Properties

Label 1050.4.a.bg.1.2
Level $1050$
Weight $4$
Character 1050.1
Self dual yes
Analytic conductor $61.952$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(1,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,-6,8,0,-12,14,16,18,0,12,-24,-100] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.9520055060\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 1050.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} +7.00000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +25.5959 q^{11} -12.0000 q^{12} -89.1918 q^{13} +14.0000 q^{14} +16.0000 q^{16} +18.7878 q^{17} +18.0000 q^{18} -11.7980 q^{19} -21.0000 q^{21} +51.1918 q^{22} -159.373 q^{23} -24.0000 q^{24} -178.384 q^{26} -27.0000 q^{27} +28.0000 q^{28} +19.7980 q^{29} -126.404 q^{31} +32.0000 q^{32} -76.7878 q^{33} +37.5755 q^{34} +36.0000 q^{36} +282.969 q^{37} -23.5959 q^{38} +267.576 q^{39} -144.384 q^{41} -42.0000 q^{42} +326.929 q^{43} +102.384 q^{44} -318.747 q^{46} -117.435 q^{47} -48.0000 q^{48} +49.0000 q^{49} -56.3633 q^{51} -356.767 q^{52} -634.504 q^{53} -54.0000 q^{54} +56.0000 q^{56} +35.3939 q^{57} +39.5959 q^{58} -515.069 q^{59} +395.716 q^{61} -252.808 q^{62} +63.0000 q^{63} +64.0000 q^{64} -153.576 q^{66} -842.120 q^{67} +75.1510 q^{68} +478.120 q^{69} +402.100 q^{71} +72.0000 q^{72} -303.171 q^{73} +565.939 q^{74} -47.1918 q^{76} +179.171 q^{77} +535.151 q^{78} +266.384 q^{79} +81.0000 q^{81} -288.767 q^{82} -753.253 q^{83} -84.0000 q^{84} +653.857 q^{86} -59.3939 q^{87} +204.767 q^{88} -842.967 q^{89} -624.343 q^{91} -637.494 q^{92} +379.212 q^{93} -234.869 q^{94} -96.0000 q^{96} -1201.92 q^{97} +98.0000 q^{98} +230.363 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 6 q^{3} + 8 q^{4} - 12 q^{6} + 14 q^{7} + 16 q^{8} + 18 q^{9} + 12 q^{11} - 24 q^{12} - 100 q^{13} + 28 q^{14} + 32 q^{16} - 80 q^{17} + 36 q^{18} - 4 q^{19} - 42 q^{21} + 24 q^{22} - 64 q^{23}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 7.00000 0.377964
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 25.5959 0.701587 0.350794 0.936453i \(-0.385912\pi\)
0.350794 + 0.936453i \(0.385912\pi\)
\(12\) −12.0000 −0.288675
\(13\) −89.1918 −1.90287 −0.951437 0.307843i \(-0.900393\pi\)
−0.951437 + 0.307843i \(0.900393\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 18.7878 0.268041 0.134021 0.990979i \(-0.457211\pi\)
0.134021 + 0.990979i \(0.457211\pi\)
\(18\) 18.0000 0.235702
\(19\) −11.7980 −0.142455 −0.0712273 0.997460i \(-0.522692\pi\)
−0.0712273 + 0.997460i \(0.522692\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 51.1918 0.496097
\(23\) −159.373 −1.44486 −0.722428 0.691447i \(-0.756974\pi\)
−0.722428 + 0.691447i \(0.756974\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) −178.384 −1.34554
\(27\) −27.0000 −0.192450
\(28\) 28.0000 0.188982
\(29\) 19.7980 0.126772 0.0633860 0.997989i \(-0.479810\pi\)
0.0633860 + 0.997989i \(0.479810\pi\)
\(30\) 0 0
\(31\) −126.404 −0.732350 −0.366175 0.930546i \(-0.619333\pi\)
−0.366175 + 0.930546i \(0.619333\pi\)
\(32\) 32.0000 0.176777
\(33\) −76.7878 −0.405062
\(34\) 37.5755 0.189534
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 282.969 1.25729 0.628647 0.777691i \(-0.283609\pi\)
0.628647 + 0.777691i \(0.283609\pi\)
\(38\) −23.5959 −0.100731
\(39\) 267.576 1.09862
\(40\) 0 0
\(41\) −144.384 −0.549974 −0.274987 0.961448i \(-0.588674\pi\)
−0.274987 + 0.961448i \(0.588674\pi\)
\(42\) −42.0000 −0.154303
\(43\) 326.929 1.15945 0.579723 0.814814i \(-0.303161\pi\)
0.579723 + 0.814814i \(0.303161\pi\)
\(44\) 102.384 0.350794
\(45\) 0 0
\(46\) −318.747 −1.02167
\(47\) −117.435 −0.364460 −0.182230 0.983256i \(-0.558332\pi\)
−0.182230 + 0.983256i \(0.558332\pi\)
\(48\) −48.0000 −0.144338
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −56.3633 −0.154754
\(52\) −356.767 −0.951437
\(53\) −634.504 −1.64445 −0.822225 0.569163i \(-0.807267\pi\)
−0.822225 + 0.569163i \(0.807267\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) 56.0000 0.133631
\(57\) 35.3939 0.0822462
\(58\) 39.5959 0.0896414
\(59\) −515.069 −1.13655 −0.568274 0.822839i \(-0.692389\pi\)
−0.568274 + 0.822839i \(0.692389\pi\)
\(60\) 0 0
\(61\) 395.716 0.830595 0.415297 0.909686i \(-0.363678\pi\)
0.415297 + 0.909686i \(0.363678\pi\)
\(62\) −252.808 −0.517849
\(63\) 63.0000 0.125988
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −153.576 −0.286422
\(67\) −842.120 −1.53554 −0.767772 0.640724i \(-0.778634\pi\)
−0.767772 + 0.640724i \(0.778634\pi\)
\(68\) 75.1510 0.134021
\(69\) 478.120 0.834187
\(70\) 0 0
\(71\) 402.100 0.672120 0.336060 0.941841i \(-0.390906\pi\)
0.336060 + 0.941841i \(0.390906\pi\)
\(72\) 72.0000 0.117851
\(73\) −303.171 −0.486076 −0.243038 0.970017i \(-0.578144\pi\)
−0.243038 + 0.970017i \(0.578144\pi\)
\(74\) 565.939 0.889041
\(75\) 0 0
\(76\) −47.1918 −0.0712273
\(77\) 179.171 0.265175
\(78\) 535.151 0.776845
\(79\) 266.384 0.379373 0.189687 0.981845i \(-0.439253\pi\)
0.189687 + 0.981845i \(0.439253\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −288.767 −0.388890
\(83\) −753.253 −0.996148 −0.498074 0.867135i \(-0.665959\pi\)
−0.498074 + 0.867135i \(0.665959\pi\)
\(84\) −84.0000 −0.109109
\(85\) 0 0
\(86\) 653.857 0.819851
\(87\) −59.3939 −0.0731919
\(88\) 204.767 0.248049
\(89\) −842.967 −1.00398 −0.501991 0.864873i \(-0.667399\pi\)
−0.501991 + 0.864873i \(0.667399\pi\)
\(90\) 0 0
\(91\) −624.343 −0.719219
\(92\) −637.494 −0.722428
\(93\) 379.212 0.422822
\(94\) −234.869 −0.257712
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) −1201.92 −1.25811 −0.629053 0.777362i \(-0.716557\pi\)
−0.629053 + 0.777362i \(0.716557\pi\)
\(98\) 98.0000 0.101015
\(99\) 230.363 0.233862
\(100\) 0 0
\(101\) 575.371 0.566847 0.283424 0.958995i \(-0.408530\pi\)
0.283424 + 0.958995i \(0.408530\pi\)
\(102\) −112.727 −0.109427
\(103\) 254.220 0.243195 0.121597 0.992579i \(-0.461198\pi\)
0.121597 + 0.992579i \(0.461198\pi\)
\(104\) −713.535 −0.672768
\(105\) 0 0
\(106\) −1269.01 −1.16280
\(107\) −1142.61 −1.03234 −0.516168 0.856487i \(-0.672642\pi\)
−0.516168 + 0.856487i \(0.672642\pi\)
\(108\) −108.000 −0.0962250
\(109\) −2054.28 −1.80518 −0.902589 0.430502i \(-0.858336\pi\)
−0.902589 + 0.430502i \(0.858336\pi\)
\(110\) 0 0
\(111\) −848.908 −0.725899
\(112\) 112.000 0.0944911
\(113\) 890.827 0.741610 0.370805 0.928711i \(-0.379082\pi\)
0.370805 + 0.928711i \(0.379082\pi\)
\(114\) 70.7878 0.0581568
\(115\) 0 0
\(116\) 79.1918 0.0633860
\(117\) −802.727 −0.634291
\(118\) −1030.14 −0.803661
\(119\) 131.514 0.101310
\(120\) 0 0
\(121\) −675.849 −0.507775
\(122\) 791.433 0.587319
\(123\) 433.151 0.317528
\(124\) −505.616 −0.366175
\(125\) 0 0
\(126\) 126.000 0.0890871
\(127\) −2304.16 −1.60993 −0.804965 0.593323i \(-0.797816\pi\)
−0.804965 + 0.593323i \(0.797816\pi\)
\(128\) 128.000 0.0883883
\(129\) −980.786 −0.669406
\(130\) 0 0
\(131\) 955.192 0.637065 0.318532 0.947912i \(-0.396810\pi\)
0.318532 + 0.947912i \(0.396810\pi\)
\(132\) −307.151 −0.202531
\(133\) −82.5857 −0.0538428
\(134\) −1684.24 −1.08579
\(135\) 0 0
\(136\) 150.302 0.0947669
\(137\) 1489.53 0.928900 0.464450 0.885599i \(-0.346252\pi\)
0.464450 + 0.885599i \(0.346252\pi\)
\(138\) 956.241 0.589860
\(139\) −752.284 −0.459049 −0.229525 0.973303i \(-0.573717\pi\)
−0.229525 + 0.973303i \(0.573717\pi\)
\(140\) 0 0
\(141\) 352.304 0.210421
\(142\) 804.200 0.475260
\(143\) −2282.95 −1.33503
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −606.343 −0.343707
\(147\) −147.000 −0.0824786
\(148\) 1131.88 0.628647
\(149\) 1709.01 0.939648 0.469824 0.882760i \(-0.344317\pi\)
0.469824 + 0.882760i \(0.344317\pi\)
\(150\) 0 0
\(151\) −2773.61 −1.49479 −0.747395 0.664380i \(-0.768696\pi\)
−0.747395 + 0.664380i \(0.768696\pi\)
\(152\) −94.3837 −0.0503653
\(153\) 169.090 0.0893471
\(154\) 358.343 0.187507
\(155\) 0 0
\(156\) 1070.30 0.549312
\(157\) −353.478 −0.179685 −0.0898426 0.995956i \(-0.528636\pi\)
−0.0898426 + 0.995956i \(0.528636\pi\)
\(158\) 532.767 0.268258
\(159\) 1903.51 0.949424
\(160\) 0 0
\(161\) −1115.61 −0.546104
\(162\) 162.000 0.0785674
\(163\) −885.231 −0.425378 −0.212689 0.977120i \(-0.568222\pi\)
−0.212689 + 0.977120i \(0.568222\pi\)
\(164\) −577.535 −0.274987
\(165\) 0 0
\(166\) −1506.51 −0.704383
\(167\) −3220.26 −1.49216 −0.746081 0.665855i \(-0.768067\pi\)
−0.746081 + 0.665855i \(0.768067\pi\)
\(168\) −168.000 −0.0771517
\(169\) 5758.18 2.62093
\(170\) 0 0
\(171\) −106.182 −0.0474849
\(172\) 1307.71 0.579723
\(173\) −3780.62 −1.66148 −0.830738 0.556663i \(-0.812081\pi\)
−0.830738 + 0.556663i \(0.812081\pi\)
\(174\) −118.788 −0.0517545
\(175\) 0 0
\(176\) 409.535 0.175397
\(177\) 1545.21 0.656186
\(178\) −1685.93 −0.709922
\(179\) 4534.07 1.89325 0.946627 0.322330i \(-0.104466\pi\)
0.946627 + 0.322330i \(0.104466\pi\)
\(180\) 0 0
\(181\) 1805.49 0.741443 0.370721 0.928744i \(-0.379110\pi\)
0.370721 + 0.928744i \(0.379110\pi\)
\(182\) −1248.69 −0.508565
\(183\) −1187.15 −0.479544
\(184\) −1274.99 −0.510833
\(185\) 0 0
\(186\) 758.424 0.298981
\(187\) 480.890 0.188054
\(188\) −469.739 −0.182230
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 3359.15 1.27256 0.636282 0.771456i \(-0.280471\pi\)
0.636282 + 0.771456i \(0.280471\pi\)
\(192\) −192.000 −0.0721688
\(193\) 2800.56 1.04450 0.522251 0.852792i \(-0.325092\pi\)
0.522251 + 0.852792i \(0.325092\pi\)
\(194\) −2403.84 −0.889616
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −3252.52 −1.17631 −0.588154 0.808749i \(-0.700145\pi\)
−0.588154 + 0.808749i \(0.700145\pi\)
\(198\) 460.727 0.165366
\(199\) −1525.31 −0.543347 −0.271674 0.962389i \(-0.587577\pi\)
−0.271674 + 0.962389i \(0.587577\pi\)
\(200\) 0 0
\(201\) 2526.36 0.886546
\(202\) 1150.74 0.400822
\(203\) 138.586 0.0479153
\(204\) −225.453 −0.0773768
\(205\) 0 0
\(206\) 508.441 0.171965
\(207\) −1434.36 −0.481618
\(208\) −1427.07 −0.475719
\(209\) −301.980 −0.0999443
\(210\) 0 0
\(211\) −2934.29 −0.957370 −0.478685 0.877987i \(-0.658886\pi\)
−0.478685 + 0.877987i \(0.658886\pi\)
\(212\) −2538.02 −0.822225
\(213\) −1206.30 −0.388048
\(214\) −2285.21 −0.729971
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) −884.829 −0.276802
\(218\) −4108.56 −1.27645
\(219\) 909.514 0.280636
\(220\) 0 0
\(221\) −1675.71 −0.510049
\(222\) −1697.82 −0.513288
\(223\) 3626.30 1.08895 0.544473 0.838778i \(-0.316730\pi\)
0.544473 + 0.838778i \(0.316730\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 1781.65 0.524397
\(227\) 2189.45 0.640171 0.320086 0.947389i \(-0.396288\pi\)
0.320086 + 0.947389i \(0.396288\pi\)
\(228\) 141.576 0.0411231
\(229\) −5501.00 −1.58741 −0.793704 0.608304i \(-0.791850\pi\)
−0.793704 + 0.608304i \(0.791850\pi\)
\(230\) 0 0
\(231\) −537.514 −0.153099
\(232\) 158.384 0.0448207
\(233\) −3927.72 −1.10435 −0.552174 0.833729i \(-0.686202\pi\)
−0.552174 + 0.833729i \(0.686202\pi\)
\(234\) −1605.45 −0.448512
\(235\) 0 0
\(236\) −2060.28 −0.568274
\(237\) −799.151 −0.219031
\(238\) 263.029 0.0716370
\(239\) 4435.11 1.20035 0.600174 0.799869i \(-0.295098\pi\)
0.600174 + 0.799869i \(0.295098\pi\)
\(240\) 0 0
\(241\) 4575.81 1.22304 0.611522 0.791227i \(-0.290557\pi\)
0.611522 + 0.791227i \(0.290557\pi\)
\(242\) −1351.70 −0.359051
\(243\) −243.000 −0.0641500
\(244\) 1582.87 0.415297
\(245\) 0 0
\(246\) 866.302 0.224526
\(247\) 1052.28 0.271073
\(248\) −1011.23 −0.258925
\(249\) 2259.76 0.575126
\(250\) 0 0
\(251\) 1646.96 0.414163 0.207081 0.978324i \(-0.433603\pi\)
0.207081 + 0.978324i \(0.433603\pi\)
\(252\) 252.000 0.0629941
\(253\) −4079.31 −1.01369
\(254\) −4608.32 −1.13839
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2811.64 −0.682432 −0.341216 0.939985i \(-0.610839\pi\)
−0.341216 + 0.939985i \(0.610839\pi\)
\(258\) −1961.57 −0.473341
\(259\) 1980.79 0.475212
\(260\) 0 0
\(261\) 178.182 0.0422573
\(262\) 1910.38 0.450473
\(263\) 3103.13 0.727556 0.363778 0.931486i \(-0.381487\pi\)
0.363778 + 0.931486i \(0.381487\pi\)
\(264\) −614.302 −0.143211
\(265\) 0 0
\(266\) −165.171 −0.0380726
\(267\) 2528.90 0.579649
\(268\) −3368.48 −0.767772
\(269\) −61.1877 −0.0138687 −0.00693435 0.999976i \(-0.502207\pi\)
−0.00693435 + 0.999976i \(0.502207\pi\)
\(270\) 0 0
\(271\) 97.6285 0.0218838 0.0109419 0.999940i \(-0.496517\pi\)
0.0109419 + 0.999940i \(0.496517\pi\)
\(272\) 300.604 0.0670103
\(273\) 1873.03 0.415241
\(274\) 2979.07 0.656832
\(275\) 0 0
\(276\) 1912.48 0.417094
\(277\) −4719.24 −1.02365 −0.511826 0.859089i \(-0.671031\pi\)
−0.511826 + 0.859089i \(0.671031\pi\)
\(278\) −1504.57 −0.324597
\(279\) −1137.64 −0.244117
\(280\) 0 0
\(281\) 995.094 0.211254 0.105627 0.994406i \(-0.466315\pi\)
0.105627 + 0.994406i \(0.466315\pi\)
\(282\) 704.608 0.148790
\(283\) 7995.58 1.67946 0.839732 0.543002i \(-0.182712\pi\)
0.839732 + 0.543002i \(0.182712\pi\)
\(284\) 1608.40 0.336060
\(285\) 0 0
\(286\) −4565.89 −0.944010
\(287\) −1010.69 −0.207871
\(288\) 288.000 0.0589256
\(289\) −4560.02 −0.928154
\(290\) 0 0
\(291\) 3605.76 0.726368
\(292\) −1212.69 −0.243038
\(293\) 8930.79 1.78069 0.890345 0.455286i \(-0.150463\pi\)
0.890345 + 0.455286i \(0.150463\pi\)
\(294\) −294.000 −0.0583212
\(295\) 0 0
\(296\) 2263.76 0.444521
\(297\) −691.090 −0.135021
\(298\) 3418.02 0.664432
\(299\) 14214.8 2.74938
\(300\) 0 0
\(301\) 2288.50 0.438229
\(302\) −5547.22 −1.05698
\(303\) −1726.11 −0.327270
\(304\) −188.767 −0.0356137
\(305\) 0 0
\(306\) 338.180 0.0631779
\(307\) −2515.79 −0.467700 −0.233850 0.972273i \(-0.575132\pi\)
−0.233850 + 0.972273i \(0.575132\pi\)
\(308\) 716.686 0.132588
\(309\) −762.661 −0.140409
\(310\) 0 0
\(311\) 3759.39 0.685452 0.342726 0.939435i \(-0.388650\pi\)
0.342726 + 0.939435i \(0.388650\pi\)
\(312\) 2140.60 0.388423
\(313\) −6825.91 −1.23266 −0.616331 0.787487i \(-0.711382\pi\)
−0.616331 + 0.787487i \(0.711382\pi\)
\(314\) −706.955 −0.127057
\(315\) 0 0
\(316\) 1065.53 0.189687
\(317\) 2464.94 0.436734 0.218367 0.975867i \(-0.429927\pi\)
0.218367 + 0.975867i \(0.429927\pi\)
\(318\) 3807.02 0.671344
\(319\) 506.747 0.0889416
\(320\) 0 0
\(321\) 3427.82 0.596019
\(322\) −2231.23 −0.386154
\(323\) −221.657 −0.0381837
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) −1770.46 −0.300788
\(327\) 6162.84 1.04222
\(328\) −1155.07 −0.194445
\(329\) −822.043 −0.137753
\(330\) 0 0
\(331\) 3780.36 0.627756 0.313878 0.949463i \(-0.398372\pi\)
0.313878 + 0.949463i \(0.398372\pi\)
\(332\) −3013.01 −0.498074
\(333\) 2546.72 0.419098
\(334\) −6440.52 −1.05512
\(335\) 0 0
\(336\) −336.000 −0.0545545
\(337\) −1914.39 −0.309446 −0.154723 0.987958i \(-0.549449\pi\)
−0.154723 + 0.987958i \(0.549449\pi\)
\(338\) 11516.4 1.85328
\(339\) −2672.48 −0.428169
\(340\) 0 0
\(341\) −3235.43 −0.513807
\(342\) −212.363 −0.0335769
\(343\) 343.000 0.0539949
\(344\) 2615.43 0.409926
\(345\) 0 0
\(346\) −7561.24 −1.17484
\(347\) 9118.93 1.41075 0.705375 0.708835i \(-0.250779\pi\)
0.705375 + 0.708835i \(0.250779\pi\)
\(348\) −237.576 −0.0365959
\(349\) 4832.45 0.741189 0.370594 0.928795i \(-0.379154\pi\)
0.370594 + 0.928795i \(0.379154\pi\)
\(350\) 0 0
\(351\) 2408.18 0.366208
\(352\) 819.069 0.124024
\(353\) −2806.58 −0.423170 −0.211585 0.977360i \(-0.567862\pi\)
−0.211585 + 0.977360i \(0.567862\pi\)
\(354\) 3090.42 0.463994
\(355\) 0 0
\(356\) −3371.87 −0.501991
\(357\) −394.543 −0.0584914
\(358\) 9068.15 1.33873
\(359\) −1075.06 −0.158049 −0.0790246 0.996873i \(-0.525181\pi\)
−0.0790246 + 0.996873i \(0.525181\pi\)
\(360\) 0 0
\(361\) −6719.81 −0.979707
\(362\) 3610.98 0.524279
\(363\) 2027.55 0.293164
\(364\) −2497.37 −0.359609
\(365\) 0 0
\(366\) −2374.30 −0.339089
\(367\) −367.020 −0.0522025 −0.0261012 0.999659i \(-0.508309\pi\)
−0.0261012 + 0.999659i \(0.508309\pi\)
\(368\) −2549.98 −0.361214
\(369\) −1299.45 −0.183325
\(370\) 0 0
\(371\) −4441.53 −0.621544
\(372\) 1516.85 0.211411
\(373\) 1304.56 0.181092 0.0905461 0.995892i \(-0.471139\pi\)
0.0905461 + 0.995892i \(0.471139\pi\)
\(374\) 961.780 0.132974
\(375\) 0 0
\(376\) −939.478 −0.128856
\(377\) −1765.82 −0.241231
\(378\) −378.000 −0.0514344
\(379\) 5340.61 0.723822 0.361911 0.932213i \(-0.382124\pi\)
0.361911 + 0.932213i \(0.382124\pi\)
\(380\) 0 0
\(381\) 6912.48 0.929493
\(382\) 6718.31 0.899839
\(383\) −6662.27 −0.888841 −0.444420 0.895818i \(-0.646590\pi\)
−0.444420 + 0.895818i \(0.646590\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 5601.13 0.738575
\(387\) 2942.36 0.386482
\(388\) −4807.67 −0.629053
\(389\) −6313.48 −0.822895 −0.411448 0.911433i \(-0.634977\pi\)
−0.411448 + 0.911433i \(0.634977\pi\)
\(390\) 0 0
\(391\) −2994.27 −0.387281
\(392\) 392.000 0.0505076
\(393\) −2865.58 −0.367810
\(394\) −6505.05 −0.831776
\(395\) 0 0
\(396\) 921.453 0.116931
\(397\) 14210.6 1.79650 0.898248 0.439490i \(-0.144841\pi\)
0.898248 + 0.439490i \(0.144841\pi\)
\(398\) −3050.61 −0.384204
\(399\) 247.757 0.0310861
\(400\) 0 0
\(401\) 5578.59 0.694717 0.347359 0.937732i \(-0.387079\pi\)
0.347359 + 0.937732i \(0.387079\pi\)
\(402\) 5052.72 0.626883
\(403\) 11274.2 1.39357
\(404\) 2301.49 0.283424
\(405\) 0 0
\(406\) 277.171 0.0338812
\(407\) 7242.86 0.882101
\(408\) −450.906 −0.0547137
\(409\) 11914.0 1.44037 0.720184 0.693783i \(-0.244057\pi\)
0.720184 + 0.693783i \(0.244057\pi\)
\(410\) 0 0
\(411\) −4468.60 −0.536301
\(412\) 1016.88 0.121597
\(413\) −3605.49 −0.429575
\(414\) −2868.72 −0.340556
\(415\) 0 0
\(416\) −2854.14 −0.336384
\(417\) 2256.85 0.265032
\(418\) −603.959 −0.0706713
\(419\) −12093.0 −1.40998 −0.704990 0.709217i \(-0.749049\pi\)
−0.704990 + 0.709217i \(0.749049\pi\)
\(420\) 0 0
\(421\) −12188.5 −1.41100 −0.705500 0.708710i \(-0.749277\pi\)
−0.705500 + 0.708710i \(0.749277\pi\)
\(422\) −5868.59 −0.676963
\(423\) −1056.91 −0.121487
\(424\) −5076.03 −0.581401
\(425\) 0 0
\(426\) −2412.60 −0.274392
\(427\) 2770.01 0.313935
\(428\) −4570.42 −0.516168
\(429\) 6848.84 0.770781
\(430\) 0 0
\(431\) 4968.16 0.555238 0.277619 0.960691i \(-0.410455\pi\)
0.277619 + 0.960691i \(0.410455\pi\)
\(432\) −432.000 −0.0481125
\(433\) −14483.7 −1.60749 −0.803745 0.594974i \(-0.797162\pi\)
−0.803745 + 0.594974i \(0.797162\pi\)
\(434\) −1769.66 −0.195729
\(435\) 0 0
\(436\) −8217.13 −0.902589
\(437\) 1880.28 0.205826
\(438\) 1819.03 0.198440
\(439\) −9937.64 −1.08040 −0.540202 0.841535i \(-0.681652\pi\)
−0.540202 + 0.841535i \(0.681652\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) −3351.43 −0.360659
\(443\) 17139.6 1.83821 0.919105 0.394013i \(-0.128913\pi\)
0.919105 + 0.394013i \(0.128913\pi\)
\(444\) −3395.63 −0.362950
\(445\) 0 0
\(446\) 7252.60 0.770001
\(447\) −5127.03 −0.542506
\(448\) 448.000 0.0472456
\(449\) 1555.34 0.163477 0.0817385 0.996654i \(-0.473953\pi\)
0.0817385 + 0.996654i \(0.473953\pi\)
\(450\) 0 0
\(451\) −3695.63 −0.385855
\(452\) 3563.31 0.370805
\(453\) 8320.84 0.863018
\(454\) 4378.90 0.452669
\(455\) 0 0
\(456\) 283.151 0.0290784
\(457\) 18409.2 1.88435 0.942174 0.335124i \(-0.108778\pi\)
0.942174 + 0.335124i \(0.108778\pi\)
\(458\) −11002.0 −1.12247
\(459\) −507.269 −0.0515845
\(460\) 0 0
\(461\) 6616.52 0.668465 0.334232 0.942491i \(-0.391523\pi\)
0.334232 + 0.942491i \(0.391523\pi\)
\(462\) −1075.03 −0.108257
\(463\) −12605.5 −1.26529 −0.632644 0.774443i \(-0.718030\pi\)
−0.632644 + 0.774443i \(0.718030\pi\)
\(464\) 316.767 0.0316930
\(465\) 0 0
\(466\) −7855.43 −0.780892
\(467\) 16291.5 1.61431 0.807155 0.590340i \(-0.201006\pi\)
0.807155 + 0.590340i \(0.201006\pi\)
\(468\) −3210.91 −0.317146
\(469\) −5894.84 −0.580381
\(470\) 0 0
\(471\) 1060.43 0.103741
\(472\) −4120.55 −0.401830
\(473\) 8368.04 0.813452
\(474\) −1598.30 −0.154879
\(475\) 0 0
\(476\) 526.057 0.0506550
\(477\) −5710.54 −0.548150
\(478\) 8870.22 0.848775
\(479\) 11506.3 1.09757 0.548785 0.835963i \(-0.315091\pi\)
0.548785 + 0.835963i \(0.315091\pi\)
\(480\) 0 0
\(481\) −25238.6 −2.39247
\(482\) 9151.62 0.864823
\(483\) 3346.84 0.315293
\(484\) −2703.40 −0.253888
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) 16502.9 1.53556 0.767780 0.640714i \(-0.221361\pi\)
0.767780 + 0.640714i \(0.221361\pi\)
\(488\) 3165.73 0.293660
\(489\) 2655.69 0.245592
\(490\) 0 0
\(491\) 9269.67 0.852004 0.426002 0.904722i \(-0.359922\pi\)
0.426002 + 0.904722i \(0.359922\pi\)
\(492\) 1732.60 0.158764
\(493\) 371.959 0.0339801
\(494\) 2104.56 0.191678
\(495\) 0 0
\(496\) −2022.47 −0.183087
\(497\) 2814.70 0.254037
\(498\) 4519.52 0.406676
\(499\) 13167.3 1.18126 0.590631 0.806941i \(-0.298879\pi\)
0.590631 + 0.806941i \(0.298879\pi\)
\(500\) 0 0
\(501\) 9660.78 0.861500
\(502\) 3293.91 0.292857
\(503\) −16299.1 −1.44481 −0.722406 0.691469i \(-0.756964\pi\)
−0.722406 + 0.691469i \(0.756964\pi\)
\(504\) 504.000 0.0445435
\(505\) 0 0
\(506\) −8158.62 −0.716788
\(507\) −17274.6 −1.51319
\(508\) −9216.64 −0.804965
\(509\) −10595.4 −0.922656 −0.461328 0.887230i \(-0.652627\pi\)
−0.461328 + 0.887230i \(0.652627\pi\)
\(510\) 0 0
\(511\) −2122.20 −0.183719
\(512\) 512.000 0.0441942
\(513\) 318.545 0.0274154
\(514\) −5623.27 −0.482552
\(515\) 0 0
\(516\) −3923.14 −0.334703
\(517\) −3005.85 −0.255700
\(518\) 3961.57 0.336026
\(519\) 11341.9 0.959254
\(520\) 0 0
\(521\) −3930.10 −0.330481 −0.165241 0.986253i \(-0.552840\pi\)
−0.165241 + 0.986253i \(0.552840\pi\)
\(522\) 356.363 0.0298805
\(523\) 15430.7 1.29013 0.645064 0.764129i \(-0.276831\pi\)
0.645064 + 0.764129i \(0.276831\pi\)
\(524\) 3820.77 0.318532
\(525\) 0 0
\(526\) 6206.26 0.514459
\(527\) −2374.85 −0.196300
\(528\) −1228.60 −0.101265
\(529\) 13232.9 1.08761
\(530\) 0 0
\(531\) −4635.62 −0.378849
\(532\) −330.343 −0.0269214
\(533\) 12877.8 1.04653
\(534\) 5057.80 0.409874
\(535\) 0 0
\(536\) −6736.96 −0.542896
\(537\) −13602.2 −1.09307
\(538\) −122.375 −0.00980665
\(539\) 1254.20 0.100227
\(540\) 0 0
\(541\) −24132.0 −1.91777 −0.958885 0.283794i \(-0.908407\pi\)
−0.958885 + 0.283794i \(0.908407\pi\)
\(542\) 195.257 0.0154742
\(543\) −5416.48 −0.428072
\(544\) 601.208 0.0473834
\(545\) 0 0
\(546\) 3746.06 0.293620
\(547\) −3505.64 −0.274022 −0.137011 0.990569i \(-0.543750\pi\)
−0.137011 + 0.990569i \(0.543750\pi\)
\(548\) 5958.13 0.464450
\(549\) 3561.45 0.276865
\(550\) 0 0
\(551\) −233.576 −0.0180593
\(552\) 3824.96 0.294930
\(553\) 1864.69 0.143390
\(554\) −9438.48 −0.723831
\(555\) 0 0
\(556\) −3009.13 −0.229525
\(557\) 14427.0 1.09747 0.548737 0.835995i \(-0.315109\pi\)
0.548737 + 0.835995i \(0.315109\pi\)
\(558\) −2275.27 −0.172616
\(559\) −29159.4 −2.20628
\(560\) 0 0
\(561\) −1442.67 −0.108573
\(562\) 1990.19 0.149379
\(563\) 9972.47 0.746518 0.373259 0.927727i \(-0.378240\pi\)
0.373259 + 0.927727i \(0.378240\pi\)
\(564\) 1409.22 0.105210
\(565\) 0 0
\(566\) 15991.2 1.18756
\(567\) 567.000 0.0419961
\(568\) 3216.80 0.237630
\(569\) −25180.3 −1.85521 −0.927605 0.373563i \(-0.878136\pi\)
−0.927605 + 0.373563i \(0.878136\pi\)
\(570\) 0 0
\(571\) 6146.38 0.450470 0.225235 0.974305i \(-0.427685\pi\)
0.225235 + 0.974305i \(0.427685\pi\)
\(572\) −9131.79 −0.667516
\(573\) −10077.5 −0.734715
\(574\) −2021.37 −0.146987
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) −12735.9 −0.918895 −0.459447 0.888205i \(-0.651952\pi\)
−0.459447 + 0.888205i \(0.651952\pi\)
\(578\) −9120.04 −0.656304
\(579\) −8401.69 −0.603044
\(580\) 0 0
\(581\) −5272.77 −0.376508
\(582\) 7211.51 0.513620
\(583\) −16240.7 −1.15372
\(584\) −2425.37 −0.171854
\(585\) 0 0
\(586\) 17861.6 1.25914
\(587\) −13223.9 −0.929829 −0.464915 0.885355i \(-0.653915\pi\)
−0.464915 + 0.885355i \(0.653915\pi\)
\(588\) −588.000 −0.0412393
\(589\) 1491.31 0.104327
\(590\) 0 0
\(591\) 9757.57 0.679142
\(592\) 4527.51 0.314324
\(593\) 2498.96 0.173052 0.0865261 0.996250i \(-0.472423\pi\)
0.0865261 + 0.996250i \(0.472423\pi\)
\(594\) −1382.18 −0.0954739
\(595\) 0 0
\(596\) 6836.04 0.469824
\(597\) 4575.92 0.313702
\(598\) 28429.6 1.94410
\(599\) −9468.29 −0.645850 −0.322925 0.946425i \(-0.604666\pi\)
−0.322925 + 0.946425i \(0.604666\pi\)
\(600\) 0 0
\(601\) −12334.1 −0.837137 −0.418569 0.908185i \(-0.637468\pi\)
−0.418569 + 0.908185i \(0.637468\pi\)
\(602\) 4577.00 0.309875
\(603\) −7579.08 −0.511848
\(604\) −11094.4 −0.747395
\(605\) 0 0
\(606\) −3452.23 −0.231415
\(607\) −25245.6 −1.68812 −0.844060 0.536248i \(-0.819841\pi\)
−0.844060 + 0.536248i \(0.819841\pi\)
\(608\) −377.535 −0.0251827
\(609\) −415.757 −0.0276639
\(610\) 0 0
\(611\) 10474.2 0.693521
\(612\) 676.359 0.0446735
\(613\) 4007.86 0.264071 0.132036 0.991245i \(-0.457849\pi\)
0.132036 + 0.991245i \(0.457849\pi\)
\(614\) −5031.58 −0.330714
\(615\) 0 0
\(616\) 1433.37 0.0937535
\(617\) 14349.2 0.936266 0.468133 0.883658i \(-0.344927\pi\)
0.468133 + 0.883658i \(0.344927\pi\)
\(618\) −1525.32 −0.0992839
\(619\) −6004.19 −0.389869 −0.194934 0.980816i \(-0.562449\pi\)
−0.194934 + 0.980816i \(0.562449\pi\)
\(620\) 0 0
\(621\) 4303.08 0.278062
\(622\) 7518.78 0.484688
\(623\) −5900.77 −0.379469
\(624\) 4281.21 0.274656
\(625\) 0 0
\(626\) −13651.8 −0.871624
\(627\) 905.939 0.0577029
\(628\) −1413.91 −0.0898426
\(629\) 5316.36 0.337007
\(630\) 0 0
\(631\) 17130.6 1.08076 0.540378 0.841422i \(-0.318281\pi\)
0.540378 + 0.841422i \(0.318281\pi\)
\(632\) 2131.07 0.134129
\(633\) 8802.88 0.552738
\(634\) 4929.87 0.308817
\(635\) 0 0
\(636\) 7614.05 0.474712
\(637\) −4370.40 −0.271839
\(638\) 1013.49 0.0628912
\(639\) 3618.90 0.224040
\(640\) 0 0
\(641\) 13484.7 0.830911 0.415456 0.909613i \(-0.363622\pi\)
0.415456 + 0.909613i \(0.363622\pi\)
\(642\) 6855.64 0.421449
\(643\) 18209.9 1.11684 0.558419 0.829559i \(-0.311408\pi\)
0.558419 + 0.829559i \(0.311408\pi\)
\(644\) −4462.46 −0.273052
\(645\) 0 0
\(646\) −443.314 −0.0270000
\(647\) 13402.9 0.814406 0.407203 0.913338i \(-0.366504\pi\)
0.407203 + 0.913338i \(0.366504\pi\)
\(648\) 648.000 0.0392837
\(649\) −13183.7 −0.797387
\(650\) 0 0
\(651\) 2654.49 0.159812
\(652\) −3540.92 −0.212689
\(653\) 1922.32 0.115201 0.0576003 0.998340i \(-0.481655\pi\)
0.0576003 + 0.998340i \(0.481655\pi\)
\(654\) 12325.7 0.736961
\(655\) 0 0
\(656\) −2310.14 −0.137494
\(657\) −2728.54 −0.162025
\(658\) −1644.09 −0.0974060
\(659\) 22722.3 1.34315 0.671574 0.740937i \(-0.265618\pi\)
0.671574 + 0.740937i \(0.265618\pi\)
\(660\) 0 0
\(661\) −16049.3 −0.944393 −0.472196 0.881493i \(-0.656539\pi\)
−0.472196 + 0.881493i \(0.656539\pi\)
\(662\) 7560.72 0.443891
\(663\) 5027.14 0.294477
\(664\) −6026.02 −0.352191
\(665\) 0 0
\(666\) 5093.45 0.296347
\(667\) −3155.27 −0.183167
\(668\) −12881.0 −0.746081
\(669\) −10878.9 −0.628703
\(670\) 0 0
\(671\) 10128.7 0.582735
\(672\) −672.000 −0.0385758
\(673\) −16507.8 −0.945513 −0.472757 0.881193i \(-0.656741\pi\)
−0.472757 + 0.881193i \(0.656741\pi\)
\(674\) −3828.78 −0.218811
\(675\) 0 0
\(676\) 23032.7 1.31047
\(677\) 15118.9 0.858298 0.429149 0.903234i \(-0.358813\pi\)
0.429149 + 0.903234i \(0.358813\pi\)
\(678\) −5344.96 −0.302761
\(679\) −8413.43 −0.475520
\(680\) 0 0
\(681\) −6568.35 −0.369603
\(682\) −6470.86 −0.363317
\(683\) 68.6595 0.00384654 0.00192327 0.999998i \(-0.499388\pi\)
0.00192327 + 0.999998i \(0.499388\pi\)
\(684\) −424.727 −0.0237424
\(685\) 0 0
\(686\) 686.000 0.0381802
\(687\) 16503.0 0.916490
\(688\) 5230.86 0.289861
\(689\) 56592.6 3.12918
\(690\) 0 0
\(691\) −3167.95 −0.174406 −0.0872030 0.996191i \(-0.527793\pi\)
−0.0872030 + 0.996191i \(0.527793\pi\)
\(692\) −15122.5 −0.830738
\(693\) 1612.54 0.0883917
\(694\) 18237.9 0.997550
\(695\) 0 0
\(696\) −475.151 −0.0258772
\(697\) −2712.64 −0.147416
\(698\) 9664.89 0.524100
\(699\) 11783.1 0.637596
\(700\) 0 0
\(701\) 6930.44 0.373408 0.186704 0.982416i \(-0.440219\pi\)
0.186704 + 0.982416i \(0.440219\pi\)
\(702\) 4816.36 0.258948
\(703\) −3338.46 −0.179107
\(704\) 1638.14 0.0876984
\(705\) 0 0
\(706\) −5613.15 −0.299226
\(707\) 4027.60 0.214248
\(708\) 6180.83 0.328093
\(709\) 20689.6 1.09593 0.547966 0.836501i \(-0.315402\pi\)
0.547966 + 0.836501i \(0.315402\pi\)
\(710\) 0 0
\(711\) 2397.45 0.126458
\(712\) −6743.74 −0.354961
\(713\) 20145.5 1.05814
\(714\) −789.086 −0.0413596
\(715\) 0 0
\(716\) 18136.3 0.946627
\(717\) −13305.3 −0.693022
\(718\) −2150.13 −0.111758
\(719\) −2807.47 −0.145620 −0.0728101 0.997346i \(-0.523197\pi\)
−0.0728101 + 0.997346i \(0.523197\pi\)
\(720\) 0 0
\(721\) 1779.54 0.0919190
\(722\) −13439.6 −0.692757
\(723\) −13727.4 −0.706125
\(724\) 7221.97 0.370721
\(725\) 0 0
\(726\) 4055.09 0.207298
\(727\) 3059.84 0.156098 0.0780489 0.996950i \(-0.475131\pi\)
0.0780489 + 0.996950i \(0.475131\pi\)
\(728\) −4994.74 −0.254282
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 6142.25 0.310779
\(732\) −4748.60 −0.239772
\(733\) 483.122 0.0243445 0.0121723 0.999926i \(-0.496125\pi\)
0.0121723 + 0.999926i \(0.496125\pi\)
\(734\) −734.041 −0.0369127
\(735\) 0 0
\(736\) −5099.95 −0.255417
\(737\) −21554.8 −1.07732
\(738\) −2598.91 −0.129630
\(739\) 15972.4 0.795066 0.397533 0.917588i \(-0.369866\pi\)
0.397533 + 0.917588i \(0.369866\pi\)
\(740\) 0 0
\(741\) −3156.84 −0.156504
\(742\) −8883.06 −0.439498
\(743\) 1310.03 0.0646840 0.0323420 0.999477i \(-0.489703\pi\)
0.0323420 + 0.999477i \(0.489703\pi\)
\(744\) 3033.70 0.149490
\(745\) 0 0
\(746\) 2609.11 0.128052
\(747\) −6779.28 −0.332049
\(748\) 1923.56 0.0940271
\(749\) −7998.24 −0.390186
\(750\) 0 0
\(751\) −14752.9 −0.716830 −0.358415 0.933562i \(-0.616683\pi\)
−0.358415 + 0.933562i \(0.616683\pi\)
\(752\) −1878.96 −0.0911150
\(753\) −4940.87 −0.239117
\(754\) −3531.63 −0.170576
\(755\) 0 0
\(756\) −756.000 −0.0363696
\(757\) −3934.60 −0.188911 −0.0944555 0.995529i \(-0.530111\pi\)
−0.0944555 + 0.995529i \(0.530111\pi\)
\(758\) 10681.2 0.511820
\(759\) 12237.9 0.585255
\(760\) 0 0
\(761\) 17102.3 0.814662 0.407331 0.913281i \(-0.366460\pi\)
0.407331 + 0.913281i \(0.366460\pi\)
\(762\) 13825.0 0.657251
\(763\) −14380.0 −0.682293
\(764\) 13436.6 0.636282
\(765\) 0 0
\(766\) −13324.5 −0.628505
\(767\) 45940.0 2.16271
\(768\) −768.000 −0.0360844
\(769\) −32173.5 −1.50872 −0.754361 0.656460i \(-0.772053\pi\)
−0.754361 + 0.656460i \(0.772053\pi\)
\(770\) 0 0
\(771\) 8434.91 0.394002
\(772\) 11202.3 0.522251
\(773\) 19329.5 0.899398 0.449699 0.893180i \(-0.351531\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(774\) 5884.71 0.273284
\(775\) 0 0
\(776\) −9615.35 −0.444808
\(777\) −5942.36 −0.274364
\(778\) −12627.0 −0.581875
\(779\) 1703.43 0.0783464
\(780\) 0 0
\(781\) 10292.1 0.471551
\(782\) −5988.54 −0.273849
\(783\) −534.545 −0.0243973
\(784\) 784.000 0.0357143
\(785\) 0 0
\(786\) −5731.15 −0.260081
\(787\) −4050.20 −0.183449 −0.0917244 0.995784i \(-0.529238\pi\)
−0.0917244 + 0.995784i \(0.529238\pi\)
\(788\) −13010.1 −0.588154
\(789\) −9309.39 −0.420054
\(790\) 0 0
\(791\) 6235.79 0.280302
\(792\) 1842.91 0.0826828
\(793\) −35294.7 −1.58052
\(794\) 28421.2 1.27031
\(795\) 0 0
\(796\) −6101.22 −0.271674
\(797\) −30864.7 −1.37175 −0.685874 0.727720i \(-0.740580\pi\)
−0.685874 + 0.727720i \(0.740580\pi\)
\(798\) 495.514 0.0219812
\(799\) −2206.33 −0.0976902
\(800\) 0 0
\(801\) −7586.71 −0.334661
\(802\) 11157.2 0.491239
\(803\) −7759.95 −0.341025
\(804\) 10105.4 0.443273
\(805\) 0 0
\(806\) 22548.4 0.985402
\(807\) 183.563 0.00800710
\(808\) 4602.97 0.200411
\(809\) 14213.1 0.617682 0.308841 0.951114i \(-0.400059\pi\)
0.308841 + 0.951114i \(0.400059\pi\)
\(810\) 0 0
\(811\) 1619.57 0.0701242 0.0350621 0.999385i \(-0.488837\pi\)
0.0350621 + 0.999385i \(0.488837\pi\)
\(812\) 554.343 0.0239577
\(813\) −292.885 −0.0126346
\(814\) 14485.7 0.623740
\(815\) 0 0
\(816\) −901.812 −0.0386884
\(817\) −3857.09 −0.165168
\(818\) 23828.0 1.01849
\(819\) −5619.09 −0.239740
\(820\) 0 0
\(821\) −20628.1 −0.876888 −0.438444 0.898758i \(-0.644470\pi\)
−0.438444 + 0.898758i \(0.644470\pi\)
\(822\) −8937.20 −0.379222
\(823\) 11868.2 0.502671 0.251335 0.967900i \(-0.419130\pi\)
0.251335 + 0.967900i \(0.419130\pi\)
\(824\) 2033.76 0.0859824
\(825\) 0 0
\(826\) −7210.97 −0.303755
\(827\) −9149.35 −0.384709 −0.192354 0.981326i \(-0.561612\pi\)
−0.192354 + 0.981326i \(0.561612\pi\)
\(828\) −5737.44 −0.240809
\(829\) −11693.7 −0.489916 −0.244958 0.969534i \(-0.578774\pi\)
−0.244958 + 0.969534i \(0.578774\pi\)
\(830\) 0 0
\(831\) 14157.7 0.591006
\(832\) −5708.28 −0.237859
\(833\) 920.600 0.0382916
\(834\) 4513.70 0.187406
\(835\) 0 0
\(836\) −1207.92 −0.0499722
\(837\) 3412.91 0.140941
\(838\) −24186.0 −0.997007
\(839\) −41472.3 −1.70654 −0.853268 0.521473i \(-0.825383\pi\)
−0.853268 + 0.521473i \(0.825383\pi\)
\(840\) 0 0
\(841\) −23997.0 −0.983929
\(842\) −24377.0 −0.997727
\(843\) −2985.28 −0.121967
\(844\) −11737.2 −0.478685
\(845\) 0 0
\(846\) −2113.82 −0.0859040
\(847\) −4730.94 −0.191921
\(848\) −10152.1 −0.411112
\(849\) −23986.8 −0.969639
\(850\) 0 0
\(851\) −45097.8 −1.81661
\(852\) −4825.20 −0.194024
\(853\) 10326.4 0.414501 0.207251 0.978288i \(-0.433548\pi\)
0.207251 + 0.978288i \(0.433548\pi\)
\(854\) 5540.03 0.221986
\(855\) 0 0
\(856\) −9140.85 −0.364986
\(857\) −17375.4 −0.692571 −0.346285 0.938129i \(-0.612557\pi\)
−0.346285 + 0.938129i \(0.612557\pi\)
\(858\) 13697.7 0.545025
\(859\) 10624.9 0.422022 0.211011 0.977484i \(-0.432324\pi\)
0.211011 + 0.977484i \(0.432324\pi\)
\(860\) 0 0
\(861\) 3032.06 0.120014
\(862\) 9936.31 0.392613
\(863\) 22377.1 0.882648 0.441324 0.897348i \(-0.354509\pi\)
0.441324 + 0.897348i \(0.354509\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) −28967.4 −1.13667
\(867\) 13680.1 0.535870
\(868\) −3539.31 −0.138401
\(869\) 6818.33 0.266164
\(870\) 0 0
\(871\) 75110.3 2.92195
\(872\) −16434.3 −0.638227
\(873\) −10817.3 −0.419369
\(874\) 3760.56 0.145541
\(875\) 0 0
\(876\) 3638.06 0.140318
\(877\) −22267.1 −0.857362 −0.428681 0.903456i \(-0.641021\pi\)
−0.428681 + 0.903456i \(0.641021\pi\)
\(878\) −19875.3 −0.763961
\(879\) −26792.4 −1.02808
\(880\) 0 0
\(881\) −7273.13 −0.278136 −0.139068 0.990283i \(-0.544411\pi\)
−0.139068 + 0.990283i \(0.544411\pi\)
\(882\) 882.000 0.0336718
\(883\) −43452.0 −1.65603 −0.828016 0.560705i \(-0.810530\pi\)
−0.828016 + 0.560705i \(0.810530\pi\)
\(884\) −6702.86 −0.255024
\(885\) 0 0
\(886\) 34279.2 1.29981
\(887\) 34206.2 1.29485 0.647424 0.762130i \(-0.275846\pi\)
0.647424 + 0.762130i \(0.275846\pi\)
\(888\) −6791.27 −0.256644
\(889\) −16129.1 −0.608496
\(890\) 0 0
\(891\) 2073.27 0.0779541
\(892\) 14505.2 0.544473
\(893\) 1385.49 0.0519190
\(894\) −10254.1 −0.383610
\(895\) 0 0
\(896\) 896.000 0.0334077
\(897\) −42644.4 −1.58735
\(898\) 3110.69 0.115596
\(899\) −2502.54 −0.0928415
\(900\) 0 0
\(901\) −11920.9 −0.440780
\(902\) −7391.27 −0.272841
\(903\) −6865.50 −0.253012
\(904\) 7126.61 0.262199
\(905\) 0 0
\(906\) 16641.7 0.610246
\(907\) −24922.5 −0.912391 −0.456196 0.889880i \(-0.650788\pi\)
−0.456196 + 0.889880i \(0.650788\pi\)
\(908\) 8757.80 0.320086
\(909\) 5178.34 0.188949
\(910\) 0 0
\(911\) 29200.7 1.06198 0.530989 0.847379i \(-0.321821\pi\)
0.530989 + 0.847379i \(0.321821\pi\)
\(912\) 566.302 0.0205616
\(913\) −19280.2 −0.698885
\(914\) 36818.4 1.33244
\(915\) 0 0
\(916\) −22004.0 −0.793704
\(917\) 6686.34 0.240788
\(918\) −1014.54 −0.0364758
\(919\) −31961.7 −1.14725 −0.573623 0.819119i \(-0.694463\pi\)
−0.573623 + 0.819119i \(0.694463\pi\)
\(920\) 0 0
\(921\) 7547.38 0.270027
\(922\) 13233.0 0.472676
\(923\) −35864.0 −1.27896
\(924\) −2150.06 −0.0765494
\(925\) 0 0
\(926\) −25211.0 −0.894693
\(927\) 2287.98 0.0810650
\(928\) 633.535 0.0224103
\(929\) −21349.4 −0.753985 −0.376993 0.926216i \(-0.623042\pi\)
−0.376993 + 0.926216i \(0.623042\pi\)
\(930\) 0 0
\(931\) −578.100 −0.0203507
\(932\) −15710.9 −0.552174
\(933\) −11278.2 −0.395746
\(934\) 32583.1 1.14149
\(935\) 0 0
\(936\) −6421.81 −0.224256
\(937\) 3802.95 0.132590 0.0662951 0.997800i \(-0.478882\pi\)
0.0662951 + 0.997800i \(0.478882\pi\)
\(938\) −11789.7 −0.410391
\(939\) 20477.7 0.711678
\(940\) 0 0
\(941\) −42690.8 −1.47894 −0.739470 0.673190i \(-0.764924\pi\)
−0.739470 + 0.673190i \(0.764924\pi\)
\(942\) 2120.87 0.0733562
\(943\) 23010.9 0.794633
\(944\) −8241.11 −0.284137
\(945\) 0 0
\(946\) 16736.1 0.575197
\(947\) −40333.0 −1.38400 −0.691998 0.721899i \(-0.743270\pi\)
−0.691998 + 0.721899i \(0.743270\pi\)
\(948\) −3196.60 −0.109516
\(949\) 27040.4 0.924941
\(950\) 0 0
\(951\) −7394.81 −0.252148
\(952\) 1052.11 0.0358185
\(953\) 39603.5 1.34615 0.673077 0.739573i \(-0.264972\pi\)
0.673077 + 0.739573i \(0.264972\pi\)
\(954\) −11421.1 −0.387601
\(955\) 0 0
\(956\) 17740.4 0.600174
\(957\) −1520.24 −0.0513505
\(958\) 23012.6 0.776099
\(959\) 10426.7 0.351091
\(960\) 0 0
\(961\) −13813.0 −0.463664
\(962\) −50477.1 −1.69173
\(963\) −10283.5 −0.344112
\(964\) 18303.2 0.611522
\(965\) 0 0
\(966\) 6693.69 0.222946
\(967\) −4139.69 −0.137666 −0.0688332 0.997628i \(-0.521928\pi\)
−0.0688332 + 0.997628i \(0.521928\pi\)
\(968\) −5406.79 −0.179526
\(969\) 664.971 0.0220454
\(970\) 0 0
\(971\) 42137.2 1.39263 0.696316 0.717735i \(-0.254821\pi\)
0.696316 + 0.717735i \(0.254821\pi\)
\(972\) −972.000 −0.0320750
\(973\) −5265.99 −0.173504
\(974\) 33005.8 1.08580
\(975\) 0 0
\(976\) 6331.46 0.207649
\(977\) −39782.4 −1.30271 −0.651357 0.758772i \(-0.725800\pi\)
−0.651357 + 0.758772i \(0.725800\pi\)
\(978\) 5311.38 0.173660
\(979\) −21576.5 −0.704381
\(980\) 0 0
\(981\) −18488.5 −0.601726
\(982\) 18539.3 0.602458
\(983\) 3799.91 0.123294 0.0616471 0.998098i \(-0.480365\pi\)
0.0616471 + 0.998098i \(0.480365\pi\)
\(984\) 3465.21 0.112263
\(985\) 0 0
\(986\) 743.918 0.0240276
\(987\) 2466.13 0.0795317
\(988\) 4209.13 0.135537
\(989\) −52103.7 −1.67523
\(990\) 0 0
\(991\) 20113.7 0.644735 0.322367 0.946615i \(-0.395521\pi\)
0.322367 + 0.946615i \(0.395521\pi\)
\(992\) −4044.93 −0.129462
\(993\) −11341.1 −0.362435
\(994\) 5629.40 0.179632
\(995\) 0 0
\(996\) 9039.04 0.287563
\(997\) 40814.2 1.29649 0.648244 0.761432i \(-0.275504\pi\)
0.648244 + 0.761432i \(0.275504\pi\)
\(998\) 26334.6 0.835279
\(999\) −7640.17 −0.241966
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.4.a.bg.1.2 2
5.2 odd 4 210.4.g.a.169.4 yes 4
5.3 odd 4 210.4.g.a.169.2 4
5.4 even 2 1050.4.a.bc.1.2 2
15.2 even 4 630.4.g.e.379.1 4
15.8 even 4 630.4.g.e.379.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.4.g.a.169.2 4 5.3 odd 4
210.4.g.a.169.4 yes 4 5.2 odd 4
630.4.g.e.379.1 4 15.2 even 4
630.4.g.e.379.3 4 15.8 even 4
1050.4.a.bc.1.2 2 5.4 even 2
1050.4.a.bg.1.2 2 1.1 even 1 trivial