Properties

Label 630.4.k.i
Level $630$
Weight $4$
Character orbit 630.k
Analytic conductor $37.171$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,4,Mod(361,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-4,-5,0,35] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + (4 \zeta_{6} - 4) q^{4} - 5 \zeta_{6} q^{5} + ( - 7 \zeta_{6} + 21) q^{7} - 8 q^{8} + ( - 10 \zeta_{6} + 10) q^{10} + (30 \zeta_{6} - 30) q^{11} + 44 q^{13} + (28 \zeta_{6} + 14) q^{14} + \cdots + (294 \zeta_{6} + 490) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 5 q^{5} + 35 q^{7} - 16 q^{8} + 10 q^{10} - 30 q^{11} + 88 q^{13} + 56 q^{14} - 16 q^{16} - 24 q^{17} - 2 q^{19} + 40 q^{20} - 120 q^{22} - 183 q^{23} - 25 q^{25} + 88 q^{26} - 28 q^{28}+ \cdots + 1274 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i −2.50000 4.33013i 0 17.5000 6.06218i −8.00000 0 5.00000 8.66025i
541.1 1.00000 1.73205i 0 −2.00000 3.46410i −2.50000 + 4.33013i 0 17.5000 + 6.06218i −8.00000 0 5.00000 + 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.4.k.i 2
3.b odd 2 1 70.4.e.a 2
7.c even 3 1 inner 630.4.k.i 2
12.b even 2 1 560.4.q.e 2
15.d odd 2 1 350.4.e.g 2
15.e even 4 2 350.4.j.f 4
21.c even 2 1 490.4.e.f 2
21.g even 6 1 490.4.a.k 1
21.g even 6 1 490.4.e.f 2
21.h odd 6 1 70.4.e.a 2
21.h odd 6 1 490.4.a.m 1
84.n even 6 1 560.4.q.e 2
105.o odd 6 1 350.4.e.g 2
105.o odd 6 1 2450.4.a.j 1
105.p even 6 1 2450.4.a.m 1
105.x even 12 2 350.4.j.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.e.a 2 3.b odd 2 1
70.4.e.a 2 21.h odd 6 1
350.4.e.g 2 15.d odd 2 1
350.4.e.g 2 105.o odd 6 1
350.4.j.f 4 15.e even 4 2
350.4.j.f 4 105.x even 12 2
490.4.a.k 1 21.g even 6 1
490.4.a.m 1 21.h odd 6 1
490.4.e.f 2 21.c even 2 1
490.4.e.f 2 21.g even 6 1
560.4.q.e 2 12.b even 2 1
560.4.q.e 2 84.n even 6 1
630.4.k.i 2 1.a even 1 1 trivial
630.4.k.i 2 7.c even 3 1 inner
2450.4.a.j 1 105.o odd 6 1
2450.4.a.m 1 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(630, [\chi])\):

\( T_{11}^{2} + 30T_{11} + 900 \) Copy content Toggle raw display
\( T_{13} - 44 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 35T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} + 30T + 900 \) Copy content Toggle raw display
$13$ \( (T - 44)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 24T + 576 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 183T + 33489 \) Copy content Toggle raw display
$29$ \( (T - 279)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 40T + 1600 \) Copy content Toggle raw display
$37$ \( T^{2} - 76T + 5776 \) Copy content Toggle raw display
$41$ \( (T - 423)^{2} \) Copy content Toggle raw display
$43$ \( (T - 305)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 456T + 207936 \) Copy content Toggle raw display
$53$ \( T^{2} + 198T + 39204 \) Copy content Toggle raw display
$59$ \( T^{2} + 462T + 213444 \) Copy content Toggle raw display
$61$ \( T^{2} + 281T + 78961 \) Copy content Toggle raw display
$67$ \( T^{2} - 499T + 249001 \) Copy content Toggle raw display
$71$ \( (T - 534)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 800T + 640000 \) Copy content Toggle raw display
$79$ \( T^{2} - 790T + 624100 \) Copy content Toggle raw display
$83$ \( (T - 597)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 1017 T + 1034289 \) Copy content Toggle raw display
$97$ \( (T + 1330)^{2} \) Copy content Toggle raw display
show more
show less