) 3.00000 5.19615i 0.155126 0.268687i
\(375\) 0 0
\(376\) 1.50000 2.59808i 0.0773566 0.133986i
\(377\) −24.5000 + 6.06218i −1.26181 + 0.312218i
\(378\) 0 0
\(379\) 16.5000 + 28.5788i 0.847548 + 1.46800i 0.883390 + 0.468639i \(0.155255\pi\)
−0.0358418 + 0.999357i \(0.511411\pi\)
\(380\) −3.00000 −0.153897
\(381\) 0 0
\(382\) 8.50000 + 14.7224i 0.434898 + 0.753265i
\(383\) −10.5000 18.1865i −0.536525 0.929288i −0.999088 0.0427020i \(-0.986403\pi\)
0.462563 0.886586i \(-0.346930\pi\)
\(384\) 0 0
\(385\) −4.50000 + 23.3827i −0.229341 + 1.19169i
\(386\) 3.50000 6.06218i 0.178145 0.308557i
\(387\) 0 0
\(388\) −2.50000 + 4.33013i −0.126918 + 0.219829i
\(389\) −16.5000 28.5788i −0.836583 1.44900i −0.892735 0.450582i \(-0.851216\pi\)
0.0561516 0.998422i \(-0.482117\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 + 20.7846i 0.151523 + 1.04978i
\(393\) 0 0
\(394\) 0.500000 + 0.866025i 0.0251896 + 0.0436297i
\(395\) −4.50000 7.79423i −0.226420 0.392170i
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.0250943 + 0.0434646i 0.878300 0.478110i \(-0.158678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 10.5000 2.59808i 0.523042 0.129419i
\(404\) 2.50000 4.33013i 0.124380 0.215432i
\(405\) 0 0
\(406\) 3.50000 18.1865i 0.173702 0.902583i
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) −9.00000 −0.444478
\(411\) 0 0
\(412\) 2.50000 4.33013i 0.123166 0.213330i
\(413\) 8.00000 + 6.92820i 0.393654 + 0.340915i
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 17.3205i 0.245145 0.849208i
\(417\) 0 0
\(418\) 3.00000 0.146735
\(419\) −12.5000 21.6506i −0.610665 1.05770i −0.991129 0.132907i \(-0.957569\pi\)
0.380464 0.924796i \(-0.375764\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) 3.50000 + 6.06218i 0.170377 + 0.295102i
\(423\) 0 0
\(424\) 4.50000 + 7.79423i 0.218539 + 0.378521i
\(425\) −4.00000 6.92820i −0.194029 0.336067i
\(426\) 0 0
\(427\) −6.50000 + 33.7750i −0.314557 + 1.63449i
\(428\) 8.00000 0.386695
\(429\) 0 0
\(430\) 10.5000 + 18.1865i 0.506355 + 0.877033i
\(431\) 4.50000 7.79423i 0.216757 0.375435i −0.737057 0.675830i \(-0.763785\pi\)
0.953815 + 0.300395i \(0.0971186\pi\)
\(432\) 0 0
\(433\) −13.5000 + 23.3827i −0.648769 + 1.12370i 0.334649 + 0.942343i \(0.391382\pi\)
−0.983417 + 0.181357i \(0.941951\pi\)
\(434\) −1.50000 + 7.79423i −0.0720023 + 0.374135i
\(435\) 0 0
\(436\) 3.50000 + 6.06218i 0.167620 + 0.290326i
\(437\) 0 0
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 13.5000 + 23.3827i 0.643587 + 1.11473i
\(441\) 0 0
\(442\) 2.00000 6.92820i 0.0951303 0.329541i
\(443\) −5.50000 + 9.52628i −0.261313 + 0.452607i −0.966591 0.256323i \(-0.917489\pi\)
0.705278 + 0.708931i \(0.250822\pi\)
\(444\) 0 0
\(445\) −9.00000 + 15.5885i −0.426641 + 0.738964i
\(446\) −4.50000 7.79423i −0.213081 0.369067i
\(447\) 0 0
\(448\) 14.0000 + 12.1244i 0.661438 + 0.572822i
\(449\) 7.50000 12.9904i 0.353947 0.613054i −0.632990 0.774160i \(-0.718173\pi\)
0.986937 + 0.161106i \(0.0515060\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) −7.50000 + 12.9904i −0.352770 + 0.611016i
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 1.50000 + 28.5788i 0.0703211 + 1.33980i
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −6.50000 + 11.2583i −0.303725 + 0.526067i
\(459\) 0 0
\(460\) 0 0
\(461\) 17.5000 30.3109i 0.815056 1.41172i −0.0942312 0.995550i \(-0.530039\pi\)
0.909288 0.416169i \(-0.136627\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −3.50000 6.06218i −0.162483 0.281430i
\(465\) 0 0
\(466\) 10.5000 18.1865i 0.486403 0.842475i
\(467\) −3.50000 + 6.06218i −0.161961 + 0.280524i −0.935572 0.353137i \(-0.885115\pi\)
0.773611 + 0.633661i \(0.218448\pi\)
\(468\) 0 0
\(469\) 7.50000 2.59808i 0.346318 0.119968i
\(470\) 1.50000 + 2.59808i 0.0691898 + 0.119840i
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 10.5000 + 18.1865i 0.482791 + 0.836218i
\(474\) 0 0
\(475\) 2.00000 3.46410i 0.0917663 0.158944i
\(476\) −4.00000 3.46410i −0.183340 0.158777i
\(477\) 0 0
\(478\) −4.00000 −0.182956
\(479\) −17.5000 + 30.3109i −0.799595 + 1.38494i 0.120284 + 0.992739i \(0.461619\pi\)
−0.919880 + 0.392200i \(0.871714\pi\)
\(480\) 0 0
\(481\) −2.00000 + 6.92820i −0.0911922 + 0.315899i
\(482\) 26.0000 1.18427
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) −7.50000 12.9904i −0.340557 0.589863i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 19.5000 + 33.7750i 0.882724 + 1.52892i
\(489\) 0 0
\(490\) −19.5000 7.79423i −0.880920 0.352107i
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 0 0
\(493\) 7.00000 + 12.1244i 0.315264 + 0.546054i
\(494\) 3.50000 0.866025i 0.157472 0.0389643i
\(495\) 0 0
\(496\) 1.50000 + 2.59808i 0.0673520 + 0.116657i
\(497\) 32.5000 11.2583i 1.45782 0.505005i
\(498\) 0 0
\(499\) 15.5000 26.8468i 0.693875 1.20183i −0.276683 0.960961i \(-0.589235\pi\)
0.970558 0.240866i \(-0.0774314\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) 11.5000 19.9186i 0.513270 0.889010i
\(503\) −15.5000 + 26.8468i −0.691111 + 1.19704i 0.280363 + 0.959894i \(0.409545\pi\)
−0.971474 + 0.237145i \(0.923788\pi\)
\(504\) 0 0
\(505\) 7.50000 + 12.9904i 0.333746 + 0.578064i
\(506\) 0 0
\(507\) 0 0
\(508\) 5.50000 + 9.52628i 0.244023 + 0.422660i
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) −6.50000 + 33.7750i −0.287543 + 1.49412i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) 7.50000 + 12.9904i 0.330489 + 0.572425i
\(516\) 0 0
\(517\) 1.50000 + 2.59808i 0.0659699 + 0.114263i
\(518\) −4.00000 3.46410i −0.175750 0.152204i
\(519\) 0 0
\(520\) 22.5000 + 23.3827i 0.986690 + 1.02540i
\(521\) −8.50000 14.7224i −0.372392 0.645001i 0.617541 0.786539i \(-0.288129\pi\)
−0.989933 + 0.141537i \(0.954796\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) −2.50000 + 4.33013i −0.109213 + 0.189162i
\(525\) 0 0
\(526\) 13.5000 23.3827i 0.588628 1.01953i
\(527\) −3.00000 5.19615i −0.130682 0.226348i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 0.500000 2.59808i 0.0216777 0.112641i
\(533\) −10.5000 + 2.59808i −0.454805 + 0.112535i
\(534\) 0 0
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 4.50000 7.79423i 0.194370 0.336659i
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) −19.5000 7.79423i −0.839924 0.335721i
\(540\) 0 0
\(541\) 18.5000 32.0429i 0.795377 1.37763i −0.127222 0.991874i \(-0.540606\pi\)
0.922599 0.385759i \(-0.126061\pi\)
\(542\) 16.0000 0.687259
\(543\) 0 0
\(544\) −10.0000 −0.428746
\(545\) −21.0000 −0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 10.0000 0.427179
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) −3.50000 + 6.06218i −0.149105 + 0.258257i
\(552\) 0 0
\(553\) 7.50000 2.59808i 0.318932 0.110481i
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −7.50000 + 12.9904i −0.318071 + 0.550915i
\(557\) 1.50000 2.59808i 0.0635570 0.110084i −0.832496 0.554031i \(-0.813089\pi\)
0.896053 + 0.443947i \(0.146422\pi\)
\(558\) 0 0
\(559\) 17.5000 + 18.1865i 0.740171 + 0.769208i
\(560\) −7.50000 + 2.59808i −0.316933 + 0.109789i
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) −22.5000 38.9711i −0.946582 1.63953i
\(566\) 0.500000 0.866025i 0.0210166 0.0364018i
\(567\) 0 0
\(568\) 19.5000 33.7750i 0.818202 1.41717i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −21.5000 37.2391i −0.899747 1.55841i −0.827817 0.560998i \(-0.810418\pi\)
−0.0719297 0.997410i \(-0.522916\pi\)
\(572\) 7.50000 + 7.79423i 0.313591 + 0.325893i
\(573\) 0 0
\(574\) 1.50000 7.79423i 0.0626088 0.325325i
\(575\) 0 0
\(576\) 0 0
\(577\) 0.500000 + 0.866025i 0.0208153 + 0.0360531i 0.876245 0.481865i \(-0.160040\pi\)
−0.855430 + 0.517918i \(0.826707\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −21.0000 −0.871978
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 19.5000 + 33.7750i 0.806916 + 1.39762i
\(585\) 0 0
\(586\) −5.50000 + 9.52628i −0.227203 + 0.393527i
\(587\) −16.5000 28.5788i −0.681028 1.17957i −0.974668 0.223659i \(-0.928200\pi\)
0.293640 0.955916i \(-0.405133\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) −6.00000 + 10.3923i −0.247016 + 0.427844i
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) 13.5000 23.3827i 0.554379 0.960212i −0.443573 0.896238i \(-0.646289\pi\)
0.997952 0.0639736i \(-0.0203773\pi\)
\(594\) 0 0
\(595\) 15.0000 5.19615i 0.614940 0.213021i
\(596\) −7.50000 12.9904i −0.307212 0.532107i
\(597\) 0 0
\(598\) 0 0
\(599\) −12.5000 21.6506i −0.510736 0.884621i −0.999923 0.0124417i \(-0.996040\pi\)
0.489186 0.872179i \(-0.337294\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) −17.5000 + 6.06218i −0.713247 + 0.247076i
\(603\) 0 0
\(604\) −10.5000 18.1865i −0.427239 0.740000i
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) −5.50000 9.52628i −0.223238 0.386660i 0.732551 0.680712i \(-0.238329\pi\)
−0.955789 + 0.294052i \(0.904996\pi\)
\(608\) −2.50000 4.33013i −0.101388 0.175610i
\(609\) 0 0
\(610\) −39.0000 −1.57906
\(611\) 2.50000 + 2.59808i 0.101139 + 0.105107i
\(612\) 0 0
\(613\) 12.5000 21.6506i 0.504870 0.874461i −0.495114 0.868828i \(-0.664874\pi\)
0.999984 0.00563283i \(-0.00179300\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −22.5000 + 7.79423i −0.906551 + 0.314038i
\(617\) −16.5000 + 28.5788i −0.664265 + 1.15054i 0.315219 + 0.949019i \(0.397922\pi\)
−0.979484 + 0.201522i \(0.935411\pi\)
\(618\) 0 0
\(619\) −5.50000 9.52628i −0.221064 0.382893i 0.734068 0.679076i \(-0.237620\pi\)
−0.955131 + 0.296183i \(0.904286\pi\)
\(620\) 9.00000 0.361449
\(621\) 0 0
\(622\) 4.50000 + 7.79423i 0.180434 + 0.312520i
\(623\) −12.0000 10.3923i −0.480770 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 9.50000 16.4545i 0.379696 0.657653i
\(627\) 0 0
\(628\) 9.50000 + 16.4545i 0.379091 + 0.656605i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −12.5000 + 21.6506i −0.497617 + 0.861898i −0.999996 0.00274930i \(-0.999125\pi\)
0.502379 + 0.864647i \(0.332458\pi\)
\(632\) 4.50000 7.79423i 0.179000 0.310038i
\(633\) 0 0
\(634\) 4.50000 7.79423i 0.178718 0.309548i
\(635\) −33.0000 −1.30957
\(636\) 0 0
\(637\) −25.0000 3.46410i −0.990536 0.137253i
\(638\) 21.0000 0.831398
\(639\) 0 0
\(640\) 4.50000 7.79423i 0.177878 0.308094i
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 9.50000 16.4545i 0.374643 0.648901i −0.615630 0.788035i \(-0.711098\pi\)
0.990274 + 0.139134i \(0.0444318\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.00000 1.73205i −0.0393445 0.0681466i
\(647\) 4.50000 7.79423i 0.176913 0.306423i −0.763908 0.645325i \(-0.776722\pi\)
0.940822 + 0.338902i \(0.110055\pi\)
\(648\) 0 0
\(649\) −6.00000 + 10.3923i −0.235521 + 0.407934i
\(650\) −14.0000 + 3.46410i −0.549125 + 0.135873i
\(651\) 0 0
\(652\) −0.500000 0.866025i −0.0195815 0.0339162i
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) −7.50000 12.9904i −0.293049 0.507576i
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) 0 0
\(658\) −2.50000 + 0.866025i −0.0974601 + 0.0337612i
\(659\) 14.5000 25.1147i 0.564840 0.978331i −0.432225 0.901766i \(-0.642271\pi\)
0.997065 0.0765653i \(-0.0243954\pi\)
\(660\) 0 0
\(661\) 4.50000 7.79423i 0.175030 0.303160i −0.765142 0.643862i \(-0.777331\pi\)
0.940172 + 0.340701i \(0.110665\pi\)
\(662\) −14.5000 25.1147i −0.563559 0.976112i
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 + 5.19615i 0.232670 + 0.201498i
\(666\) 0 0
\(667\) 0 0
\(668\) 6.50000 + 11.2583i 0.251493 + 0.435598i
\(669\) 0 0
\(670\) 4.50000 + 7.79423i 0.173850 + 0.301117i
\(671\) −39.0000 −1.50558
\(672\) 0 0
\(673\) 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i \(0.123365\pi\)
−0.135615 + 0.990762i \(0.543301\pi\)
\(674\) −14.0000 −0.539260
\(675\) 0 0
\(676\) 11.0000 + 6.92820i 0.423077 + 0.266469i
\(677\) 3.50000 6.06218i 0.134516 0.232988i −0.790897 0.611950i \(-0.790385\pi\)
0.925412 + 0.378962i \(0.123719\pi\)
\(678\) 0 0
\(679\) 12.5000 4.33013i 0.479706 0.166175i
\(680\) 9.00000 15.5885i 0.345134 0.597790i
\(681\) 0 0
\(682\) −9.00000 −0.344628
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) −15.0000 + 25.9808i −0.573121 + 0.992674i
\(686\) 10.0000 15.5885i 0.381802 0.595170i
\(687\) 0 0
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) −10.5000 + 2.59808i −0.400018 + 0.0989788i
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) −9.50000 16.4545i −0.361136 0.625506i
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) −22.5000 38.9711i −0.853474 1.47826i
\(696\) 0 0
\(697\) 3.00000 + 5.19615i 0.113633 + 0.196818i
\(698\) 11.5000 + 19.9186i 0.435281 + 0.753930i
\(699\) 0 0
\(700\) −2.00000 + 10.3923i −0.0755929 + 0.392792i
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 1.00000 + 1.73205i 0.0377157 + 0.0653255i
\(704\) −10.5000 + 18.1865i −0.395734 + 0.685431i
\(705\) 0 0
\(706\) 12.5000 21.6506i 0.470444 0.814832i
\(707\) −12.5000 + 4.33013i −0.470111 + 0.162851i
\(708\) 0 0
\(709\) −5.50000 9.52628i −0.206557 0.357767i 0.744071 0.668101i \(-0.232892\pi\)
−0.950628 + 0.310334i \(0.899559\pi\)
\(710\) 19.5000 + 33.7750i 0.731822 + 1.26755i
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) −31.5000 + 7.79423i −1.17803 + 0.291488i
\(716\) −8.50000 + 14.7224i −0.317660 + 0.550203i
\(717\) 0 0
\(718\) −8.50000 + 14.7224i −0.317217 + 0.549436i
\(719\) −4.50000 7.79423i −0.167822 0.290676i 0.769832 0.638247i \(-0.220340\pi\)
−0.937654 + 0.347571i \(0.887007\pi\)
\(720\) 0 0
\(721\) −12.5000 + 4.33013i −0.465524 + 0.161262i
\(722\) −9.00000 + 15.5885i −0.334945 + 0.580142i
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) 14.0000 24.2487i 0.519947 0.900575i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) −24.0000 + 15.5885i −0.889499 + 0.577747i
\(729\) 0 0
\(730\) −39.0000 −1.44345
\(731\) 7.00000 12.1244i 0.258904 0.448435i
\(732\) 0 0
\(733\) 4.50000 7.79423i 0.166211 0.287886i −0.770873 0.636988i \(-0.780180\pi\)
0.937085 + 0.349102i \(0.113513\pi\)
\(734\) −15.5000 + 26.8468i −0.572115 + 0.990933i
\(735\) 0 0
\(736\) 0 0
\(737\) 4.50000 + 7.79423i 0.165760 + 0.287104i
\(738\) 0 0
\(739\) −0.500000 + 0.866025i −0.0183928 + 0.0318573i −0.875075 0.483987i \(-0.839188\pi\)
0.856683 + 0.515844i \(0.172522\pi\)
\(740\) −3.00000 + 5.19615i −0.110282 + 0.191014i
\(741\) 0 0
\(742\) 1.50000 7.79423i 0.0550667 0.286135i
\(743\) 25.5000 + 44.1673i 0.935504 + 1.62034i 0.773732 + 0.633513i \(0.218388\pi\)
0.161772 + 0.986828i \(0.448279\pi\)
\(744\) 0 0
\(745\) 45.0000 1.64867
\(746\) −4.50000 7.79423i −0.164757 0.285367i
\(747\) 0 0
\(748\) 3.00000 5.19615i 0.109691 0.189990i
\(749\) −16.0000 13.8564i −0.584627 0.506302i
\(750\) 0 0
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) −0.500000 + 0.866025i −0.0182331 + 0.0315807i
\(753\) 0 0
\(754\) 24.5000 6.06218i 0.892237 0.220771i
\(755\) 63.0000 2.29280
\(756\) 0 0
\(757\) −1.50000 2.59808i −0.0545184 0.0944287i 0.837478 0.546471i \(-0.184029\pi\)
−0.891997 + 0.452042i \(0.850696\pi\)
\(758\) −16.5000 28.5788i −0.599307 1.03803i
\(759\) 0 0
\(760\) 9.00000 0.326464
\(761\) −4.50000 7.79423i −0.163125 0.282541i 0.772863 0.634573i \(-0.218824\pi\)
−0.935988 + 0.352032i \(0.885491\pi\)
\(762\) 0 0
\(763\) 3.50000 18.1865i 0.126709 0.658397i
\(764\) 8.50000 + 14.7224i 0.307519 + 0.532639i
\(765\) 0 0
\(766\) 10.5000 + 18.1865i 0.379380 + 0.657106i
\(767\) −4.00000 + 13.8564i −0.144432 + 0.500326i
\(768\) 0 0
\(769\) −9.50000 16.4545i −0.342579 0.593364i 0.642332 0.766426i \(-0.277967\pi\)
−0.984911 + 0.173063i \(0.944634\pi\)
\(770\) 4.50000 23.3827i 0.162169 0.842654i
\(771\) 0 0
\(772\) 3.50000 6.06218i 0.125968 0.218183i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −6.00000 + 10.3923i −0.215526 + 0.373303i
\(776\) 7.50000 12.9904i 0.269234 0.466328i
\(777\) 0 0
\(778\) 16.5000 + 28.5788i 0.591554 + 1.02460i
\(779\) −1.50000 + 2.59808i −0.0537431 + 0.0930857i
\(780\) 0 0
\(781\) 19.5000 + 33.7750i 0.697765 + 1.20856i
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 6.92820i −0.0357143 0.247436i
\(785\) −57.0000 −2.03442
\(786\) 0 0
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) 0.500000 + 0.866025i 0.0178118 + 0.0308509i
\(789\) 0 0
\(790\) 4.50000 + 7.79423i 0.160103 + 0.277306i
\(791\) 37.5000 12.9904i 1.33335 0.461885i
\(792\) 0 0
\(793\) −45.5000 + 11.2583i −1.61575 + 0.399795i
\(794\) −0.500000 0.866025i −0.0177443 0.0307341i
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 1.50000 2.59808i 0.0531327 0.0920286i −0.838236 0.545308i \(-0.816413\pi\)
0.891368 + 0.453279i \(0.149746\pi\)
\(798\) 0 0
\(799\) 1.00000 1.73205i 0.0353775 0.0612756i
\(800\) 10.0000 + 17.3205i 0.353553 + 0.612372i
\(801\) 0 0
\(802\) −2.00000 −0.0706225
\(803\) −39.0000 −1.37628
\(804\) 0 0
\(805\) 0 0
\(806\) −10.5000 + 2.59808i −0.369847 + 0.0915133i
\(807\) 0 0
\(808\) −7.50000 + 12.9904i −0.263849 + 0.457000i
\(809\) 5.50000 9.52628i 0.193370 0.334926i −0.752995 0.658026i \(-0.771392\pi\)
0.946365 + 0.323100i \(0.104725\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 3.50000 18.1865i 0.122826 0.638222i
\(813\) 0 0
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) 3.00000 0.105085
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) −14.0000 −0.489499
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) −7.50000 + 12.9904i −0.261275 + 0.452541i
\(825\) 0 0
\(826\) −8.00000 6.92820i −0.278356 0.241063i
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) −5.50000 + 9.52628i −0.191023 + 0.330861i −0.945589 0.325362i \(-0.894514\pi\)
0.754567 + 0.656223i \(0.227847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −7.00000 + 24.2487i −0.242681 + 0.840673i
\(833\) 2.00000 + 13.8564i 0.0692959 + 0.480096i
\(834\) 0 0
\(835\) −39.0000 −1.34965
\(836\) 3.00000 0.103757
\(837\) 0 0
\(838\) 12.5000 + 21.6506i 0.431805 + 0.747909i
\(839\) 18.5000 32.0429i 0.638691 1.10625i −0.347029 0.937854i \(-0.612810\pi\)
0.985720 0.168391i \(-0.0538571\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) −18.0000 −0.620321
\(843\) 0 0
\(844\) 3.50000 + 6.06218i 0.120475 + 0.208669i
\(845\) −34.5000 + 18.1865i −1.18684 + 0.625636i
\(846\) 0 0
\(847\) −1.00000 + 5.19615i −0.0343604 + 0.178542i
\(848\) −1.50000 2.59808i −0.0515102 0.0892183i
\(849\) 0 0
\(850\) 4.00000 + 6.92820i 0.137199 + 0.237635i
\(851\) 0 0
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 6.50000 33.7750i 0.222425 1.15576i
\(855\) 0 0
\(856\) −24.0000 −0.820303
\(857\) −16.5000 28.5788i −0.563629 0.976235i −0.997176 0.0751033i \(-0.976071\pi\)
0.433546 0.901131i \(-0.357262\pi\)
\(858\) 0 0
\(859\) −12.5000 + 21.6506i −0.426494 + 0.738710i −0.996559 0.0828900i \(-0.973585\pi\)
0.570064 + 0.821600i \(0.306918\pi\)
\(860\) 10.5000 + 18.1865i 0.358047 + 0.620156i
\(861\) 0 0
\(862\) −4.50000 + 7.79423i −0.153271 + 0.265472i
\(863\) 18.5000 32.0429i 0.629747 1.09075i −0.357855 0.933777i \(-0.616492\pi\)
0.987602 0.156977i \(-0.0501749\pi\)
\(864\) 0 0
\(865\) 57.0000 1.93806
\(866\) 13.5000 23.3827i 0.458749 0.794576i
\(867\) 0 0
\(868\) −1.50000 + 7.79423i −0.0509133 + 0.264553i
\(869\) 4.50000 + 7.79423i 0.152652 + 0.264401i
\(870\) 0 0
\(871\) 7.50000 + 7.79423i 0.254128 + 0.264097i
\(872\) −10.5000 18.1865i −0.355575 0.615874i
\(873\) 0 0
\(874\) 0 0
\(875\) 6.00000 + 5.19615i 0.202837 + 0.175662i
\(876\) 0 0
\(877\) 22.5000 + 38.9711i 0.759771 + 1.31596i 0.942967 + 0.332886i \(0.108022\pi\)
−0.183196 + 0.983076i \(0.558644\pi\)
\(878\) 16.0000 0.539974
\(879\) 0 0
\(880\) −4.50000 7.79423i −0.151695 0.262743i
\(881\) 7.50000 + 12.9904i 0.252681 + 0.437657i 0.964263 0.264946i \(-0.0853542\pi\)
−0.711582 + 0.702603i \(0.752021\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 2.00000 6.92820i 0.0672673 0.233021i
\(885\) 0 0
\(886\) 5.50000 9.52628i 0.184776 0.320042i
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) 5.50000 28.5788i 0.184464 0.958503i
\(890\) 9.00000 15.5885i 0.301681 0.522526i
\(891\) 0 0
\(892\) −4.50000 7.79423i −0.150671 0.260970i
\(893\) 1.00000 0.0334637
\(894\) 0 0
\(895\) −25.5000 44.1673i −0.852371 1.47635i
\(896\) 6.00000 + 5.19615i 0.200446 + 0.173591i
\(897\) 0 0
\(898\) −7.50000 + 12.9904i −0.250278 + 0.433495i
\(899\) 10.5000 18.1865i 0.350195 0.606555i
\(900\) 0 0
\(901\) 3.00000 + 5.19615i 0.0999445 + 0.173109i
\(902\) 9.00000 0.299667
\(903\) 0 0
\(904\) 22.5000 38.9711i 0.748339 1.29616i
\(905\) −33.0000 + 57.1577i −1.09696 + 1.89999i
\(906\) 0 0
\(907\) 23.5000 40.7032i 0.780305 1.35153i −0.151460 0.988463i \(-0.548397\pi\)
0.931764 0.363064i \(-0.118269\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) −1.50000 28.5788i −0.0497245 0.947379i
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) −6.50000 + 11.2583i −0.214766 + 0.371986i
\(917\) 12.5000 4.33013i 0.412786 0.142993i
\(918\) 0 0
\(919\) 12.5000 + 21.6506i 0.412337 + 0.714189i 0.995145 0.0984214i \(-0.0313793\pi\)
−0.582808 + 0.812610i \(0.698046\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −17.5000 + 30.3109i −0.576332 + 0.998236i
\(923\) 32.5000 + 33.7750i 1.06975 + 1.11172i
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) −17.5000 30.3109i −0.574466 0.995004i
\(929\) −6.50000 11.2583i −0.213258 0.369374i 0.739474 0.673185i \(-0.235074\pi\)
−0.952732 + 0.303811i \(0.901741\pi\)
\(930\) 0 0
\(931\) −5.50000 + 4.33013i −0.180255 + 0.141914i
\(932\) 10.5000 18.1865i 0.343939 0.595720i
\(933\) 0 0
\(934\) 3.50000 6.06218i 0.114523 0.198361i
\(935\) 9.00000 + 15.5885i 0.294331 + 0.509797i
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) −7.50000 + 2.59808i −0.244884 + 0.0848302i
\(939\) 0 0
\(940\) 1.50000 + 2.59808i 0.0489246 + 0.0847399i
\(941\) −8.50000 14.7224i −0.277092 0.479938i 0.693569 0.720390i \(-0.256037\pi\)
−0.970661 + 0.240453i \(0.922704\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −10.5000 18.1865i −0.341384 0.591295i
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −45.5000 + 11.2583i −1.47699 + 0.365461i
\(950\) −2.00000 + 3.46410i −0.0648886 + 0.112390i
\(951\) 0 0
\(952\) 12.0000 + 10.3923i 0.388922 + 0.336817i
\(953\) −16.5000 + 28.5788i −0.534487 + 0.925759i 0.464701 + 0.885468i \(0.346162\pi\)
−0.999188 + 0.0402915i \(0.987171\pi\)
\(954\) 0 0
\(955\) −51.0000 −1.65032
\(956\) −4.00000 −0.129369
\(957\) 0 0
\(958\) 17.5000 30.3109i 0.565399 0.979300i
\(959\) −20.0000 17.3205i −0.645834 0.559308i
\(960\) 0 0
\(961\) 11.0000 19.0526i 0.354839 0.614599i
\(962\) 2.00000 6.92820i 0.0644826 0.223374i
\(963\) 0 0
\(964\) 26.0000 0.837404
\(965\) 10.5000 + 18.1865i 0.338007 + 0.585445i
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 3.00000 + 5.19615i 0.0964237 + 0.167011i
\(969\) 0 0
\(970\) 7.50000 + 12.9904i 0.240810 + 0.417096i
\(971\) −0.500000 0.866025i −0.0160458 0.0277921i 0.857891 0.513832i \(-0.171774\pi\)
−0.873937 + 0.486040i \(0.838441\pi\)
\(972\) 0 0
\(973\) 37.5000 12.9904i 1.20219 0.416452i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) −6.50000 11.2583i −0.208060 0.360370i
\(977\) −2.50000 + 4.33013i −0.0799821 + 0.138533i −0.903242 0.429132i \(-0.858820\pi\)
0.823260 + 0.567665i \(0.192153\pi\)
\(978\) 0 0
\(979\) 9.00000 15.5885i 0.287641 0.498209i
\(980\) −19.5000 7.79423i −0.622905 0.248978i
\(981\) 0 0
\(982\) −7.50000 12.9904i −0.239335 0.414540i
\(983\) 23.5000 + 40.7032i 0.749534 + 1.29823i 0.948046 + 0.318132i \(0.103056\pi\)
−0.198513 + 0.980098i \(0.563611\pi\)
\(984\) 0 0
\(985\) −3.00000 −0.0955879
\(986\) −7.00000 12.1244i −0.222925 0.386118i
\(987\) 0 0
\(988\) 3.50000 0.866025i 0.111350 0.0275519i
\(989\) 0 0
\(990\) 0 0
\(991\) −6.50000 + 11.2583i −0.206479 + 0.357633i −0.950603 0.310409i \(-0.899534\pi\)
0.744124 + 0.668042i \(0.232867\pi\)
\(992\) 7.50000 + 12.9904i 0.238125 + 0.412445i
\(993\) 0 0
\(994\) −32.5000 + 11.2583i −1.03084 + 0.357093i
\(995\) −30.0000 + 51.9615i −0.951064 + 1.64729i
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) −15.5000 + 26.8468i −0.490644 + 0.849820i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.a.289.1 2
3.2 odd 2 91.2.h.a.16.1 yes 2
7.4 even 3 819.2.n.c.172.1 2
13.9 even 3 819.2.n.c.100.1 2
21.2 odd 6 637.2.f.b.393.1 2
21.5 even 6 637.2.f.a.393.1 2
21.11 odd 6 91.2.g.a.81.1 yes 2
21.17 even 6 637.2.g.a.263.1 2
21.20 even 2 637.2.h.a.471.1 2
39.23 odd 6 1183.2.e.c.170.1 2
39.29 odd 6 1183.2.e.a.170.1 2
39.35 odd 6 91.2.g.a.9.1 2
91.74 even 3 inner 819.2.s.a.802.1 2
273.23 odd 6 8281.2.a.c.1.1 1
273.68 even 6 8281.2.a.j.1.1 1
273.74 odd 6 91.2.h.a.74.1 yes 2
273.107 odd 6 8281.2.a.i.1.1 1
273.152 even 6 637.2.f.a.295.1 2
273.179 odd 6 1183.2.e.c.508.1 2
273.191 odd 6 637.2.f.b.295.1 2
273.230 even 6 637.2.g.a.373.1 2
273.257 even 6 8281.2.a.g.1.1 1
273.263 odd 6 1183.2.e.a.508.1 2
273.269 even 6 637.2.h.a.165.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.a.9.1 2 39.35 odd 6
91.2.g.a.81.1 yes 2 21.11 odd 6
91.2.h.a.16.1 yes 2 3.2 odd 2
91.2.h.a.74.1 yes 2 273.74 odd 6
637.2.f.a.295.1 2 273.152 even 6
637.2.f.a.393.1 2 21.5 even 6
637.2.f.b.295.1 2 273.191 odd 6
637.2.f.b.393.1 2 21.2 odd 6
637.2.g.a.263.1 2 21.17 even 6
637.2.g.a.373.1 2 273.230 even 6
637.2.h.a.165.1 2 273.269 even 6
637.2.h.a.471.1 2 21.20 even 2
819.2.n.c.100.1 2 13.9 even 3
819.2.n.c.172.1 2 7.4 even 3
819.2.s.a.289.1 2 1.1 even 1 trivial
819.2.s.a.802.1 2 91.74 even 3 inner
1183.2.e.a.170.1 2 39.29 odd 6
1183.2.e.a.508.1 2 273.263 odd 6
1183.2.e.c.170.1 2 39.23 odd 6
1183.2.e.c.508.1 2 273.179 odd 6
8281.2.a.c.1.1 1 273.23 odd 6
8281.2.a.g.1.1 1 273.257 even 6
8281.2.a.i.1.1 1 273.107 odd 6
8281.2.a.j.1.1 1 273.68 even 6