Properties

Label 630.4.g.e.379.1
Level $630$
Weight $4$
Character 630.379
Analytic conductor $37.171$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,4,Mod(379,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.379"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.1
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 630.379
Dual form 630.4.g.e.379.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} +(-8.79796 + 6.89898i) q^{5} +7.00000i q^{7} +8.00000i q^{8} +(13.7980 + 17.5959i) q^{10} -25.5959 q^{11} +89.1918i q^{13} +14.0000 q^{14} +16.0000 q^{16} -18.7878i q^{17} +11.7980 q^{19} +(35.1918 - 27.5959i) q^{20} +51.1918i q^{22} -159.373i q^{23} +(29.8082 - 121.394i) q^{25} +178.384 q^{26} -28.0000i q^{28} +19.7980 q^{29} -126.404 q^{31} -32.0000i q^{32} -37.5755 q^{34} +(-48.2929 - 61.5857i) q^{35} +282.969i q^{37} -23.5959i q^{38} +(-55.1918 - 70.3837i) q^{40} +144.384 q^{41} -326.929i q^{43} +102.384 q^{44} -318.747 q^{46} +117.435i q^{47} -49.0000 q^{49} +(-242.788 - 59.6163i) q^{50} -356.767i q^{52} -634.504i q^{53} +(225.192 - 176.586i) q^{55} -56.0000 q^{56} -39.5959i q^{58} -515.069 q^{59} +395.716 q^{61} +252.808i q^{62} -64.0000 q^{64} +(-615.333 - 784.706i) q^{65} -842.120i q^{67} +75.1510i q^{68} +(-123.171 + 96.5857i) q^{70} -402.100 q^{71} +303.171i q^{73} +565.939 q^{74} -47.1918 q^{76} -179.171i q^{77} -266.384 q^{79} +(-140.767 + 110.384i) q^{80} -288.767i q^{82} -753.253i q^{83} +(129.616 + 165.294i) q^{85} -653.857 q^{86} -204.767i q^{88} -842.967 q^{89} -624.343 q^{91} +637.494i q^{92} +234.869 q^{94} +(-103.798 + 81.3939i) q^{95} -1201.92i q^{97} +98.0000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 4 q^{5} + 16 q^{10} - 24 q^{11} + 56 q^{14} + 64 q^{16} + 8 q^{19} - 16 q^{20} + 276 q^{25} + 400 q^{26} + 40 q^{29} - 584 q^{31} + 320 q^{34} - 56 q^{35} - 64 q^{40} + 264 q^{41} + 96 q^{44}+ \cdots - 376 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −8.79796 + 6.89898i −0.786913 + 0.617063i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 13.7980 + 17.5959i 0.436330 + 0.556432i
\(11\) −25.5959 −0.701587 −0.350794 0.936453i \(-0.614088\pi\)
−0.350794 + 0.936453i \(0.614088\pi\)
\(12\) 0 0
\(13\) 89.1918i 1.90287i 0.307843 + 0.951437i \(0.400393\pi\)
−0.307843 + 0.951437i \(0.599607\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 18.7878i 0.268041i −0.990979 0.134021i \(-0.957211\pi\)
0.990979 0.134021i \(-0.0427888\pi\)
\(18\) 0 0
\(19\) 11.7980 0.142455 0.0712273 0.997460i \(-0.477308\pi\)
0.0712273 + 0.997460i \(0.477308\pi\)
\(20\) 35.1918 27.5959i 0.393457 0.308532i
\(21\) 0 0
\(22\) 51.1918i 0.496097i
\(23\) 159.373i 1.44486i −0.691447 0.722428i \(-0.743026\pi\)
0.691447 0.722428i \(-0.256974\pi\)
\(24\) 0 0
\(25\) 29.8082 121.394i 0.238465 0.971151i
\(26\) 178.384 1.34554
\(27\) 0 0
\(28\) 28.0000i 0.188982i
\(29\) 19.7980 0.126772 0.0633860 0.997989i \(-0.479810\pi\)
0.0633860 + 0.997989i \(0.479810\pi\)
\(30\) 0 0
\(31\) −126.404 −0.732350 −0.366175 0.930546i \(-0.619333\pi\)
−0.366175 + 0.930546i \(0.619333\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −37.5755 −0.189534
\(35\) −48.2929 61.5857i −0.233228 0.297425i
\(36\) 0 0
\(37\) 282.969i 1.25729i 0.777691 + 0.628647i \(0.216391\pi\)
−0.777691 + 0.628647i \(0.783609\pi\)
\(38\) 23.5959i 0.100731i
\(39\) 0 0
\(40\) −55.1918 70.3837i −0.218165 0.278216i
\(41\) 144.384 0.549974 0.274987 0.961448i \(-0.411326\pi\)
0.274987 + 0.961448i \(0.411326\pi\)
\(42\) 0 0
\(43\) 326.929i 1.15945i −0.814814 0.579723i \(-0.803161\pi\)
0.814814 0.579723i \(-0.196839\pi\)
\(44\) 102.384 0.350794
\(45\) 0 0
\(46\) −318.747 −1.02167
\(47\) 117.435i 0.364460i 0.983256 + 0.182230i \(0.0583315\pi\)
−0.983256 + 0.182230i \(0.941668\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) −242.788 59.6163i −0.686707 0.168620i
\(51\) 0 0
\(52\) 356.767i 0.951437i
\(53\) 634.504i 1.64445i −0.569163 0.822225i \(-0.692733\pi\)
0.569163 0.822225i \(-0.307267\pi\)
\(54\) 0 0
\(55\) 225.192 176.586i 0.552088 0.432924i
\(56\) −56.0000 −0.133631
\(57\) 0 0
\(58\) 39.5959i 0.0896414i
\(59\) −515.069 −1.13655 −0.568274 0.822839i \(-0.692389\pi\)
−0.568274 + 0.822839i \(0.692389\pi\)
\(60\) 0 0
\(61\) 395.716 0.830595 0.415297 0.909686i \(-0.363678\pi\)
0.415297 + 0.909686i \(0.363678\pi\)
\(62\) 252.808i 0.517849i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −615.333 784.706i −1.17419 1.49740i
\(66\) 0 0
\(67\) 842.120i 1.53554i −0.640724 0.767772i \(-0.721366\pi\)
0.640724 0.767772i \(-0.278634\pi\)
\(68\) 75.1510i 0.134021i
\(69\) 0 0
\(70\) −123.171 + 96.5857i −0.210311 + 0.164917i
\(71\) −402.100 −0.672120 −0.336060 0.941841i \(-0.609094\pi\)
−0.336060 + 0.941841i \(0.609094\pi\)
\(72\) 0 0
\(73\) 303.171i 0.486076i 0.970017 + 0.243038i \(0.0781439\pi\)
−0.970017 + 0.243038i \(0.921856\pi\)
\(74\) 565.939 0.889041
\(75\) 0 0
\(76\) −47.1918 −0.0712273
\(77\) 179.171i 0.265175i
\(78\) 0 0
\(79\) −266.384 −0.379373 −0.189687 0.981845i \(-0.560747\pi\)
−0.189687 + 0.981845i \(0.560747\pi\)
\(80\) −140.767 + 110.384i −0.196728 + 0.154266i
\(81\) 0 0
\(82\) 288.767i 0.388890i
\(83\) 753.253i 0.996148i −0.867135 0.498074i \(-0.834041\pi\)
0.867135 0.498074i \(-0.165959\pi\)
\(84\) 0 0
\(85\) 129.616 + 165.294i 0.165398 + 0.210925i
\(86\) −653.857 −0.819851
\(87\) 0 0
\(88\) 204.767i 0.248049i
\(89\) −842.967 −1.00398 −0.501991 0.864873i \(-0.667399\pi\)
−0.501991 + 0.864873i \(0.667399\pi\)
\(90\) 0 0
\(91\) −624.343 −0.719219
\(92\) 637.494i 0.722428i
\(93\) 0 0
\(94\) 234.869 0.257712
\(95\) −103.798 + 81.3939i −0.112099 + 0.0879035i
\(96\) 0 0
\(97\) 1201.92i 1.25811i −0.777362 0.629053i \(-0.783443\pi\)
0.777362 0.629053i \(-0.216557\pi\)
\(98\) 98.0000i 0.101015i
\(99\) 0 0
\(100\) −119.233 + 485.576i −0.119233 + 0.485576i
\(101\) −575.371 −0.566847 −0.283424 0.958995i \(-0.591470\pi\)
−0.283424 + 0.958995i \(0.591470\pi\)
\(102\) 0 0
\(103\) 254.220i 0.243195i −0.992579 0.121597i \(-0.961198\pi\)
0.992579 0.121597i \(-0.0388017\pi\)
\(104\) −713.535 −0.672768
\(105\) 0 0
\(106\) −1269.01 −1.16280
\(107\) 1142.61i 1.03234i 0.856487 + 0.516168i \(0.172642\pi\)
−0.856487 + 0.516168i \(0.827358\pi\)
\(108\) 0 0
\(109\) 2054.28 1.80518 0.902589 0.430502i \(-0.141664\pi\)
0.902589 + 0.430502i \(0.141664\pi\)
\(110\) −353.171 450.384i −0.306123 0.390385i
\(111\) 0 0
\(112\) 112.000i 0.0944911i
\(113\) 890.827i 0.741610i 0.928711 + 0.370805i \(0.120918\pi\)
−0.928711 + 0.370805i \(0.879082\pi\)
\(114\) 0 0
\(115\) 1099.51 + 1402.16i 0.891567 + 1.13698i
\(116\) −79.1918 −0.0633860
\(117\) 0 0
\(118\) 1030.14i 0.803661i
\(119\) 131.514 0.101310
\(120\) 0 0
\(121\) −675.849 −0.507775
\(122\) 791.433i 0.587319i
\(123\) 0 0
\(124\) 505.616 0.366175
\(125\) 575.243 + 1273.66i 0.411610 + 0.911360i
\(126\) 0 0
\(127\) 2304.16i 1.60993i −0.593323 0.804965i \(-0.702184\pi\)
0.593323 0.804965i \(-0.297816\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −1569.41 + 1230.67i −1.05882 + 0.830281i
\(131\) −955.192 −0.637065 −0.318532 0.947912i \(-0.603190\pi\)
−0.318532 + 0.947912i \(0.603190\pi\)
\(132\) 0 0
\(133\) 82.5857i 0.0538428i
\(134\) −1684.24 −1.08579
\(135\) 0 0
\(136\) 150.302 0.0947669
\(137\) 1489.53i 0.928900i −0.885599 0.464450i \(-0.846252\pi\)
0.885599 0.464450i \(-0.153748\pi\)
\(138\) 0 0
\(139\) 752.284 0.459049 0.229525 0.973303i \(-0.426283\pi\)
0.229525 + 0.973303i \(0.426283\pi\)
\(140\) 193.171 + 246.343i 0.116614 + 0.148713i
\(141\) 0 0
\(142\) 804.200i 0.475260i
\(143\) 2282.95i 1.33503i
\(144\) 0 0
\(145\) −174.182 + 136.586i −0.0997586 + 0.0782264i
\(146\) 606.343 0.343707
\(147\) 0 0
\(148\) 1131.88i 0.628647i
\(149\) 1709.01 0.939648 0.469824 0.882760i \(-0.344317\pi\)
0.469824 + 0.882760i \(0.344317\pi\)
\(150\) 0 0
\(151\) −2773.61 −1.49479 −0.747395 0.664380i \(-0.768696\pi\)
−0.747395 + 0.664380i \(0.768696\pi\)
\(152\) 94.3837i 0.0503653i
\(153\) 0 0
\(154\) −358.343 −0.187507
\(155\) 1112.10 872.059i 0.576296 0.451906i
\(156\) 0 0
\(157\) 353.478i 0.179685i −0.995956 0.0898426i \(-0.971364\pi\)
0.995956 0.0898426i \(-0.0286364\pi\)
\(158\) 532.767i 0.268258i
\(159\) 0 0
\(160\) 220.767 + 281.535i 0.109082 + 0.139108i
\(161\) 1115.61 0.546104
\(162\) 0 0
\(163\) 885.231i 0.425378i 0.977120 + 0.212689i \(0.0682221\pi\)
−0.977120 + 0.212689i \(0.931778\pi\)
\(164\) −577.535 −0.274987
\(165\) 0 0
\(166\) −1506.51 −0.704383
\(167\) 3220.26i 1.49216i 0.665855 + 0.746081i \(0.268067\pi\)
−0.665855 + 0.746081i \(0.731933\pi\)
\(168\) 0 0
\(169\) −5758.18 −2.62093
\(170\) 330.588 259.233i 0.149147 0.116954i
\(171\) 0 0
\(172\) 1307.71i 0.579723i
\(173\) 3780.62i 1.66148i −0.556663 0.830738i \(-0.687919\pi\)
0.556663 0.830738i \(-0.312081\pi\)
\(174\) 0 0
\(175\) 849.757 + 208.657i 0.367061 + 0.0901314i
\(176\) −409.535 −0.175397
\(177\) 0 0
\(178\) 1685.93i 0.709922i
\(179\) 4534.07 1.89325 0.946627 0.322330i \(-0.104466\pi\)
0.946627 + 0.322330i \(0.104466\pi\)
\(180\) 0 0
\(181\) 1805.49 0.741443 0.370721 0.928744i \(-0.379110\pi\)
0.370721 + 0.928744i \(0.379110\pi\)
\(182\) 1248.69i 0.508565i
\(183\) 0 0
\(184\) 1274.99 0.510833
\(185\) −1952.20 2489.55i −0.775830 0.989382i
\(186\) 0 0
\(187\) 480.890i 0.188054i
\(188\) 469.739i 0.182230i
\(189\) 0 0
\(190\) 162.788 + 207.596i 0.0621572 + 0.0792663i
\(191\) −3359.15 −1.27256 −0.636282 0.771456i \(-0.719529\pi\)
−0.636282 + 0.771456i \(0.719529\pi\)
\(192\) 0 0
\(193\) 2800.56i 1.04450i −0.852792 0.522251i \(-0.825092\pi\)
0.852792 0.522251i \(-0.174908\pi\)
\(194\) −2403.84 −0.889616
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 3252.52i 1.17631i 0.808749 + 0.588154i \(0.200145\pi\)
−0.808749 + 0.588154i \(0.799855\pi\)
\(198\) 0 0
\(199\) 1525.31 0.543347 0.271674 0.962389i \(-0.412423\pi\)
0.271674 + 0.962389i \(0.412423\pi\)
\(200\) 971.151 + 238.465i 0.343354 + 0.0843102i
\(201\) 0 0
\(202\) 1150.74i 0.400822i
\(203\) 138.586i 0.0479153i
\(204\) 0 0
\(205\) −1270.28 + 996.100i −0.432782 + 0.339369i
\(206\) −508.441 −0.171965
\(207\) 0 0
\(208\) 1427.07i 0.475719i
\(209\) −301.980 −0.0999443
\(210\) 0 0
\(211\) −2934.29 −0.957370 −0.478685 0.877987i \(-0.658886\pi\)
−0.478685 + 0.877987i \(0.658886\pi\)
\(212\) 2538.02i 0.822225i
\(213\) 0 0
\(214\) 2285.21 0.729971
\(215\) 2255.47 + 2876.30i 0.715451 + 0.912383i
\(216\) 0 0
\(217\) 884.829i 0.276802i
\(218\) 4108.56i 1.27645i
\(219\) 0 0
\(220\) −900.767 + 706.343i −0.276044 + 0.216462i
\(221\) 1675.71 0.510049
\(222\) 0 0
\(223\) 3626.30i 1.08895i −0.838778 0.544473i \(-0.816730\pi\)
0.838778 0.544473i \(-0.183270\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 1781.65 0.524397
\(227\) 2189.45i 0.640171i −0.947389 0.320086i \(-0.896288\pi\)
0.947389 0.320086i \(-0.103712\pi\)
\(228\) 0 0
\(229\) 5501.00 1.58741 0.793704 0.608304i \(-0.208150\pi\)
0.793704 + 0.608304i \(0.208150\pi\)
\(230\) 2804.32 2199.03i 0.803963 0.630433i
\(231\) 0 0
\(232\) 158.384i 0.0448207i
\(233\) 3927.72i 1.10435i −0.833729 0.552174i \(-0.813798\pi\)
0.833729 0.552174i \(-0.186202\pi\)
\(234\) 0 0
\(235\) −810.180 1033.19i −0.224895 0.286798i
\(236\) 2060.28 0.568274
\(237\) 0 0
\(238\) 263.029i 0.0716370i
\(239\) 4435.11 1.20035 0.600174 0.799869i \(-0.295098\pi\)
0.600174 + 0.799869i \(0.295098\pi\)
\(240\) 0 0
\(241\) 4575.81 1.22304 0.611522 0.791227i \(-0.290557\pi\)
0.611522 + 0.791227i \(0.290557\pi\)
\(242\) 1351.70i 0.359051i
\(243\) 0 0
\(244\) −1582.87 −0.415297
\(245\) 431.100 338.050i 0.112416 0.0881519i
\(246\) 0 0
\(247\) 1052.28i 0.271073i
\(248\) 1011.23i 0.258925i
\(249\) 0 0
\(250\) 2547.33 1150.49i 0.644429 0.291052i
\(251\) −1646.96 −0.414163 −0.207081 0.978324i \(-0.566397\pi\)
−0.207081 + 0.978324i \(0.566397\pi\)
\(252\) 0 0
\(253\) 4079.31i 1.01369i
\(254\) −4608.32 −1.13839
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2811.64i 0.682432i 0.939985 + 0.341216i \(0.110839\pi\)
−0.939985 + 0.341216i \(0.889161\pi\)
\(258\) 0 0
\(259\) −1980.79 −0.475212
\(260\) 2461.33 + 3138.82i 0.587097 + 0.748699i
\(261\) 0 0
\(262\) 1910.38i 0.450473i
\(263\) 3103.13i 0.727556i 0.931486 + 0.363778i \(0.118513\pi\)
−0.931486 + 0.363778i \(0.881487\pi\)
\(264\) 0 0
\(265\) 4377.43 + 5582.34i 1.01473 + 1.29404i
\(266\) 165.171 0.0380726
\(267\) 0 0
\(268\) 3368.48i 0.767772i
\(269\) −61.1877 −0.0138687 −0.00693435 0.999976i \(-0.502207\pi\)
−0.00693435 + 0.999976i \(0.502207\pi\)
\(270\) 0 0
\(271\) 97.6285 0.0218838 0.0109419 0.999940i \(-0.496517\pi\)
0.0109419 + 0.999940i \(0.496517\pi\)
\(272\) 300.604i 0.0670103i
\(273\) 0 0
\(274\) −2979.07 −0.656832
\(275\) −762.967 + 3107.19i −0.167304 + 0.681347i
\(276\) 0 0
\(277\) 4719.24i 1.02365i −0.859089 0.511826i \(-0.828969\pi\)
0.859089 0.511826i \(-0.171031\pi\)
\(278\) 1504.57i 0.324597i
\(279\) 0 0
\(280\) 492.686 386.343i 0.105156 0.0824586i
\(281\) −995.094 −0.211254 −0.105627 0.994406i \(-0.533685\pi\)
−0.105627 + 0.994406i \(0.533685\pi\)
\(282\) 0 0
\(283\) 7995.58i 1.67946i −0.543002 0.839732i \(-0.682712\pi\)
0.543002 0.839732i \(-0.317288\pi\)
\(284\) 1608.40 0.336060
\(285\) 0 0
\(286\) −4565.89 −0.944010
\(287\) 1010.69i 0.207871i
\(288\) 0 0
\(289\) 4560.02 0.928154
\(290\) 273.171 + 348.363i 0.0553144 + 0.0705400i
\(291\) 0 0
\(292\) 1212.69i 0.243038i
\(293\) 8930.79i 1.78069i 0.455286 + 0.890345i \(0.349537\pi\)
−0.455286 + 0.890345i \(0.650463\pi\)
\(294\) 0 0
\(295\) 4531.56 3553.45i 0.894365 0.701322i
\(296\) −2263.76 −0.444521
\(297\) 0 0
\(298\) 3418.02i 0.664432i
\(299\) 14214.8 2.74938
\(300\) 0 0
\(301\) 2288.50 0.438229
\(302\) 5547.22i 1.05698i
\(303\) 0 0
\(304\) 188.767 0.0356137
\(305\) −3481.50 + 2730.04i −0.653606 + 0.512530i
\(306\) 0 0
\(307\) 2515.79i 0.467700i −0.972273 0.233850i \(-0.924868\pi\)
0.972273 0.233850i \(-0.0751324\pi\)
\(308\) 716.686i 0.132588i
\(309\) 0 0
\(310\) −1744.12 2224.20i −0.319546 0.407503i
\(311\) −3759.39 −0.685452 −0.342726 0.939435i \(-0.611350\pi\)
−0.342726 + 0.939435i \(0.611350\pi\)
\(312\) 0 0
\(313\) 6825.91i 1.23266i 0.787487 + 0.616331i \(0.211382\pi\)
−0.787487 + 0.616331i \(0.788618\pi\)
\(314\) −706.955 −0.127057
\(315\) 0 0
\(316\) 1065.53 0.189687
\(317\) 2464.94i 0.436734i −0.975867 0.218367i \(-0.929927\pi\)
0.975867 0.218367i \(-0.0700730\pi\)
\(318\) 0 0
\(319\) −506.747 −0.0889416
\(320\) 563.069 441.535i 0.0983642 0.0771329i
\(321\) 0 0
\(322\) 2231.23i 0.386154i
\(323\) 221.657i 0.0381837i
\(324\) 0 0
\(325\) 10827.3 + 2658.64i 1.84798 + 0.453769i
\(326\) 1770.46 0.300788
\(327\) 0 0
\(328\) 1155.07i 0.194445i
\(329\) −822.043 −0.137753
\(330\) 0 0
\(331\) 3780.36 0.627756 0.313878 0.949463i \(-0.398372\pi\)
0.313878 + 0.949463i \(0.398372\pi\)
\(332\) 3013.01i 0.498074i
\(333\) 0 0
\(334\) 6440.52 1.05512
\(335\) 5809.77 + 7408.94i 0.947528 + 1.20834i
\(336\) 0 0
\(337\) 1914.39i 0.309446i −0.987958 0.154723i \(-0.950551\pi\)
0.987958 0.154723i \(-0.0494485\pi\)
\(338\) 11516.4i 1.85328i
\(339\) 0 0
\(340\) −518.465 661.176i −0.0826992 0.105463i
\(341\) 3235.43 0.513807
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 2615.43 0.409926
\(345\) 0 0
\(346\) −7561.24 −1.17484
\(347\) 9118.93i 1.41075i −0.708835 0.705375i \(-0.750779\pi\)
0.708835 0.705375i \(-0.249221\pi\)
\(348\) 0 0
\(349\) −4832.45 −0.741189 −0.370594 0.928795i \(-0.620846\pi\)
−0.370594 + 0.928795i \(0.620846\pi\)
\(350\) 417.314 1699.51i 0.0637325 0.259551i
\(351\) 0 0
\(352\) 819.069i 0.124024i
\(353\) 2806.58i 0.423170i −0.977360 0.211585i \(-0.932138\pi\)
0.977360 0.211585i \(-0.0678625\pi\)
\(354\) 0 0
\(355\) 3537.66 2774.08i 0.528900 0.414740i
\(356\) 3371.87 0.501991
\(357\) 0 0
\(358\) 9068.15i 1.33873i
\(359\) −1075.06 −0.158049 −0.0790246 0.996873i \(-0.525181\pi\)
−0.0790246 + 0.996873i \(0.525181\pi\)
\(360\) 0 0
\(361\) −6719.81 −0.979707
\(362\) 3610.98i 0.524279i
\(363\) 0 0
\(364\) 2497.37 0.359609
\(365\) −2091.57 2667.29i −0.299940 0.382500i
\(366\) 0 0
\(367\) 367.020i 0.0522025i −0.999659 0.0261012i \(-0.991691\pi\)
0.999659 0.0261012i \(-0.00830922\pi\)
\(368\) 2549.98i 0.361214i
\(369\) 0 0
\(370\) −4979.11 + 3904.40i −0.699598 + 0.548595i
\(371\) 4441.53 0.621544
\(372\) 0 0
\(373\) 1304.56i 0.181092i −0.995892 0.0905461i \(-0.971139\pi\)
0.995892 0.0905461i \(-0.0288613\pi\)
\(374\) 961.780 0.132974
\(375\) 0 0
\(376\) −939.478 −0.128856
\(377\) 1765.82i 0.241231i
\(378\) 0 0
\(379\) −5340.61 −0.723822 −0.361911 0.932213i \(-0.617876\pi\)
−0.361911 + 0.932213i \(0.617876\pi\)
\(380\) 415.192 325.576i 0.0560497 0.0439518i
\(381\) 0 0
\(382\) 6718.31i 0.899839i
\(383\) 6662.27i 0.888841i −0.895818 0.444420i \(-0.853410\pi\)
0.895818 0.444420i \(-0.146590\pi\)
\(384\) 0 0
\(385\) 1236.10 + 1576.34i 0.163630 + 0.208670i
\(386\) −5601.13 −0.738575
\(387\) 0 0
\(388\) 4807.67i 0.629053i
\(389\) −6313.48 −0.822895 −0.411448 0.911433i \(-0.634977\pi\)
−0.411448 + 0.911433i \(0.634977\pi\)
\(390\) 0 0
\(391\) −2994.27 −0.387281
\(392\) 392.000i 0.0505076i
\(393\) 0 0
\(394\) 6505.05 0.831776
\(395\) 2343.63 1837.78i 0.298534 0.234098i
\(396\) 0 0
\(397\) 14210.6i 1.79650i 0.439490 + 0.898248i \(0.355159\pi\)
−0.439490 + 0.898248i \(0.644841\pi\)
\(398\) 3050.61i 0.384204i
\(399\) 0 0
\(400\) 476.931 1942.30i 0.0596163 0.242788i
\(401\) −5578.59 −0.694717 −0.347359 0.937732i \(-0.612921\pi\)
−0.347359 + 0.937732i \(0.612921\pi\)
\(402\) 0 0
\(403\) 11274.2i 1.39357i
\(404\) 2301.49 0.283424
\(405\) 0 0
\(406\) 277.171 0.0338812
\(407\) 7242.86i 0.882101i
\(408\) 0 0
\(409\) −11914.0 −1.44037 −0.720184 0.693783i \(-0.755943\pi\)
−0.720184 + 0.693783i \(0.755943\pi\)
\(410\) 1992.20 + 2540.56i 0.239970 + 0.306023i
\(411\) 0 0
\(412\) 1016.88i 0.121597i
\(413\) 3605.49i 0.429575i
\(414\) 0 0
\(415\) 5196.68 + 6627.09i 0.614686 + 0.783882i
\(416\) 2854.14 0.336384
\(417\) 0 0
\(418\) 603.959i 0.0706713i
\(419\) −12093.0 −1.40998 −0.704990 0.709217i \(-0.749049\pi\)
−0.704990 + 0.709217i \(0.749049\pi\)
\(420\) 0 0
\(421\) −12188.5 −1.41100 −0.705500 0.708710i \(-0.749277\pi\)
−0.705500 + 0.708710i \(0.749277\pi\)
\(422\) 5868.59i 0.676963i
\(423\) 0 0
\(424\) 5076.03 0.581401
\(425\) −2280.72 560.028i −0.260308 0.0639185i
\(426\) 0 0
\(427\) 2770.01i 0.313935i
\(428\) 4570.42i 0.516168i
\(429\) 0 0
\(430\) 5752.61 4510.95i 0.645152 0.505900i
\(431\) −4968.16 −0.555238 −0.277619 0.960691i \(-0.589545\pi\)
−0.277619 + 0.960691i \(0.589545\pi\)
\(432\) 0 0
\(433\) 14483.7i 1.60749i 0.594974 + 0.803745i \(0.297162\pi\)
−0.594974 + 0.803745i \(0.702838\pi\)
\(434\) −1769.66 −0.195729
\(435\) 0 0
\(436\) −8217.13 −0.902589
\(437\) 1880.28i 0.205826i
\(438\) 0 0
\(439\) 9937.64 1.08040 0.540202 0.841535i \(-0.318348\pi\)
0.540202 + 0.841535i \(0.318348\pi\)
\(440\) 1412.69 + 1801.53i 0.153062 + 0.195193i
\(441\) 0 0
\(442\) 3351.43i 0.360659i
\(443\) 17139.6i 1.83821i 0.394013 + 0.919105i \(0.371087\pi\)
−0.394013 + 0.919105i \(0.628913\pi\)
\(444\) 0 0
\(445\) 7416.39 5815.61i 0.790047 0.619520i
\(446\) −7252.60 −0.770001
\(447\) 0 0
\(448\) 448.000i 0.0472456i
\(449\) 1555.34 0.163477 0.0817385 0.996654i \(-0.473953\pi\)
0.0817385 + 0.996654i \(0.473953\pi\)
\(450\) 0 0
\(451\) −3695.63 −0.385855
\(452\) 3563.31i 0.370805i
\(453\) 0 0
\(454\) −4378.90 −0.452669
\(455\) 5492.94 4307.33i 0.565963 0.443804i
\(456\) 0 0
\(457\) 18409.2i 1.88435i 0.335124 + 0.942174i \(0.391222\pi\)
−0.335124 + 0.942174i \(0.608778\pi\)
\(458\) 11002.0i 1.12247i
\(459\) 0 0
\(460\) −4398.06 5608.64i −0.445784 0.568488i
\(461\) −6616.52 −0.668465 −0.334232 0.942491i \(-0.608477\pi\)
−0.334232 + 0.942491i \(0.608477\pi\)
\(462\) 0 0
\(463\) 12605.5i 1.26529i 0.774443 + 0.632644i \(0.218030\pi\)
−0.774443 + 0.632644i \(0.781970\pi\)
\(464\) 316.767 0.0316930
\(465\) 0 0
\(466\) −7855.43 −0.780892
\(467\) 16291.5i 1.61431i −0.590340 0.807155i \(-0.701006\pi\)
0.590340 0.807155i \(-0.298994\pi\)
\(468\) 0 0
\(469\) 5894.84 0.580381
\(470\) −2066.37 + 1620.36i −0.202797 + 0.159025i
\(471\) 0 0
\(472\) 4120.55i 0.401830i
\(473\) 8368.04i 0.813452i
\(474\) 0 0
\(475\) 351.675 1432.20i 0.0339705 0.138345i
\(476\) −526.057 −0.0506550
\(477\) 0 0
\(478\) 8870.22i 0.848775i
\(479\) 11506.3 1.09757 0.548785 0.835963i \(-0.315091\pi\)
0.548785 + 0.835963i \(0.315091\pi\)
\(480\) 0 0
\(481\) −25238.6 −2.39247
\(482\) 9151.62i 0.864823i
\(483\) 0 0
\(484\) 2703.40 0.253888
\(485\) 8292.01 + 10574.4i 0.776332 + 0.990021i
\(486\) 0 0
\(487\) 16502.9i 1.53556i 0.640714 + 0.767780i \(0.278639\pi\)
−0.640714 + 0.767780i \(0.721361\pi\)
\(488\) 3165.73i 0.293660i
\(489\) 0 0
\(490\) −676.100 862.200i −0.0623328 0.0794903i
\(491\) −9269.67 −0.852004 −0.426002 0.904722i \(-0.640078\pi\)
−0.426002 + 0.904722i \(0.640078\pi\)
\(492\) 0 0
\(493\) 371.959i 0.0339801i
\(494\) 2104.56 0.191678
\(495\) 0 0
\(496\) −2022.47 −0.183087
\(497\) 2814.70i 0.254037i
\(498\) 0 0
\(499\) −13167.3 −1.18126 −0.590631 0.806941i \(-0.701121\pi\)
−0.590631 + 0.806941i \(0.701121\pi\)
\(500\) −2300.97 5094.66i −0.205805 0.455680i
\(501\) 0 0
\(502\) 3293.91i 0.292857i
\(503\) 16299.1i 1.44481i −0.691469 0.722406i \(-0.743036\pi\)
0.691469 0.722406i \(-0.256964\pi\)
\(504\) 0 0
\(505\) 5062.09 3969.48i 0.446060 0.349781i
\(506\) 8158.62 0.716788
\(507\) 0 0
\(508\) 9216.64i 0.804965i
\(509\) −10595.4 −0.922656 −0.461328 0.887230i \(-0.652627\pi\)
−0.461328 + 0.887230i \(0.652627\pi\)
\(510\) 0 0
\(511\) −2122.20 −0.183719
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) 5623.27 0.482552
\(515\) 1753.86 + 2236.62i 0.150067 + 0.191373i
\(516\) 0 0
\(517\) 3005.85i 0.255700i
\(518\) 3961.57i 0.336026i
\(519\) 0 0
\(520\) 6277.65 4922.66i 0.529410 0.415140i
\(521\) 3930.10 0.330481 0.165241 0.986253i \(-0.447160\pi\)
0.165241 + 0.986253i \(0.447160\pi\)
\(522\) 0 0
\(523\) 15430.7i 1.29013i −0.764129 0.645064i \(-0.776831\pi\)
0.764129 0.645064i \(-0.223169\pi\)
\(524\) 3820.77 0.318532
\(525\) 0 0
\(526\) 6206.26 0.514459
\(527\) 2374.85i 0.196300i
\(528\) 0 0
\(529\) −13232.9 −1.08761
\(530\) 11164.7 8754.86i 0.915024 0.717522i
\(531\) 0 0
\(532\) 330.343i 0.0269214i
\(533\) 12877.8i 1.04653i
\(534\) 0 0
\(535\) −7882.82 10052.6i −0.637017 0.812359i
\(536\) 6736.96 0.542896
\(537\) 0 0
\(538\) 122.375i 0.00980665i
\(539\) 1254.20 0.100227
\(540\) 0 0
\(541\) −24132.0 −1.91777 −0.958885 0.283794i \(-0.908407\pi\)
−0.958885 + 0.283794i \(0.908407\pi\)
\(542\) 195.257i 0.0154742i
\(543\) 0 0
\(544\) −601.208 −0.0473834
\(545\) −18073.5 + 14172.4i −1.42052 + 1.11391i
\(546\) 0 0
\(547\) 3505.64i 0.274022i −0.990569 0.137011i \(-0.956250\pi\)
0.990569 0.137011i \(-0.0437496\pi\)
\(548\) 5958.13i 0.464450i
\(549\) 0 0
\(550\) 6214.38 + 1525.93i 0.481785 + 0.118302i
\(551\) 233.576 0.0180593
\(552\) 0 0
\(553\) 1864.69i 0.143390i
\(554\) −9438.48 −0.723831
\(555\) 0 0
\(556\) −3009.13 −0.229525
\(557\) 14427.0i 1.09747i −0.835995 0.548737i \(-0.815109\pi\)
0.835995 0.548737i \(-0.184891\pi\)
\(558\) 0 0
\(559\) 29159.4 2.20628
\(560\) −772.686 985.371i −0.0583070 0.0743563i
\(561\) 0 0
\(562\) 1990.19i 0.149379i
\(563\) 9972.47i 0.746518i 0.927727 + 0.373259i \(0.121760\pi\)
−0.927727 + 0.373259i \(0.878240\pi\)
\(564\) 0 0
\(565\) −6145.79 7837.46i −0.457620 0.583583i
\(566\) −15991.2 −1.18756
\(567\) 0 0
\(568\) 3216.80i 0.237630i
\(569\) −25180.3 −1.85521 −0.927605 0.373563i \(-0.878136\pi\)
−0.927605 + 0.373563i \(0.878136\pi\)
\(570\) 0 0
\(571\) 6146.38 0.450470 0.225235 0.974305i \(-0.427685\pi\)
0.225235 + 0.974305i \(0.427685\pi\)
\(572\) 9131.79i 0.667516i
\(573\) 0 0
\(574\) 2021.37 0.146987
\(575\) −19347.0 4750.63i −1.40317 0.344548i
\(576\) 0 0
\(577\) 12735.9i 0.918895i −0.888205 0.459447i \(-0.848048\pi\)
0.888205 0.459447i \(-0.151952\pi\)
\(578\) 9120.04i 0.656304i
\(579\) 0 0
\(580\) 696.727 546.343i 0.0498793 0.0391132i
\(581\) 5272.77 0.376508
\(582\) 0 0
\(583\) 16240.7i 1.15372i
\(584\) −2425.37 −0.171854
\(585\) 0 0
\(586\) 17861.6 1.25914
\(587\) 13223.9i 0.929829i 0.885355 + 0.464915i \(0.153915\pi\)
−0.885355 + 0.464915i \(0.846085\pi\)
\(588\) 0 0
\(589\) −1491.31 −0.104327
\(590\) −7106.91 9063.12i −0.495910 0.632411i
\(591\) 0 0
\(592\) 4527.51i 0.314324i
\(593\) 2498.96i 0.173052i 0.996250 + 0.0865261i \(0.0275766\pi\)
−0.996250 + 0.0865261i \(0.972423\pi\)
\(594\) 0 0
\(595\) −1157.06 + 907.314i −0.0797222 + 0.0625147i
\(596\) −6836.04 −0.469824
\(597\) 0 0
\(598\) 28429.6i 1.94410i
\(599\) −9468.29 −0.645850 −0.322925 0.946425i \(-0.604666\pi\)
−0.322925 + 0.946425i \(0.604666\pi\)
\(600\) 0 0
\(601\) −12334.1 −0.837137 −0.418569 0.908185i \(-0.637468\pi\)
−0.418569 + 0.908185i \(0.637468\pi\)
\(602\) 4577.00i 0.309875i
\(603\) 0 0
\(604\) 11094.4 0.747395
\(605\) 5946.09 4662.67i 0.399575 0.313330i
\(606\) 0 0
\(607\) 25245.6i 1.68812i −0.536248 0.844060i \(-0.680159\pi\)
0.536248 0.844060i \(-0.319841\pi\)
\(608\) 377.535i 0.0251827i
\(609\) 0 0
\(610\) 5460.08 + 6962.99i 0.362413 + 0.462169i
\(611\) −10474.2 −0.693521
\(612\) 0 0
\(613\) 4007.86i 0.264071i −0.991245 0.132036i \(-0.957849\pi\)
0.991245 0.132036i \(-0.0421513\pi\)
\(614\) −5031.58 −0.330714
\(615\) 0 0
\(616\) 1433.37 0.0937535
\(617\) 14349.2i 0.936266i −0.883658 0.468133i \(-0.844927\pi\)
0.883658 0.468133i \(-0.155073\pi\)
\(618\) 0 0
\(619\) 6004.19 0.389869 0.194934 0.980816i \(-0.437551\pi\)
0.194934 + 0.980816i \(0.437551\pi\)
\(620\) −4448.39 + 3488.24i −0.288148 + 0.225953i
\(621\) 0 0
\(622\) 7518.78i 0.484688i
\(623\) 5900.77i 0.379469i
\(624\) 0 0
\(625\) −13847.9 7237.06i −0.886269 0.463172i
\(626\) 13651.8 0.871624
\(627\) 0 0
\(628\) 1413.91i 0.0898426i
\(629\) 5316.36 0.337007
\(630\) 0 0
\(631\) 17130.6 1.08076 0.540378 0.841422i \(-0.318281\pi\)
0.540378 + 0.841422i \(0.318281\pi\)
\(632\) 2131.07i 0.134129i
\(633\) 0 0
\(634\) −4929.87 −0.308817
\(635\) 15896.3 + 20271.9i 0.993429 + 1.26688i
\(636\) 0 0
\(637\) 4370.40i 0.271839i
\(638\) 1013.49i 0.0628912i
\(639\) 0 0
\(640\) −883.069 1126.14i −0.0545412 0.0695540i
\(641\) −13484.7 −0.830911 −0.415456 0.909613i \(-0.636378\pi\)
−0.415456 + 0.909613i \(0.636378\pi\)
\(642\) 0 0
\(643\) 18209.9i 1.11684i −0.829559 0.558419i \(-0.811408\pi\)
0.829559 0.558419i \(-0.188592\pi\)
\(644\) −4462.46 −0.273052
\(645\) 0 0
\(646\) −443.314 −0.0270000
\(647\) 13402.9i 0.814406i −0.913338 0.407203i \(-0.866504\pi\)
0.913338 0.407203i \(-0.133496\pi\)
\(648\) 0 0
\(649\) 13183.7 0.797387
\(650\) 5317.29 21654.7i 0.320863 1.30672i
\(651\) 0 0
\(652\) 3540.92i 0.212689i
\(653\) 1922.32i 0.115201i 0.998340 + 0.0576003i \(0.0183449\pi\)
−0.998340 + 0.0576003i \(0.981655\pi\)
\(654\) 0 0
\(655\) 8403.74 6589.85i 0.501315 0.393109i
\(656\) 2310.14 0.137494
\(657\) 0 0
\(658\) 1644.09i 0.0974060i
\(659\) 22722.3 1.34315 0.671574 0.740937i \(-0.265618\pi\)
0.671574 + 0.740937i \(0.265618\pi\)
\(660\) 0 0
\(661\) −16049.3 −0.944393 −0.472196 0.881493i \(-0.656539\pi\)
−0.472196 + 0.881493i \(0.656539\pi\)
\(662\) 7560.72i 0.443891i
\(663\) 0 0
\(664\) 6026.02 0.352191
\(665\) −569.757 726.586i −0.0332244 0.0423696i
\(666\) 0 0
\(667\) 3155.27i 0.183167i
\(668\) 12881.0i 0.746081i
\(669\) 0 0
\(670\) 14817.9 11619.5i 0.854425 0.670003i
\(671\) −10128.7 −0.582735
\(672\) 0 0
\(673\) 16507.8i 0.945513i 0.881193 + 0.472757i \(0.156741\pi\)
−0.881193 + 0.472757i \(0.843259\pi\)
\(674\) −3828.78 −0.218811
\(675\) 0 0
\(676\) 23032.7 1.31047
\(677\) 15118.9i 0.858298i −0.903234 0.429149i \(-0.858813\pi\)
0.903234 0.429149i \(-0.141187\pi\)
\(678\) 0 0
\(679\) 8413.43 0.475520
\(680\) −1322.35 + 1036.93i −0.0745733 + 0.0584772i
\(681\) 0 0
\(682\) 6470.86i 0.363317i
\(683\) 68.6595i 0.00384654i 0.999998 + 0.00192327i \(0.000612195\pi\)
−0.999998 + 0.00192327i \(0.999388\pi\)
\(684\) 0 0
\(685\) 10276.3 + 13104.8i 0.573191 + 0.730964i
\(686\) −686.000 −0.0381802
\(687\) 0 0
\(688\) 5230.86i 0.289861i
\(689\) 56592.6 3.12918
\(690\) 0 0
\(691\) −3167.95 −0.174406 −0.0872030 0.996191i \(-0.527793\pi\)
−0.0872030 + 0.996191i \(0.527793\pi\)
\(692\) 15122.5i 0.830738i
\(693\) 0 0
\(694\) −18237.9 −0.997550
\(695\) −6618.56 + 5189.99i −0.361232 + 0.283263i
\(696\) 0 0
\(697\) 2712.64i 0.147416i
\(698\) 9664.89i 0.524100i
\(699\) 0 0
\(700\) −3399.03 834.629i −0.183530 0.0450657i
\(701\) −6930.44 −0.373408 −0.186704 0.982416i \(-0.559781\pi\)
−0.186704 + 0.982416i \(0.559781\pi\)
\(702\) 0 0
\(703\) 3338.46i 0.179107i
\(704\) 1638.14 0.0876984
\(705\) 0 0
\(706\) −5613.15 −0.299226
\(707\) 4027.60i 0.214248i
\(708\) 0 0
\(709\) −20689.6 −1.09593 −0.547966 0.836501i \(-0.684598\pi\)
−0.547966 + 0.836501i \(0.684598\pi\)
\(710\) −5548.16 7075.32i −0.293266 0.373989i
\(711\) 0 0
\(712\) 6743.74i 0.354961i
\(713\) 20145.5i 1.05814i
\(714\) 0 0
\(715\) 15750.0 + 20085.3i 0.823800 + 1.05055i
\(716\) −18136.3 −0.946627
\(717\) 0 0
\(718\) 2150.13i 0.111758i
\(719\) −2807.47 −0.145620 −0.0728101 0.997346i \(-0.523197\pi\)
−0.0728101 + 0.997346i \(0.523197\pi\)
\(720\) 0 0
\(721\) 1779.54 0.0919190
\(722\) 13439.6i 0.692757i
\(723\) 0 0
\(724\) −7221.97 −0.370721
\(725\) 590.141 2403.35i 0.0302307 0.123115i
\(726\) 0 0
\(727\) 3059.84i 0.156098i 0.996950 + 0.0780489i \(0.0248690\pi\)
−0.996950 + 0.0780489i \(0.975131\pi\)
\(728\) 4994.74i 0.254282i
\(729\) 0 0
\(730\) −5334.58 + 4183.15i −0.270468 + 0.212089i
\(731\) −6142.25 −0.310779
\(732\) 0 0
\(733\) 483.122i 0.0243445i −0.999926 0.0121723i \(-0.996125\pi\)
0.999926 0.0121723i \(-0.00387465\pi\)
\(734\) −734.041 −0.0369127
\(735\) 0 0
\(736\) −5099.95 −0.255417
\(737\) 21554.8i 1.07732i
\(738\) 0 0
\(739\) −15972.4 −0.795066 −0.397533 0.917588i \(-0.630134\pi\)
−0.397533 + 0.917588i \(0.630134\pi\)
\(740\) 7808.80 + 9958.21i 0.387915 + 0.494691i
\(741\) 0 0
\(742\) 8883.06i 0.439498i
\(743\) 1310.03i 0.0646840i 0.999477 + 0.0323420i \(0.0102966\pi\)
−0.999477 + 0.0323420i \(0.989703\pi\)
\(744\) 0 0
\(745\) −15035.8 + 11790.4i −0.739422 + 0.579823i
\(746\) −2609.11 −0.128052
\(747\) 0 0
\(748\) 1923.56i 0.0940271i
\(749\) −7998.24 −0.390186
\(750\) 0 0
\(751\) −14752.9 −0.716830 −0.358415 0.933562i \(-0.616683\pi\)
−0.358415 + 0.933562i \(0.616683\pi\)
\(752\) 1878.96i 0.0911150i
\(753\) 0 0
\(754\) 3531.63 0.170576
\(755\) 24402.1 19135.1i 1.17627 0.922381i
\(756\) 0 0
\(757\) 3934.60i 0.188911i −0.995529 0.0944555i \(-0.969889\pi\)
0.995529 0.0944555i \(-0.0301110\pi\)
\(758\) 10681.2i 0.511820i
\(759\) 0 0
\(760\) −651.151 830.384i −0.0310786 0.0396331i
\(761\) −17102.3 −0.814662 −0.407331 0.913281i \(-0.633540\pi\)
−0.407331 + 0.913281i \(0.633540\pi\)
\(762\) 0 0
\(763\) 14380.0i 0.682293i
\(764\) 13436.6 0.636282
\(765\) 0 0
\(766\) −13324.5 −0.628505
\(767\) 45940.0i 2.16271i
\(768\) 0 0
\(769\) 32173.5 1.50872 0.754361 0.656460i \(-0.227947\pi\)
0.754361 + 0.656460i \(0.227947\pi\)
\(770\) 3152.69 2472.20i 0.147552 0.115704i
\(771\) 0 0
\(772\) 11202.3i 0.522251i
\(773\) 19329.5i 0.899398i 0.893180 + 0.449699i \(0.148469\pi\)
−0.893180 + 0.449699i \(0.851531\pi\)
\(774\) 0 0
\(775\) −3767.87 + 15344.7i −0.174640 + 0.711222i
\(776\) 9615.35 0.444808
\(777\) 0 0
\(778\) 12627.0i 0.581875i
\(779\) 1703.43 0.0783464
\(780\) 0 0
\(781\) 10292.1 0.471551
\(782\) 5988.54i 0.273849i
\(783\) 0 0
\(784\) −784.000 −0.0357143
\(785\) 2438.63 + 3109.88i 0.110877 + 0.141397i
\(786\) 0 0
\(787\) 4050.20i 0.183449i −0.995784 0.0917244i \(-0.970762\pi\)
0.995784 0.0917244i \(-0.0292379\pi\)
\(788\) 13010.1i 0.588154i
\(789\) 0 0
\(790\) −3675.55 4687.27i −0.165532 0.211095i
\(791\) −6235.79 −0.280302
\(792\) 0 0
\(793\) 35294.7i 1.58052i
\(794\) 28421.2 1.27031
\(795\) 0 0
\(796\) −6101.22 −0.271674
\(797\) 30864.7i 1.37175i 0.727720 + 0.685874i \(0.240580\pi\)
−0.727720 + 0.685874i \(0.759420\pi\)
\(798\) 0 0
\(799\) 2206.33 0.0976902
\(800\) −3884.60 953.861i −0.171677 0.0421551i
\(801\) 0 0
\(802\) 11157.2i 0.491239i
\(803\) 7759.95i 0.341025i
\(804\) 0 0
\(805\) −9815.13 + 7696.60i −0.429736 + 0.336981i
\(806\) −22548.4 −0.985402
\(807\) 0 0
\(808\) 4602.97i 0.200411i
\(809\) 14213.1 0.617682 0.308841 0.951114i \(-0.400059\pi\)
0.308841 + 0.951114i \(0.400059\pi\)
\(810\) 0 0
\(811\) 1619.57 0.0701242 0.0350621 0.999385i \(-0.488837\pi\)
0.0350621 + 0.999385i \(0.488837\pi\)
\(812\) 554.343i 0.0239577i
\(813\) 0 0
\(814\) −14485.7 −0.623740
\(815\) −6107.19 7788.22i −0.262485 0.334736i
\(816\) 0 0
\(817\) 3857.09i 0.165168i
\(818\) 23828.0i 1.01849i
\(819\) 0 0
\(820\) 5081.13 3984.40i 0.216391 0.169684i
\(821\) 20628.1 0.876888 0.438444 0.898758i \(-0.355530\pi\)
0.438444 + 0.898758i \(0.355530\pi\)
\(822\) 0 0
\(823\) 11868.2i 0.502671i −0.967900 0.251335i \(-0.919130\pi\)
0.967900 0.251335i \(-0.0808697\pi\)
\(824\) 2033.76 0.0859824
\(825\) 0 0
\(826\) −7210.97 −0.303755
\(827\) 9149.35i 0.384709i 0.981326 + 0.192354i \(0.0616123\pi\)
−0.981326 + 0.192354i \(0.938388\pi\)
\(828\) 0 0
\(829\) 11693.7 0.489916 0.244958 0.969534i \(-0.421226\pi\)
0.244958 + 0.969534i \(0.421226\pi\)
\(830\) 13254.2 10393.4i 0.554288 0.434649i
\(831\) 0 0
\(832\) 5708.28i 0.237859i
\(833\) 920.600i 0.0382916i
\(834\) 0 0
\(835\) −22216.5 28331.7i −0.920759 1.17420i
\(836\) 1207.92 0.0499722
\(837\) 0 0
\(838\) 24186.0i 0.997007i
\(839\) −41472.3 −1.70654 −0.853268 0.521473i \(-0.825383\pi\)
−0.853268 + 0.521473i \(0.825383\pi\)
\(840\) 0 0
\(841\) −23997.0 −0.983929
\(842\) 24377.0i 0.997727i
\(843\) 0 0
\(844\) 11737.2 0.478685
\(845\) 50660.3 39725.6i 2.06245 1.61728i
\(846\) 0 0
\(847\) 4730.94i 0.191921i
\(848\) 10152.1i 0.411112i
\(849\) 0 0
\(850\) −1120.06 + 4561.44i −0.0451972 + 0.184066i
\(851\) 45097.8 1.81661
\(852\) 0 0
\(853\) 10326.4i 0.414501i −0.978288 0.207251i \(-0.933548\pi\)
0.978288 0.207251i \(-0.0664516\pi\)
\(854\) 5540.03 0.221986
\(855\) 0 0
\(856\) −9140.85 −0.364986
\(857\) 17375.4i 0.692571i 0.938129 + 0.346285i \(0.112557\pi\)
−0.938129 + 0.346285i \(0.887443\pi\)
\(858\) 0 0
\(859\) −10624.9 −0.422022 −0.211011 0.977484i \(-0.567676\pi\)
−0.211011 + 0.977484i \(0.567676\pi\)
\(860\) −9021.89 11505.2i −0.357726 0.456191i
\(861\) 0 0
\(862\) 9936.31i 0.392613i
\(863\) 22377.1i 0.882648i 0.897348 + 0.441324i \(0.145491\pi\)
−0.897348 + 0.441324i \(0.854509\pi\)
\(864\) 0 0
\(865\) 26082.4 + 33261.8i 1.02524 + 1.30744i
\(866\) 28967.4 1.13667
\(867\) 0 0
\(868\) 3539.31i 0.138401i
\(869\) 6818.33 0.266164
\(870\) 0 0
\(871\) 75110.3 2.92195
\(872\) 16434.3i 0.638227i
\(873\) 0 0
\(874\) −3760.56 −0.145541
\(875\) −8915.65 + 4026.70i −0.344462 + 0.155574i
\(876\) 0 0
\(877\) 22267.1i 0.857362i −0.903456 0.428681i \(-0.858979\pi\)
0.903456 0.428681i \(-0.141021\pi\)
\(878\) 19875.3i 0.763961i
\(879\) 0 0
\(880\) 3603.07 2825.37i 0.138022 0.108231i
\(881\) 7273.13 0.278136 0.139068 0.990283i \(-0.455589\pi\)
0.139068 + 0.990283i \(0.455589\pi\)
\(882\) 0 0
\(883\) 43452.0i 1.65603i 0.560705 + 0.828016i \(0.310530\pi\)
−0.560705 + 0.828016i \(0.689470\pi\)
\(884\) −6702.86 −0.255024
\(885\) 0 0
\(886\) 34279.2 1.29981
\(887\) 34206.2i 1.29485i −0.762130 0.647424i \(-0.775846\pi\)
0.762130 0.647424i \(-0.224154\pi\)
\(888\) 0 0
\(889\) 16129.1 0.608496
\(890\) −11631.2 14832.8i −0.438067 0.558647i
\(891\) 0 0
\(892\) 14505.2i 0.544473i
\(893\) 1385.49i 0.0519190i
\(894\) 0 0
\(895\) −39890.6 + 31280.5i −1.48983 + 1.16826i
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) 3110.69i 0.115596i
\(899\) −2502.54 −0.0928415
\(900\) 0 0
\(901\) −11920.9 −0.440780
\(902\) 7391.27i 0.272841i
\(903\) 0 0
\(904\) −7126.61 −0.262199
\(905\) −15884.6 + 12456.1i −0.583451 + 0.457517i
\(906\) 0 0
\(907\) 24922.5i 0.912391i −0.889880 0.456196i \(-0.849212\pi\)
0.889880 0.456196i \(-0.150788\pi\)
\(908\) 8757.80i 0.320086i
\(909\) 0 0
\(910\) −8614.66 10985.9i −0.313817 0.400196i
\(911\) −29200.7 −1.06198 −0.530989 0.847379i \(-0.678179\pi\)
−0.530989 + 0.847379i \(0.678179\pi\)
\(912\) 0 0
\(913\) 19280.2i 0.698885i
\(914\) 36818.4 1.33244
\(915\) 0 0
\(916\) −22004.0 −0.793704
\(917\) 6686.34i 0.240788i
\(918\) 0 0
\(919\) 31961.7 1.14725 0.573623 0.819119i \(-0.305537\pi\)
0.573623 + 0.819119i \(0.305537\pi\)
\(920\) −11217.3 + 8796.11i −0.401982 + 0.315217i
\(921\) 0 0
\(922\) 13233.0i 0.472676i
\(923\) 35864.0i 1.27896i
\(924\) 0 0
\(925\) 34350.8 + 8434.80i 1.22102 + 0.299821i
\(926\) 25211.0 0.894693
\(927\) 0 0
\(928\) 633.535i 0.0224103i
\(929\) −21349.4 −0.753985 −0.376993 0.926216i \(-0.623042\pi\)
−0.376993 + 0.926216i \(0.623042\pi\)
\(930\) 0 0
\(931\) −578.100 −0.0203507
\(932\) 15710.9i 0.552174i
\(933\) 0 0
\(934\) −32583.1 −1.14149
\(935\) −3317.65 4230.85i −0.116041 0.147982i
\(936\) 0 0
\(937\) 3802.95i 0.132590i 0.997800 + 0.0662951i \(0.0211179\pi\)
−0.997800 + 0.0662951i \(0.978882\pi\)
\(938\) 11789.7i 0.410391i
\(939\) 0 0
\(940\) 3240.72 + 4132.74i 0.112447 + 0.143399i
\(941\) 42690.8 1.47894 0.739470 0.673190i \(-0.235076\pi\)
0.739470 + 0.673190i \(0.235076\pi\)
\(942\) 0 0
\(943\) 23010.9i 0.794633i
\(944\) −8241.11 −0.284137
\(945\) 0 0
\(946\) 16736.1 0.575197
\(947\) 40333.0i 1.38400i 0.721899 + 0.691998i \(0.243270\pi\)
−0.721899 + 0.691998i \(0.756730\pi\)
\(948\) 0 0
\(949\) −27040.4 −0.924941
\(950\) −2864.40 703.351i −0.0978246 0.0240208i
\(951\) 0 0
\(952\) 1052.11i 0.0358185i
\(953\) 39603.5i 1.34615i 0.739573 + 0.673077i \(0.235028\pi\)
−0.739573 + 0.673077i \(0.764972\pi\)
\(954\) 0 0
\(955\) 29553.7 23174.7i 1.00140 0.785253i
\(956\) −17740.4 −0.600174
\(957\) 0 0
\(958\) 23012.6i 0.776099i
\(959\) 10426.7 0.351091
\(960\) 0 0
\(961\) −13813.0 −0.463664
\(962\) 50477.1i 1.69173i
\(963\) 0 0
\(964\) −18303.2 −0.611522
\(965\) 19321.0 + 24639.2i 0.644524 + 0.821933i
\(966\) 0 0
\(967\) 4139.69i 0.137666i −0.997628 0.0688332i \(-0.978072\pi\)
0.997628 0.0688332i \(-0.0219276\pi\)
\(968\) 5406.79i 0.179526i
\(969\) 0 0
\(970\) 21148.9 16584.0i 0.700050 0.548949i
\(971\) −42137.2 −1.39263 −0.696316 0.717735i \(-0.745179\pi\)
−0.696316 + 0.717735i \(0.745179\pi\)
\(972\) 0 0
\(973\) 5265.99i 0.173504i
\(974\) 33005.8 1.08580
\(975\) 0 0
\(976\) 6331.46 0.207649
\(977\) 39782.4i 1.30271i 0.758772 + 0.651357i \(0.225800\pi\)
−0.758772 + 0.651357i \(0.774200\pi\)
\(978\) 0 0
\(979\) 21576.5 0.704381
\(980\) −1724.40 + 1352.20i −0.0562081 + 0.0440760i
\(981\) 0 0
\(982\) 18539.3i 0.602458i
\(983\) 3799.91i 0.123294i 0.998098 + 0.0616471i \(0.0196353\pi\)
−0.998098 + 0.0616471i \(0.980365\pi\)
\(984\) 0 0
\(985\) −22439.1 28615.6i −0.725857 0.925653i
\(986\) −743.918 −0.0240276
\(987\) 0 0
\(988\) 4209.13i 0.135537i
\(989\) −52103.7 −1.67523
\(990\) 0 0
\(991\) 20113.7 0.644735 0.322367 0.946615i \(-0.395521\pi\)
0.322367 + 0.946615i \(0.395521\pi\)
\(992\) 4044.93i 0.129462i
\(993\) 0 0
\(994\) −5629.40 −0.179632
\(995\) −13419.6 + 10523.1i −0.427567 + 0.335280i
\(996\) 0 0
\(997\) 40814.2i 1.29649i 0.761432 + 0.648244i \(0.224496\pi\)
−0.761432 + 0.648244i \(0.775504\pi\)
\(998\) 26334.6i 0.835279i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.g.e.379.1 4
3.2 odd 2 210.4.g.a.169.4 yes 4
5.4 even 2 inner 630.4.g.e.379.3 4
15.2 even 4 1050.4.a.bc.1.2 2
15.8 even 4 1050.4.a.bg.1.2 2
15.14 odd 2 210.4.g.a.169.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.4.g.a.169.2 4 15.14 odd 2
210.4.g.a.169.4 yes 4 3.2 odd 2
630.4.g.e.379.1 4 1.1 even 1 trivial
630.4.g.e.379.3 4 5.4 even 2 inner
1050.4.a.bc.1.2 2 15.2 even 4
1050.4.a.bg.1.2 2 15.8 even 4