| L(s) = 1 | + (1 + 1.73i)2-s + (−1.99 + 3.46i)4-s + (−2.5 − 4.33i)5-s + (17.5 − 6.06i)7-s − 7.99·8-s + (5 − 8.66i)10-s + (−15 + 25.9i)11-s + 44·13-s + (28 + 24.2i)14-s + (−8 − 13.8i)16-s + (−12 + 20.7i)17-s + (−1 − 1.73i)19-s + 20·20-s − 60·22-s + (−91.5 − 158. i)23-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.223 − 0.387i)5-s + (0.944 − 0.327i)7-s − 0.353·8-s + (0.158 − 0.273i)10-s + (−0.411 + 0.712i)11-s + 0.938·13-s + (0.534 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.171 + 0.296i)17-s + (−0.0120 − 0.0209i)19-s + 0.223·20-s − 0.581·22-s + (−0.829 − 1.43i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.543971769\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.543971769\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 - 1.73i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
| 7 | \( 1 + (-17.5 + 6.06i)T \) |
| good | 11 | \( 1 + (15 - 25.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 44T + 2.19e3T^{2} \) |
| 17 | \( 1 + (12 - 20.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (91.5 + 158. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 279T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-20 + 34.6i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-38 - 65.8i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 423T + 6.89e4T^{2} \) |
| 43 | \( 1 - 305T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-228 - 394. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (99 - 171. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (231 - 400. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (140.5 + 243. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-249.5 + 432. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 534T + 3.57e5T^{2} \) |
| 73 | \( 1 + (400 - 692. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-395 - 684. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 597T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-508.5 - 880. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.33e3T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44036956479093150090084628201, −9.209950316584651949676264299241, −8.232607474680359693327436625711, −7.84821625994665184862736374012, −6.68314713074017526391227226304, −5.78136057399673434148131230344, −4.56584337808747722924790629743, −4.20258521716643431033506891646, −2.50680213697799396656639707472, −0.959338957016695649368711084979,
0.901833151838048543916732854087, 2.22460355670819254920368443430, 3.33960264766123525148228134886, 4.35764155222816492773749176997, 5.45766189140610791953553699123, 6.22504316544959545785195074158, 7.59860192235380961379470156168, 8.374423719746909737265586710385, 9.238056668476711312902644630016, 10.41290157805451205013015632470