Properties

Label 630.4
Level 630
Weight 4
Dimension 7210
Nonzero newspaces 30
Sturm bound 82944
Trace bound 15

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(82944\)
Trace bound: \(15\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(630))\).

Total New Old
Modular forms 31872 7210 24662
Cusp forms 30336 7210 23126
Eisenstein series 1536 0 1536

Trace form

\( 7210 q + 12 q^{2} + 12 q^{3} - 24 q^{4} + 58 q^{5} - 72 q^{6} + 92 q^{7} - 48 q^{8} - 164 q^{9} + 32 q^{10} - 16 q^{11} - 32 q^{12} - 152 q^{13} + 592 q^{14} - 252 q^{15} - 224 q^{16} - 1560 q^{17} - 112 q^{18}+ \cdots + 16720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(630))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
630.4.a \(\chi_{630}(1, \cdot)\) 630.4.a.a 1 1
630.4.a.b 1
630.4.a.c 1
630.4.a.d 1
630.4.a.e 1
630.4.a.f 1
630.4.a.g 1
630.4.a.h 1
630.4.a.i 1
630.4.a.j 1
630.4.a.k 1
630.4.a.l 1
630.4.a.m 1
630.4.a.n 1
630.4.a.o 1
630.4.a.p 1
630.4.a.q 1
630.4.a.r 1
630.4.a.s 1
630.4.a.t 1
630.4.a.u 1
630.4.a.v 1
630.4.a.w 1
630.4.a.x 1
630.4.a.y 2
630.4.a.z 2
630.4.a.ba 2
630.4.b \(\chi_{630}(251, \cdot)\) 630.4.b.a 16 1
630.4.b.b 16
630.4.d \(\chi_{630}(629, \cdot)\) 630.4.d.a 24 1
630.4.d.b 24
630.4.g \(\chi_{630}(379, \cdot)\) 630.4.g.a 2 1
630.4.g.b 2
630.4.g.c 2
630.4.g.d 4
630.4.g.e 4
630.4.g.f 6
630.4.g.g 6
630.4.g.h 6
630.4.g.i 6
630.4.g.j 6
630.4.i \(\chi_{630}(121, \cdot)\) n/a 192 2
630.4.j \(\chi_{630}(211, \cdot)\) n/a 144 2
630.4.k \(\chi_{630}(361, \cdot)\) 630.4.k.a 2 2
630.4.k.b 2
630.4.k.c 2
630.4.k.d 2
630.4.k.e 2
630.4.k.f 2
630.4.k.g 2
630.4.k.h 2
630.4.k.i 2
630.4.k.j 2
630.4.k.k 4
630.4.k.l 4
630.4.k.m 4
630.4.k.n 4
630.4.k.o 6
630.4.k.p 6
630.4.k.q 6
630.4.k.r 6
630.4.k.s 10
630.4.k.t 10
630.4.l \(\chi_{630}(331, \cdot)\) n/a 192 2
630.4.m \(\chi_{630}(197, \cdot)\) 630.4.m.a 16 2
630.4.m.b 16
630.4.m.c 20
630.4.m.d 20
630.4.p \(\chi_{630}(307, \cdot)\) n/a 120 2
630.4.r \(\chi_{630}(59, \cdot)\) n/a 288 2
630.4.t \(\chi_{630}(311, \cdot)\) n/a 192 2
630.4.u \(\chi_{630}(109, \cdot)\) n/a 120 2
630.4.z \(\chi_{630}(169, \cdot)\) n/a 216 2
630.4.ba \(\chi_{630}(499, \cdot)\) n/a 288 2
630.4.be \(\chi_{630}(341, \cdot)\) 630.4.be.a 32 2
630.4.be.b 32
630.4.bf \(\chi_{630}(209, \cdot)\) n/a 288 2
630.4.bi \(\chi_{630}(479, \cdot)\) n/a 288 2
630.4.bk \(\chi_{630}(101, \cdot)\) n/a 192 2
630.4.bl \(\chi_{630}(41, \cdot)\) n/a 192 2
630.4.bo \(\chi_{630}(89, \cdot)\) 630.4.bo.a 48 2
630.4.bo.b 48
630.4.bq \(\chi_{630}(79, \cdot)\) n/a 288 2
630.4.bt \(\chi_{630}(317, \cdot)\) n/a 576 4
630.4.bv \(\chi_{630}(73, \cdot)\) n/a 240 4
630.4.bw \(\chi_{630}(103, \cdot)\) n/a 576 4
630.4.bz \(\chi_{630}(13, \cdot)\) n/a 576 4
630.4.ca \(\chi_{630}(113, \cdot)\) n/a 432 4
630.4.cd \(\chi_{630}(23, \cdot)\) n/a 576 4
630.4.ce \(\chi_{630}(53, \cdot)\) n/a 192 4
630.4.cg \(\chi_{630}(157, \cdot)\) n/a 576 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(630))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(630)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(315))\)\(^{\oplus 2}\)