Defining parameters
Level: | \( N \) | \(=\) | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1050.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 39 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1050))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 744 | 58 | 686 |
Cusp forms | 696 | 58 | 638 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(51\) | \(4\) | \(47\) | \(48\) | \(4\) | \(44\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(45\) | \(3\) | \(42\) | \(42\) | \(3\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(44\) | \(4\) | \(40\) | \(41\) | \(4\) | \(37\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(47\) | \(4\) | \(43\) | \(44\) | \(4\) | \(40\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(45\) | \(3\) | \(42\) | \(42\) | \(3\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(45\) | \(4\) | \(41\) | \(42\) | \(4\) | \(38\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(48\) | \(4\) | \(44\) | \(45\) | \(4\) | \(41\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(47\) | \(4\) | \(43\) | \(44\) | \(4\) | \(40\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(45\) | \(2\) | \(43\) | \(42\) | \(2\) | \(40\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(48\) | \(4\) | \(44\) | \(45\) | \(4\) | \(41\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(47\) | \(5\) | \(42\) | \(44\) | \(5\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(45\) | \(3\) | \(42\) | \(42\) | \(3\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(45\) | \(4\) | \(41\) | \(42\) | \(4\) | \(38\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(48\) | \(2\) | \(46\) | \(45\) | \(2\) | \(43\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(47\) | \(3\) | \(44\) | \(44\) | \(3\) | \(41\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(47\) | \(5\) | \(42\) | \(44\) | \(5\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(378\) | \(34\) | \(344\) | \(354\) | \(34\) | \(320\) | \(24\) | \(0\) | \(24\) | ||||||
Minus space | \(-\) | \(366\) | \(24\) | \(342\) | \(342\) | \(24\) | \(318\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1050))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1050))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1050)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 2}\)