Properties

Label 630.4.a.p.1.1
Level $630$
Weight $4$
Character 630.1
Self dual yes
Analytic conductor $37.171$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,4,Mod(1,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,0,4,-5,0,7,8,0,-10,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} +7.00000 q^{7} +8.00000 q^{8} -10.0000 q^{10} -24.0000 q^{11} +74.0000 q^{13} +14.0000 q^{14} +16.0000 q^{16} -24.0000 q^{17} -34.0000 q^{19} -20.0000 q^{20} -48.0000 q^{22} +168.000 q^{23} +25.0000 q^{25} +148.000 q^{26} +28.0000 q^{28} -162.000 q^{29} +128.000 q^{31} +32.0000 q^{32} -48.0000 q^{34} -35.0000 q^{35} +380.000 q^{37} -68.0000 q^{38} -40.0000 q^{40} +126.000 q^{41} -34.0000 q^{43} -96.0000 q^{44} +336.000 q^{46} +294.000 q^{47} +49.0000 q^{49} +50.0000 q^{50} +296.000 q^{52} +318.000 q^{53} +120.000 q^{55} +56.0000 q^{56} -324.000 q^{58} +444.000 q^{59} -592.000 q^{61} +256.000 q^{62} +64.0000 q^{64} -370.000 q^{65} +110.000 q^{67} -96.0000 q^{68} -70.0000 q^{70} -198.000 q^{71} +866.000 q^{73} +760.000 q^{74} -136.000 q^{76} -168.000 q^{77} +776.000 q^{79} -80.0000 q^{80} +252.000 q^{82} -576.000 q^{83} +120.000 q^{85} -68.0000 q^{86} -192.000 q^{88} -354.000 q^{89} +518.000 q^{91} +672.000 q^{92} +588.000 q^{94} +170.000 q^{95} +614.000 q^{97} +98.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −24.0000 −0.657843 −0.328921 0.944357i \(-0.606685\pi\)
−0.328921 + 0.944357i \(0.606685\pi\)
\(12\) 0 0
\(13\) 74.0000 1.57876 0.789381 0.613904i \(-0.210402\pi\)
0.789381 + 0.613904i \(0.210402\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −24.0000 −0.342403 −0.171202 0.985236i \(-0.554765\pi\)
−0.171202 + 0.985236i \(0.554765\pi\)
\(18\) 0 0
\(19\) −34.0000 −0.410533 −0.205267 0.978706i \(-0.565806\pi\)
−0.205267 + 0.978706i \(0.565806\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −48.0000 −0.465165
\(23\) 168.000 1.52306 0.761531 0.648129i \(-0.224448\pi\)
0.761531 + 0.648129i \(0.224448\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 148.000 1.11635
\(27\) 0 0
\(28\) 28.0000 0.188982
\(29\) −162.000 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(30\) 0 0
\(31\) 128.000 0.741596 0.370798 0.928714i \(-0.379084\pi\)
0.370798 + 0.928714i \(0.379084\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −48.0000 −0.242116
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 380.000 1.68842 0.844211 0.536011i \(-0.180069\pi\)
0.844211 + 0.536011i \(0.180069\pi\)
\(38\) −68.0000 −0.290291
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) 126.000 0.479949 0.239974 0.970779i \(-0.422861\pi\)
0.239974 + 0.970779i \(0.422861\pi\)
\(42\) 0 0
\(43\) −34.0000 −0.120580 −0.0602901 0.998181i \(-0.519203\pi\)
−0.0602901 + 0.998181i \(0.519203\pi\)
\(44\) −96.0000 −0.328921
\(45\) 0 0
\(46\) 336.000 1.07697
\(47\) 294.000 0.912432 0.456216 0.889869i \(-0.349204\pi\)
0.456216 + 0.889869i \(0.349204\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 296.000 0.789381
\(53\) 318.000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 120.000 0.294196
\(56\) 56.0000 0.133631
\(57\) 0 0
\(58\) −324.000 −0.733505
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) −592.000 −1.24259 −0.621294 0.783578i \(-0.713393\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(62\) 256.000 0.524388
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −370.000 −0.706044
\(66\) 0 0
\(67\) 110.000 0.200577 0.100288 0.994958i \(-0.468023\pi\)
0.100288 + 0.994958i \(0.468023\pi\)
\(68\) −96.0000 −0.171202
\(69\) 0 0
\(70\) −70.0000 −0.119523
\(71\) −198.000 −0.330962 −0.165481 0.986213i \(-0.552918\pi\)
−0.165481 + 0.986213i \(0.552918\pi\)
\(72\) 0 0
\(73\) 866.000 1.38846 0.694230 0.719753i \(-0.255745\pi\)
0.694230 + 0.719753i \(0.255745\pi\)
\(74\) 760.000 1.19389
\(75\) 0 0
\(76\) −136.000 −0.205267
\(77\) −168.000 −0.248641
\(78\) 0 0
\(79\) 776.000 1.10515 0.552575 0.833463i \(-0.313645\pi\)
0.552575 + 0.833463i \(0.313645\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) 252.000 0.339375
\(83\) −576.000 −0.761738 −0.380869 0.924629i \(-0.624375\pi\)
−0.380869 + 0.924629i \(0.624375\pi\)
\(84\) 0 0
\(85\) 120.000 0.153127
\(86\) −68.0000 −0.0852631
\(87\) 0 0
\(88\) −192.000 −0.232583
\(89\) −354.000 −0.421617 −0.210809 0.977527i \(-0.567610\pi\)
−0.210809 + 0.977527i \(0.567610\pi\)
\(90\) 0 0
\(91\) 518.000 0.596716
\(92\) 672.000 0.761531
\(93\) 0 0
\(94\) 588.000 0.645187
\(95\) 170.000 0.183596
\(96\) 0 0
\(97\) 614.000 0.642704 0.321352 0.946960i \(-0.395863\pi\)
0.321352 + 0.946960i \(0.395863\pi\)
\(98\) 98.0000 0.101015
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 606.000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 1928.00 1.84438 0.922192 0.386733i \(-0.126397\pi\)
0.922192 + 0.386733i \(0.126397\pi\)
\(104\) 592.000 0.558177
\(105\) 0 0
\(106\) 636.000 0.582772
\(107\) −948.000 −0.856510 −0.428255 0.903658i \(-0.640872\pi\)
−0.428255 + 0.903658i \(0.640872\pi\)
\(108\) 0 0
\(109\) −34.0000 −0.0298772 −0.0149386 0.999888i \(-0.504755\pi\)
−0.0149386 + 0.999888i \(0.504755\pi\)
\(110\) 240.000 0.208028
\(111\) 0 0
\(112\) 112.000 0.0944911
\(113\) −2358.00 −1.96303 −0.981513 0.191395i \(-0.938699\pi\)
−0.981513 + 0.191395i \(0.938699\pi\)
\(114\) 0 0
\(115\) −840.000 −0.681134
\(116\) −648.000 −0.518666
\(117\) 0 0
\(118\) 888.000 0.692771
\(119\) −168.000 −0.129416
\(120\) 0 0
\(121\) −755.000 −0.567243
\(122\) −1184.00 −0.878642
\(123\) 0 0
\(124\) 512.000 0.370798
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 128.000 0.0894344 0.0447172 0.999000i \(-0.485761\pi\)
0.0447172 + 0.999000i \(0.485761\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −740.000 −0.499248
\(131\) −1020.00 −0.680289 −0.340144 0.940373i \(-0.610476\pi\)
−0.340144 + 0.940373i \(0.610476\pi\)
\(132\) 0 0
\(133\) −238.000 −0.155167
\(134\) 220.000 0.141829
\(135\) 0 0
\(136\) −192.000 −0.121058
\(137\) −1914.00 −1.19361 −0.596803 0.802388i \(-0.703563\pi\)
−0.596803 + 0.802388i \(0.703563\pi\)
\(138\) 0 0
\(139\) 218.000 0.133025 0.0665127 0.997786i \(-0.478813\pi\)
0.0665127 + 0.997786i \(0.478813\pi\)
\(140\) −140.000 −0.0845154
\(141\) 0 0
\(142\) −396.000 −0.234025
\(143\) −1776.00 −1.03858
\(144\) 0 0
\(145\) 810.000 0.463909
\(146\) 1732.00 0.981790
\(147\) 0 0
\(148\) 1520.00 0.844211
\(149\) 1626.00 0.894007 0.447004 0.894532i \(-0.352491\pi\)
0.447004 + 0.894532i \(0.352491\pi\)
\(150\) 0 0
\(151\) 272.000 0.146590 0.0732949 0.997310i \(-0.476649\pi\)
0.0732949 + 0.997310i \(0.476649\pi\)
\(152\) −272.000 −0.145145
\(153\) 0 0
\(154\) −336.000 −0.175816
\(155\) −640.000 −0.331652
\(156\) 0 0
\(157\) 2774.00 1.41012 0.705061 0.709146i \(-0.250919\pi\)
0.705061 + 0.709146i \(0.250919\pi\)
\(158\) 1552.00 0.781459
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) 1176.00 0.575663
\(162\) 0 0
\(163\) −3418.00 −1.64244 −0.821222 0.570609i \(-0.806707\pi\)
−0.821222 + 0.570609i \(0.806707\pi\)
\(164\) 504.000 0.239974
\(165\) 0 0
\(166\) −1152.00 −0.538630
\(167\) 1026.00 0.475415 0.237707 0.971337i \(-0.423604\pi\)
0.237707 + 0.971337i \(0.423604\pi\)
\(168\) 0 0
\(169\) 3279.00 1.49249
\(170\) 240.000 0.108277
\(171\) 0 0
\(172\) −136.000 −0.0602901
\(173\) 2850.00 1.25249 0.626247 0.779625i \(-0.284590\pi\)
0.626247 + 0.779625i \(0.284590\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −384.000 −0.164461
\(177\) 0 0
\(178\) −708.000 −0.298128
\(179\) −2796.00 −1.16750 −0.583751 0.811933i \(-0.698416\pi\)
−0.583751 + 0.811933i \(0.698416\pi\)
\(180\) 0 0
\(181\) 488.000 0.200402 0.100201 0.994967i \(-0.468051\pi\)
0.100201 + 0.994967i \(0.468051\pi\)
\(182\) 1036.00 0.421942
\(183\) 0 0
\(184\) 1344.00 0.538484
\(185\) −1900.00 −0.755085
\(186\) 0 0
\(187\) 576.000 0.225248
\(188\) 1176.00 0.456216
\(189\) 0 0
\(190\) 340.000 0.129822
\(191\) −2334.00 −0.884201 −0.442100 0.896966i \(-0.645766\pi\)
−0.442100 + 0.896966i \(0.645766\pi\)
\(192\) 0 0
\(193\) −1762.00 −0.657158 −0.328579 0.944476i \(-0.606570\pi\)
−0.328579 + 0.944476i \(0.606570\pi\)
\(194\) 1228.00 0.454460
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −4770.00 −1.72512 −0.862559 0.505956i \(-0.831140\pi\)
−0.862559 + 0.505956i \(0.831140\pi\)
\(198\) 0 0
\(199\) 92.0000 0.0327724 0.0163862 0.999866i \(-0.494784\pi\)
0.0163862 + 0.999866i \(0.494784\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 1212.00 0.422159
\(203\) −1134.00 −0.392075
\(204\) 0 0
\(205\) −630.000 −0.214640
\(206\) 3856.00 1.30418
\(207\) 0 0
\(208\) 1184.00 0.394691
\(209\) 816.000 0.270067
\(210\) 0 0
\(211\) −5632.00 −1.83755 −0.918775 0.394783i \(-0.870820\pi\)
−0.918775 + 0.394783i \(0.870820\pi\)
\(212\) 1272.00 0.412082
\(213\) 0 0
\(214\) −1896.00 −0.605644
\(215\) 170.000 0.0539251
\(216\) 0 0
\(217\) 896.000 0.280297
\(218\) −68.0000 −0.0211263
\(219\) 0 0
\(220\) 480.000 0.147098
\(221\) −1776.00 −0.540573
\(222\) 0 0
\(223\) −1384.00 −0.415603 −0.207802 0.978171i \(-0.566631\pi\)
−0.207802 + 0.978171i \(0.566631\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) −4716.00 −1.38807
\(227\) −1428.00 −0.417532 −0.208766 0.977966i \(-0.566945\pi\)
−0.208766 + 0.977966i \(0.566945\pi\)
\(228\) 0 0
\(229\) −2212.00 −0.638310 −0.319155 0.947702i \(-0.603399\pi\)
−0.319155 + 0.947702i \(0.603399\pi\)
\(230\) −1680.00 −0.481634
\(231\) 0 0
\(232\) −1296.00 −0.366752
\(233\) 1986.00 0.558400 0.279200 0.960233i \(-0.409931\pi\)
0.279200 + 0.960233i \(0.409931\pi\)
\(234\) 0 0
\(235\) −1470.00 −0.408052
\(236\) 1776.00 0.489863
\(237\) 0 0
\(238\) −336.000 −0.0915111
\(239\) 1062.00 0.287427 0.143714 0.989619i \(-0.454096\pi\)
0.143714 + 0.989619i \(0.454096\pi\)
\(240\) 0 0
\(241\) −2158.00 −0.576801 −0.288400 0.957510i \(-0.593123\pi\)
−0.288400 + 0.957510i \(0.593123\pi\)
\(242\) −1510.00 −0.401101
\(243\) 0 0
\(244\) −2368.00 −0.621294
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −2516.00 −0.648135
\(248\) 1024.00 0.262194
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 6444.00 1.62048 0.810242 0.586095i \(-0.199335\pi\)
0.810242 + 0.586095i \(0.199335\pi\)
\(252\) 0 0
\(253\) −4032.00 −1.00194
\(254\) 256.000 0.0632396
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −7716.00 −1.87280 −0.936402 0.350928i \(-0.885866\pi\)
−0.936402 + 0.350928i \(0.885866\pi\)
\(258\) 0 0
\(259\) 2660.00 0.638164
\(260\) −1480.00 −0.353022
\(261\) 0 0
\(262\) −2040.00 −0.481037
\(263\) 7716.00 1.80908 0.904542 0.426385i \(-0.140213\pi\)
0.904542 + 0.426385i \(0.140213\pi\)
\(264\) 0 0
\(265\) −1590.00 −0.368577
\(266\) −476.000 −0.109720
\(267\) 0 0
\(268\) 440.000 0.100288
\(269\) −474.000 −0.107436 −0.0537180 0.998556i \(-0.517107\pi\)
−0.0537180 + 0.998556i \(0.517107\pi\)
\(270\) 0 0
\(271\) −3040.00 −0.681427 −0.340714 0.940167i \(-0.610669\pi\)
−0.340714 + 0.940167i \(0.610669\pi\)
\(272\) −384.000 −0.0856008
\(273\) 0 0
\(274\) −3828.00 −0.844007
\(275\) −600.000 −0.131569
\(276\) 0 0
\(277\) 4736.00 1.02729 0.513644 0.858004i \(-0.328295\pi\)
0.513644 + 0.858004i \(0.328295\pi\)
\(278\) 436.000 0.0940631
\(279\) 0 0
\(280\) −280.000 −0.0597614
\(281\) −432.000 −0.0917116 −0.0458558 0.998948i \(-0.514601\pi\)
−0.0458558 + 0.998948i \(0.514601\pi\)
\(282\) 0 0
\(283\) 6428.00 1.35019 0.675097 0.737729i \(-0.264102\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(284\) −792.000 −0.165481
\(285\) 0 0
\(286\) −3552.00 −0.734385
\(287\) 882.000 0.181404
\(288\) 0 0
\(289\) −4337.00 −0.882760
\(290\) 1620.00 0.328033
\(291\) 0 0
\(292\) 3464.00 0.694230
\(293\) −3546.00 −0.707029 −0.353515 0.935429i \(-0.615014\pi\)
−0.353515 + 0.935429i \(0.615014\pi\)
\(294\) 0 0
\(295\) −2220.00 −0.438147
\(296\) 3040.00 0.596947
\(297\) 0 0
\(298\) 3252.00 0.632159
\(299\) 12432.0 2.40455
\(300\) 0 0
\(301\) −238.000 −0.0455751
\(302\) 544.000 0.103655
\(303\) 0 0
\(304\) −544.000 −0.102633
\(305\) 2960.00 0.555702
\(306\) 0 0
\(307\) −4156.00 −0.772624 −0.386312 0.922368i \(-0.626251\pi\)
−0.386312 + 0.922368i \(0.626251\pi\)
\(308\) −672.000 −0.124321
\(309\) 0 0
\(310\) −1280.00 −0.234513
\(311\) −6180.00 −1.12680 −0.563401 0.826183i \(-0.690508\pi\)
−0.563401 + 0.826183i \(0.690508\pi\)
\(312\) 0 0
\(313\) −8422.00 −1.52089 −0.760447 0.649400i \(-0.775020\pi\)
−0.760447 + 0.649400i \(0.775020\pi\)
\(314\) 5548.00 0.997107
\(315\) 0 0
\(316\) 3104.00 0.552575
\(317\) 1338.00 0.237065 0.118532 0.992950i \(-0.462181\pi\)
0.118532 + 0.992950i \(0.462181\pi\)
\(318\) 0 0
\(319\) 3888.00 0.682402
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) 2352.00 0.407055
\(323\) 816.000 0.140568
\(324\) 0 0
\(325\) 1850.00 0.315752
\(326\) −6836.00 −1.16138
\(327\) 0 0
\(328\) 1008.00 0.169687
\(329\) 2058.00 0.344867
\(330\) 0 0
\(331\) −3760.00 −0.624376 −0.312188 0.950020i \(-0.601062\pi\)
−0.312188 + 0.950020i \(0.601062\pi\)
\(332\) −2304.00 −0.380869
\(333\) 0 0
\(334\) 2052.00 0.336169
\(335\) −550.000 −0.0897006
\(336\) 0 0
\(337\) 3710.00 0.599693 0.299847 0.953987i \(-0.403065\pi\)
0.299847 + 0.953987i \(0.403065\pi\)
\(338\) 6558.00 1.05535
\(339\) 0 0
\(340\) 480.000 0.0765637
\(341\) −3072.00 −0.487854
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −272.000 −0.0426316
\(345\) 0 0
\(346\) 5700.00 0.885647
\(347\) −8484.00 −1.31252 −0.656261 0.754534i \(-0.727863\pi\)
−0.656261 + 0.754534i \(0.727863\pi\)
\(348\) 0 0
\(349\) −9484.00 −1.45463 −0.727316 0.686302i \(-0.759233\pi\)
−0.727316 + 0.686302i \(0.759233\pi\)
\(350\) 350.000 0.0534522
\(351\) 0 0
\(352\) −768.000 −0.116291
\(353\) −7260.00 −1.09465 −0.547324 0.836921i \(-0.684353\pi\)
−0.547324 + 0.836921i \(0.684353\pi\)
\(354\) 0 0
\(355\) 990.000 0.148011
\(356\) −1416.00 −0.210809
\(357\) 0 0
\(358\) −5592.00 −0.825549
\(359\) 8646.00 1.27108 0.635541 0.772067i \(-0.280777\pi\)
0.635541 + 0.772067i \(0.280777\pi\)
\(360\) 0 0
\(361\) −5703.00 −0.831462
\(362\) 976.000 0.141706
\(363\) 0 0
\(364\) 2072.00 0.298358
\(365\) −4330.00 −0.620939
\(366\) 0 0
\(367\) −4696.00 −0.667927 −0.333963 0.942586i \(-0.608386\pi\)
−0.333963 + 0.942586i \(0.608386\pi\)
\(368\) 2688.00 0.380765
\(369\) 0 0
\(370\) −3800.00 −0.533926
\(371\) 2226.00 0.311504
\(372\) 0 0
\(373\) −2212.00 −0.307059 −0.153530 0.988144i \(-0.549064\pi\)
−0.153530 + 0.988144i \(0.549064\pi\)
\(374\) 1152.00 0.159274
\(375\) 0 0
\(376\) 2352.00 0.322593
\(377\) −11988.0 −1.63770
\(378\) 0 0
\(379\) 1280.00 0.173481 0.0867403 0.996231i \(-0.472355\pi\)
0.0867403 + 0.996231i \(0.472355\pi\)
\(380\) 680.000 0.0917981
\(381\) 0 0
\(382\) −4668.00 −0.625224
\(383\) 12390.0 1.65300 0.826501 0.562936i \(-0.190328\pi\)
0.826501 + 0.562936i \(0.190328\pi\)
\(384\) 0 0
\(385\) 840.000 0.111196
\(386\) −3524.00 −0.464681
\(387\) 0 0
\(388\) 2456.00 0.321352
\(389\) 8346.00 1.08781 0.543906 0.839146i \(-0.316945\pi\)
0.543906 + 0.839146i \(0.316945\pi\)
\(390\) 0 0
\(391\) −4032.00 −0.521501
\(392\) 392.000 0.0505076
\(393\) 0 0
\(394\) −9540.00 −1.21984
\(395\) −3880.00 −0.494238
\(396\) 0 0
\(397\) 3602.00 0.455363 0.227682 0.973736i \(-0.426885\pi\)
0.227682 + 0.973736i \(0.426885\pi\)
\(398\) 184.000 0.0231736
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −2784.00 −0.346699 −0.173350 0.984860i \(-0.555459\pi\)
−0.173350 + 0.984860i \(0.555459\pi\)
\(402\) 0 0
\(403\) 9472.00 1.17080
\(404\) 2424.00 0.298511
\(405\) 0 0
\(406\) −2268.00 −0.277239
\(407\) −9120.00 −1.11072
\(408\) 0 0
\(409\) 14690.0 1.77597 0.887987 0.459868i \(-0.152103\pi\)
0.887987 + 0.459868i \(0.152103\pi\)
\(410\) −1260.00 −0.151773
\(411\) 0 0
\(412\) 7712.00 0.922192
\(413\) 3108.00 0.370302
\(414\) 0 0
\(415\) 2880.00 0.340659
\(416\) 2368.00 0.279088
\(417\) 0 0
\(418\) 1632.00 0.190966
\(419\) 5076.00 0.591835 0.295917 0.955214i \(-0.404375\pi\)
0.295917 + 0.955214i \(0.404375\pi\)
\(420\) 0 0
\(421\) −5362.00 −0.620731 −0.310366 0.950617i \(-0.600451\pi\)
−0.310366 + 0.950617i \(0.600451\pi\)
\(422\) −11264.0 −1.29934
\(423\) 0 0
\(424\) 2544.00 0.291386
\(425\) −600.000 −0.0684806
\(426\) 0 0
\(427\) −4144.00 −0.469654
\(428\) −3792.00 −0.428255
\(429\) 0 0
\(430\) 340.000 0.0381308
\(431\) 4746.00 0.530410 0.265205 0.964192i \(-0.414560\pi\)
0.265205 + 0.964192i \(0.414560\pi\)
\(432\) 0 0
\(433\) −1186.00 −0.131629 −0.0658147 0.997832i \(-0.520965\pi\)
−0.0658147 + 0.997832i \(0.520965\pi\)
\(434\) 1792.00 0.198200
\(435\) 0 0
\(436\) −136.000 −0.0149386
\(437\) −5712.00 −0.625268
\(438\) 0 0
\(439\) 17120.0 1.86126 0.930630 0.365962i \(-0.119260\pi\)
0.930630 + 0.365962i \(0.119260\pi\)
\(440\) 960.000 0.104014
\(441\) 0 0
\(442\) −3552.00 −0.382243
\(443\) 4164.00 0.446586 0.223293 0.974751i \(-0.428319\pi\)
0.223293 + 0.974751i \(0.428319\pi\)
\(444\) 0 0
\(445\) 1770.00 0.188553
\(446\) −2768.00 −0.293876
\(447\) 0 0
\(448\) 448.000 0.0472456
\(449\) −7380.00 −0.775688 −0.387844 0.921725i \(-0.626780\pi\)
−0.387844 + 0.921725i \(0.626780\pi\)
\(450\) 0 0
\(451\) −3024.00 −0.315731
\(452\) −9432.00 −0.981513
\(453\) 0 0
\(454\) −2856.00 −0.295239
\(455\) −2590.00 −0.266860
\(456\) 0 0
\(457\) −19366.0 −1.98228 −0.991141 0.132811i \(-0.957600\pi\)
−0.991141 + 0.132811i \(0.957600\pi\)
\(458\) −4424.00 −0.451354
\(459\) 0 0
\(460\) −3360.00 −0.340567
\(461\) 1494.00 0.150938 0.0754691 0.997148i \(-0.475955\pi\)
0.0754691 + 0.997148i \(0.475955\pi\)
\(462\) 0 0
\(463\) −5452.00 −0.547248 −0.273624 0.961837i \(-0.588222\pi\)
−0.273624 + 0.961837i \(0.588222\pi\)
\(464\) −2592.00 −0.259333
\(465\) 0 0
\(466\) 3972.00 0.394848
\(467\) 11400.0 1.12961 0.564806 0.825224i \(-0.308951\pi\)
0.564806 + 0.825224i \(0.308951\pi\)
\(468\) 0 0
\(469\) 770.000 0.0758109
\(470\) −2940.00 −0.288536
\(471\) 0 0
\(472\) 3552.00 0.346386
\(473\) 816.000 0.0793229
\(474\) 0 0
\(475\) −850.000 −0.0821067
\(476\) −672.000 −0.0647081
\(477\) 0 0
\(478\) 2124.00 0.203242
\(479\) 6780.00 0.646735 0.323368 0.946273i \(-0.395185\pi\)
0.323368 + 0.946273i \(0.395185\pi\)
\(480\) 0 0
\(481\) 28120.0 2.66562
\(482\) −4316.00 −0.407860
\(483\) 0 0
\(484\) −3020.00 −0.283621
\(485\) −3070.00 −0.287426
\(486\) 0 0
\(487\) 3008.00 0.279888 0.139944 0.990159i \(-0.455308\pi\)
0.139944 + 0.990159i \(0.455308\pi\)
\(488\) −4736.00 −0.439321
\(489\) 0 0
\(490\) −490.000 −0.0451754
\(491\) −2556.00 −0.234930 −0.117465 0.993077i \(-0.537477\pi\)
−0.117465 + 0.993077i \(0.537477\pi\)
\(492\) 0 0
\(493\) 3888.00 0.355186
\(494\) −5032.00 −0.458300
\(495\) 0 0
\(496\) 2048.00 0.185399
\(497\) −1386.00 −0.125092
\(498\) 0 0
\(499\) −4264.00 −0.382531 −0.191265 0.981538i \(-0.561259\pi\)
−0.191265 + 0.981538i \(0.561259\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) 12888.0 1.14586
\(503\) 9450.00 0.837683 0.418842 0.908059i \(-0.362436\pi\)
0.418842 + 0.908059i \(0.362436\pi\)
\(504\) 0 0
\(505\) −3030.00 −0.266996
\(506\) −8064.00 −0.708475
\(507\) 0 0
\(508\) 512.000 0.0447172
\(509\) −9246.00 −0.805151 −0.402575 0.915387i \(-0.631885\pi\)
−0.402575 + 0.915387i \(0.631885\pi\)
\(510\) 0 0
\(511\) 6062.00 0.524789
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −15432.0 −1.32427
\(515\) −9640.00 −0.824833
\(516\) 0 0
\(517\) −7056.00 −0.600237
\(518\) 5320.00 0.451250
\(519\) 0 0
\(520\) −2960.00 −0.249624
\(521\) 5718.00 0.480826 0.240413 0.970671i \(-0.422717\pi\)
0.240413 + 0.970671i \(0.422717\pi\)
\(522\) 0 0
\(523\) 3872.00 0.323730 0.161865 0.986813i \(-0.448249\pi\)
0.161865 + 0.986813i \(0.448249\pi\)
\(524\) −4080.00 −0.340144
\(525\) 0 0
\(526\) 15432.0 1.27922
\(527\) −3072.00 −0.253925
\(528\) 0 0
\(529\) 16057.0 1.31972
\(530\) −3180.00 −0.260623
\(531\) 0 0
\(532\) −952.000 −0.0775835
\(533\) 9324.00 0.757725
\(534\) 0 0
\(535\) 4740.00 0.383043
\(536\) 880.000 0.0709146
\(537\) 0 0
\(538\) −948.000 −0.0759687
\(539\) −1176.00 −0.0939776
\(540\) 0 0
\(541\) −22822.0 −1.81367 −0.906834 0.421488i \(-0.861508\pi\)
−0.906834 + 0.421488i \(0.861508\pi\)
\(542\) −6080.00 −0.481842
\(543\) 0 0
\(544\) −768.000 −0.0605289
\(545\) 170.000 0.0133615
\(546\) 0 0
\(547\) 20918.0 1.63508 0.817540 0.575871i \(-0.195337\pi\)
0.817540 + 0.575871i \(0.195337\pi\)
\(548\) −7656.00 −0.596803
\(549\) 0 0
\(550\) −1200.00 −0.0930330
\(551\) 5508.00 0.425860
\(552\) 0 0
\(553\) 5432.00 0.417707
\(554\) 9472.00 0.726402
\(555\) 0 0
\(556\) 872.000 0.0665127
\(557\) −5334.00 −0.405761 −0.202880 0.979204i \(-0.565030\pi\)
−0.202880 + 0.979204i \(0.565030\pi\)
\(558\) 0 0
\(559\) −2516.00 −0.190368
\(560\) −560.000 −0.0422577
\(561\) 0 0
\(562\) −864.000 −0.0648499
\(563\) 19308.0 1.44536 0.722678 0.691185i \(-0.242911\pi\)
0.722678 + 0.691185i \(0.242911\pi\)
\(564\) 0 0
\(565\) 11790.0 0.877892
\(566\) 12856.0 0.954731
\(567\) 0 0
\(568\) −1584.00 −0.117013
\(569\) 18744.0 1.38100 0.690500 0.723332i \(-0.257390\pi\)
0.690500 + 0.723332i \(0.257390\pi\)
\(570\) 0 0
\(571\) 23276.0 1.70590 0.852951 0.521991i \(-0.174810\pi\)
0.852951 + 0.521991i \(0.174810\pi\)
\(572\) −7104.00 −0.519289
\(573\) 0 0
\(574\) 1764.00 0.128272
\(575\) 4200.00 0.304612
\(576\) 0 0
\(577\) 15698.0 1.13261 0.566305 0.824196i \(-0.308372\pi\)
0.566305 + 0.824196i \(0.308372\pi\)
\(578\) −8674.00 −0.624206
\(579\) 0 0
\(580\) 3240.00 0.231955
\(581\) −4032.00 −0.287910
\(582\) 0 0
\(583\) −7632.00 −0.542170
\(584\) 6928.00 0.490895
\(585\) 0 0
\(586\) −7092.00 −0.499945
\(587\) −16164.0 −1.13656 −0.568279 0.822836i \(-0.692391\pi\)
−0.568279 + 0.822836i \(0.692391\pi\)
\(588\) 0 0
\(589\) −4352.00 −0.304450
\(590\) −4440.00 −0.309817
\(591\) 0 0
\(592\) 6080.00 0.422106
\(593\) 4416.00 0.305807 0.152903 0.988241i \(-0.451138\pi\)
0.152903 + 0.988241i \(0.451138\pi\)
\(594\) 0 0
\(595\) 840.000 0.0578767
\(596\) 6504.00 0.447004
\(597\) 0 0
\(598\) 24864.0 1.70028
\(599\) 17274.0 1.17829 0.589146 0.808027i \(-0.299464\pi\)
0.589146 + 0.808027i \(0.299464\pi\)
\(600\) 0 0
\(601\) 17930.0 1.21694 0.608469 0.793578i \(-0.291784\pi\)
0.608469 + 0.793578i \(0.291784\pi\)
\(602\) −476.000 −0.0322264
\(603\) 0 0
\(604\) 1088.00 0.0732949
\(605\) 3775.00 0.253679
\(606\) 0 0
\(607\) 14456.0 0.966641 0.483320 0.875444i \(-0.339431\pi\)
0.483320 + 0.875444i \(0.339431\pi\)
\(608\) −1088.00 −0.0725727
\(609\) 0 0
\(610\) 5920.00 0.392941
\(611\) 21756.0 1.44051
\(612\) 0 0
\(613\) −556.000 −0.0366340 −0.0183170 0.999832i \(-0.505831\pi\)
−0.0183170 + 0.999832i \(0.505831\pi\)
\(614\) −8312.00 −0.546327
\(615\) 0 0
\(616\) −1344.00 −0.0879080
\(617\) −8118.00 −0.529689 −0.264845 0.964291i \(-0.585321\pi\)
−0.264845 + 0.964291i \(0.585321\pi\)
\(618\) 0 0
\(619\) 23006.0 1.49384 0.746922 0.664912i \(-0.231531\pi\)
0.746922 + 0.664912i \(0.231531\pi\)
\(620\) −2560.00 −0.165826
\(621\) 0 0
\(622\) −12360.0 −0.796770
\(623\) −2478.00 −0.159356
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −16844.0 −1.07543
\(627\) 0 0
\(628\) 11096.0 0.705061
\(629\) −9120.00 −0.578121
\(630\) 0 0
\(631\) −10312.0 −0.650577 −0.325289 0.945615i \(-0.605461\pi\)
−0.325289 + 0.945615i \(0.605461\pi\)
\(632\) 6208.00 0.390729
\(633\) 0 0
\(634\) 2676.00 0.167630
\(635\) −640.000 −0.0399963
\(636\) 0 0
\(637\) 3626.00 0.225537
\(638\) 7776.00 0.482531
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 27876.0 1.71768 0.858842 0.512240i \(-0.171184\pi\)
0.858842 + 0.512240i \(0.171184\pi\)
\(642\) 0 0
\(643\) −29536.0 −1.81149 −0.905743 0.423826i \(-0.860687\pi\)
−0.905743 + 0.423826i \(0.860687\pi\)
\(644\) 4704.00 0.287832
\(645\) 0 0
\(646\) 1632.00 0.0993966
\(647\) −11994.0 −0.728799 −0.364399 0.931243i \(-0.618726\pi\)
−0.364399 + 0.931243i \(0.618726\pi\)
\(648\) 0 0
\(649\) −10656.0 −0.644506
\(650\) 3700.00 0.223271
\(651\) 0 0
\(652\) −13672.0 −0.821222
\(653\) −15798.0 −0.946744 −0.473372 0.880863i \(-0.656963\pi\)
−0.473372 + 0.880863i \(0.656963\pi\)
\(654\) 0 0
\(655\) 5100.00 0.304234
\(656\) 2016.00 0.119987
\(657\) 0 0
\(658\) 4116.00 0.243858
\(659\) 23256.0 1.37470 0.687348 0.726328i \(-0.258775\pi\)
0.687348 + 0.726328i \(0.258775\pi\)
\(660\) 0 0
\(661\) 7328.00 0.431204 0.215602 0.976481i \(-0.430829\pi\)
0.215602 + 0.976481i \(0.430829\pi\)
\(662\) −7520.00 −0.441500
\(663\) 0 0
\(664\) −4608.00 −0.269315
\(665\) 1190.00 0.0693928
\(666\) 0 0
\(667\) −27216.0 −1.57992
\(668\) 4104.00 0.237707
\(669\) 0 0
\(670\) −1100.00 −0.0634279
\(671\) 14208.0 0.817427
\(672\) 0 0
\(673\) −9898.00 −0.566924 −0.283462 0.958983i \(-0.591483\pi\)
−0.283462 + 0.958983i \(0.591483\pi\)
\(674\) 7420.00 0.424047
\(675\) 0 0
\(676\) 13116.0 0.746245
\(677\) 5514.00 0.313028 0.156514 0.987676i \(-0.449974\pi\)
0.156514 + 0.987676i \(0.449974\pi\)
\(678\) 0 0
\(679\) 4298.00 0.242919
\(680\) 960.000 0.0541387
\(681\) 0 0
\(682\) −6144.00 −0.344965
\(683\) −8196.00 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 9570.00 0.533797
\(686\) 686.000 0.0381802
\(687\) 0 0
\(688\) −544.000 −0.0301451
\(689\) 23532.0 1.30116
\(690\) 0 0
\(691\) −1978.00 −0.108895 −0.0544477 0.998517i \(-0.517340\pi\)
−0.0544477 + 0.998517i \(0.517340\pi\)
\(692\) 11400.0 0.626247
\(693\) 0 0
\(694\) −16968.0 −0.928093
\(695\) −1090.00 −0.0594907
\(696\) 0 0
\(697\) −3024.00 −0.164336
\(698\) −18968.0 −1.02858
\(699\) 0 0
\(700\) 700.000 0.0377964
\(701\) −28602.0 −1.54106 −0.770530 0.637404i \(-0.780008\pi\)
−0.770530 + 0.637404i \(0.780008\pi\)
\(702\) 0 0
\(703\) −12920.0 −0.693154
\(704\) −1536.00 −0.0822304
\(705\) 0 0
\(706\) −14520.0 −0.774033
\(707\) 4242.00 0.225653
\(708\) 0 0
\(709\) 15122.0 0.801014 0.400507 0.916294i \(-0.368834\pi\)
0.400507 + 0.916294i \(0.368834\pi\)
\(710\) 1980.00 0.104659
\(711\) 0 0
\(712\) −2832.00 −0.149064
\(713\) 21504.0 1.12950
\(714\) 0 0
\(715\) 8880.00 0.464466
\(716\) −11184.0 −0.583751
\(717\) 0 0
\(718\) 17292.0 0.898791
\(719\) 32460.0 1.68366 0.841832 0.539740i \(-0.181478\pi\)
0.841832 + 0.539740i \(0.181478\pi\)
\(720\) 0 0
\(721\) 13496.0 0.697111
\(722\) −11406.0 −0.587933
\(723\) 0 0
\(724\) 1952.00 0.100201
\(725\) −4050.00 −0.207467
\(726\) 0 0
\(727\) −17224.0 −0.878683 −0.439342 0.898320i \(-0.644788\pi\)
−0.439342 + 0.898320i \(0.644788\pi\)
\(728\) 4144.00 0.210971
\(729\) 0 0
\(730\) −8660.00 −0.439070
\(731\) 816.000 0.0412871
\(732\) 0 0
\(733\) 9218.00 0.464495 0.232247 0.972657i \(-0.425392\pi\)
0.232247 + 0.972657i \(0.425392\pi\)
\(734\) −9392.00 −0.472296
\(735\) 0 0
\(736\) 5376.00 0.269242
\(737\) −2640.00 −0.131948
\(738\) 0 0
\(739\) −5128.00 −0.255259 −0.127630 0.991822i \(-0.540737\pi\)
−0.127630 + 0.991822i \(0.540737\pi\)
\(740\) −7600.00 −0.377543
\(741\) 0 0
\(742\) 4452.00 0.220267
\(743\) 2520.00 0.124428 0.0622139 0.998063i \(-0.480184\pi\)
0.0622139 + 0.998063i \(0.480184\pi\)
\(744\) 0 0
\(745\) −8130.00 −0.399812
\(746\) −4424.00 −0.217124
\(747\) 0 0
\(748\) 2304.00 0.112624
\(749\) −6636.00 −0.323731
\(750\) 0 0
\(751\) 4520.00 0.219623 0.109812 0.993952i \(-0.464975\pi\)
0.109812 + 0.993952i \(0.464975\pi\)
\(752\) 4704.00 0.228108
\(753\) 0 0
\(754\) −23976.0 −1.15803
\(755\) −1360.00 −0.0655569
\(756\) 0 0
\(757\) −37420.0 −1.79664 −0.898318 0.439346i \(-0.855210\pi\)
−0.898318 + 0.439346i \(0.855210\pi\)
\(758\) 2560.00 0.122669
\(759\) 0 0
\(760\) 1360.00 0.0649110
\(761\) 6162.00 0.293525 0.146762 0.989172i \(-0.453115\pi\)
0.146762 + 0.989172i \(0.453115\pi\)
\(762\) 0 0
\(763\) −238.000 −0.0112925
\(764\) −9336.00 −0.442100
\(765\) 0 0
\(766\) 24780.0 1.16885
\(767\) 32856.0 1.54676
\(768\) 0 0
\(769\) 15806.0 0.741195 0.370597 0.928794i \(-0.379153\pi\)
0.370597 + 0.928794i \(0.379153\pi\)
\(770\) 1680.00 0.0786273
\(771\) 0 0
\(772\) −7048.00 −0.328579
\(773\) −36978.0 −1.72058 −0.860289 0.509807i \(-0.829717\pi\)
−0.860289 + 0.509807i \(0.829717\pi\)
\(774\) 0 0
\(775\) 3200.00 0.148319
\(776\) 4912.00 0.227230
\(777\) 0 0
\(778\) 16692.0 0.769199
\(779\) −4284.00 −0.197035
\(780\) 0 0
\(781\) 4752.00 0.217721
\(782\) −8064.00 −0.368757
\(783\) 0 0
\(784\) 784.000 0.0357143
\(785\) −13870.0 −0.630626
\(786\) 0 0
\(787\) 16436.0 0.744447 0.372224 0.928143i \(-0.378595\pi\)
0.372224 + 0.928143i \(0.378595\pi\)
\(788\) −19080.0 −0.862559
\(789\) 0 0
\(790\) −7760.00 −0.349479
\(791\) −16506.0 −0.741954
\(792\) 0 0
\(793\) −43808.0 −1.96175
\(794\) 7204.00 0.321990
\(795\) 0 0
\(796\) 368.000 0.0163862
\(797\) −33750.0 −1.49998 −0.749991 0.661448i \(-0.769942\pi\)
−0.749991 + 0.661448i \(0.769942\pi\)
\(798\) 0 0
\(799\) −7056.00 −0.312420
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −5568.00 −0.245153
\(803\) −20784.0 −0.913389
\(804\) 0 0
\(805\) −5880.00 −0.257444
\(806\) 18944.0 0.827883
\(807\) 0 0
\(808\) 4848.00 0.211079
\(809\) −4272.00 −0.185656 −0.0928279 0.995682i \(-0.529591\pi\)
−0.0928279 + 0.995682i \(0.529591\pi\)
\(810\) 0 0
\(811\) −27430.0 −1.18767 −0.593833 0.804588i \(-0.702386\pi\)
−0.593833 + 0.804588i \(0.702386\pi\)
\(812\) −4536.00 −0.196037
\(813\) 0 0
\(814\) −18240.0 −0.785395
\(815\) 17090.0 0.734523
\(816\) 0 0
\(817\) 1156.00 0.0495022
\(818\) 29380.0 1.25580
\(819\) 0 0
\(820\) −2520.00 −0.107320
\(821\) −19722.0 −0.838371 −0.419185 0.907901i \(-0.637684\pi\)
−0.419185 + 0.907901i \(0.637684\pi\)
\(822\) 0 0
\(823\) −12292.0 −0.520622 −0.260311 0.965525i \(-0.583825\pi\)
−0.260311 + 0.965525i \(0.583825\pi\)
\(824\) 15424.0 0.652088
\(825\) 0 0
\(826\) 6216.00 0.261843
\(827\) 40212.0 1.69082 0.845410 0.534118i \(-0.179356\pi\)
0.845410 + 0.534118i \(0.179356\pi\)
\(828\) 0 0
\(829\) −3940.00 −0.165069 −0.0825343 0.996588i \(-0.526301\pi\)
−0.0825343 + 0.996588i \(0.526301\pi\)
\(830\) 5760.00 0.240883
\(831\) 0 0
\(832\) 4736.00 0.197345
\(833\) −1176.00 −0.0489147
\(834\) 0 0
\(835\) −5130.00 −0.212612
\(836\) 3264.00 0.135033
\(837\) 0 0
\(838\) 10152.0 0.418490
\(839\) −288.000 −0.0118509 −0.00592543 0.999982i \(-0.501886\pi\)
−0.00592543 + 0.999982i \(0.501886\pi\)
\(840\) 0 0
\(841\) 1855.00 0.0760589
\(842\) −10724.0 −0.438923
\(843\) 0 0
\(844\) −22528.0 −0.918775
\(845\) −16395.0 −0.667462
\(846\) 0 0
\(847\) −5285.00 −0.214398
\(848\) 5088.00 0.206041
\(849\) 0 0
\(850\) −1200.00 −0.0484231
\(851\) 63840.0 2.57157
\(852\) 0 0
\(853\) −13966.0 −0.560594 −0.280297 0.959913i \(-0.590433\pi\)
−0.280297 + 0.959913i \(0.590433\pi\)
\(854\) −8288.00 −0.332095
\(855\) 0 0
\(856\) −7584.00 −0.302822
\(857\) −36708.0 −1.46315 −0.731576 0.681760i \(-0.761215\pi\)
−0.731576 + 0.681760i \(0.761215\pi\)
\(858\) 0 0
\(859\) −19906.0 −0.790668 −0.395334 0.918537i \(-0.629371\pi\)
−0.395334 + 0.918537i \(0.629371\pi\)
\(860\) 680.000 0.0269626
\(861\) 0 0
\(862\) 9492.00 0.375057
\(863\) 5244.00 0.206846 0.103423 0.994637i \(-0.467021\pi\)
0.103423 + 0.994637i \(0.467021\pi\)
\(864\) 0 0
\(865\) −14250.0 −0.560132
\(866\) −2372.00 −0.0930760
\(867\) 0 0
\(868\) 3584.00 0.140148
\(869\) −18624.0 −0.727015
\(870\) 0 0
\(871\) 8140.00 0.316663
\(872\) −272.000 −0.0105632
\(873\) 0 0
\(874\) −11424.0 −0.442131
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −26656.0 −1.02635 −0.513175 0.858284i \(-0.671531\pi\)
−0.513175 + 0.858284i \(0.671531\pi\)
\(878\) 34240.0 1.31611
\(879\) 0 0
\(880\) 1920.00 0.0735491
\(881\) −34182.0 −1.30717 −0.653587 0.756851i \(-0.726737\pi\)
−0.653587 + 0.756851i \(0.726737\pi\)
\(882\) 0 0
\(883\) −7522.00 −0.286677 −0.143338 0.989674i \(-0.545784\pi\)
−0.143338 + 0.989674i \(0.545784\pi\)
\(884\) −7104.00 −0.270287
\(885\) 0 0
\(886\) 8328.00 0.315784
\(887\) −33294.0 −1.26032 −0.630160 0.776466i \(-0.717011\pi\)
−0.630160 + 0.776466i \(0.717011\pi\)
\(888\) 0 0
\(889\) 896.000 0.0338030
\(890\) 3540.00 0.133327
\(891\) 0 0
\(892\) −5536.00 −0.207802
\(893\) −9996.00 −0.374584
\(894\) 0 0
\(895\) 13980.0 0.522123
\(896\) 896.000 0.0334077
\(897\) 0 0
\(898\) −14760.0 −0.548494
\(899\) −20736.0 −0.769282
\(900\) 0 0
\(901\) −7632.00 −0.282196
\(902\) −6048.00 −0.223255
\(903\) 0 0
\(904\) −18864.0 −0.694035
\(905\) −2440.00 −0.0896225
\(906\) 0 0
\(907\) −30274.0 −1.10830 −0.554152 0.832416i \(-0.686957\pi\)
−0.554152 + 0.832416i \(0.686957\pi\)
\(908\) −5712.00 −0.208766
\(909\) 0 0
\(910\) −5180.00 −0.188698
\(911\) 9954.00 0.362010 0.181005 0.983482i \(-0.442065\pi\)
0.181005 + 0.983482i \(0.442065\pi\)
\(912\) 0 0
\(913\) 13824.0 0.501104
\(914\) −38732.0 −1.40169
\(915\) 0 0
\(916\) −8848.00 −0.319155
\(917\) −7140.00 −0.257125
\(918\) 0 0
\(919\) −43000.0 −1.54346 −0.771730 0.635951i \(-0.780608\pi\)
−0.771730 + 0.635951i \(0.780608\pi\)
\(920\) −6720.00 −0.240817
\(921\) 0 0
\(922\) 2988.00 0.106729
\(923\) −14652.0 −0.522510
\(924\) 0 0
\(925\) 9500.00 0.337684
\(926\) −10904.0 −0.386963
\(927\) 0 0
\(928\) −5184.00 −0.183376
\(929\) −18534.0 −0.654554 −0.327277 0.944928i \(-0.606131\pi\)
−0.327277 + 0.944928i \(0.606131\pi\)
\(930\) 0 0
\(931\) −1666.00 −0.0586476
\(932\) 7944.00 0.279200
\(933\) 0 0
\(934\) 22800.0 0.798757
\(935\) −2880.00 −0.100734
\(936\) 0 0
\(937\) −6586.00 −0.229621 −0.114811 0.993387i \(-0.536626\pi\)
−0.114811 + 0.993387i \(0.536626\pi\)
\(938\) 1540.00 0.0536064
\(939\) 0 0
\(940\) −5880.00 −0.204026
\(941\) −13650.0 −0.472877 −0.236439 0.971646i \(-0.575980\pi\)
−0.236439 + 0.971646i \(0.575980\pi\)
\(942\) 0 0
\(943\) 21168.0 0.730991
\(944\) 7104.00 0.244932
\(945\) 0 0
\(946\) 1632.00 0.0560897
\(947\) 35484.0 1.21761 0.608804 0.793321i \(-0.291650\pi\)
0.608804 + 0.793321i \(0.291650\pi\)
\(948\) 0 0
\(949\) 64084.0 2.19205
\(950\) −1700.00 −0.0580582
\(951\) 0 0
\(952\) −1344.00 −0.0457556
\(953\) 45666.0 1.55222 0.776111 0.630597i \(-0.217190\pi\)
0.776111 + 0.630597i \(0.217190\pi\)
\(954\) 0 0
\(955\) 11670.0 0.395427
\(956\) 4248.00 0.143714
\(957\) 0 0
\(958\) 13560.0 0.457311
\(959\) −13398.0 −0.451141
\(960\) 0 0
\(961\) −13407.0 −0.450035
\(962\) 56240.0 1.88488
\(963\) 0 0
\(964\) −8632.00 −0.288400
\(965\) 8810.00 0.293890
\(966\) 0 0
\(967\) 35912.0 1.19426 0.597131 0.802143i \(-0.296307\pi\)
0.597131 + 0.802143i \(0.296307\pi\)
\(968\) −6040.00 −0.200551
\(969\) 0 0
\(970\) −6140.00 −0.203241
\(971\) −34284.0 −1.13309 −0.566543 0.824032i \(-0.691719\pi\)
−0.566543 + 0.824032i \(0.691719\pi\)
\(972\) 0 0
\(973\) 1526.00 0.0502788
\(974\) 6016.00 0.197911
\(975\) 0 0
\(976\) −9472.00 −0.310647
\(977\) 38370.0 1.25646 0.628232 0.778026i \(-0.283779\pi\)
0.628232 + 0.778026i \(0.283779\pi\)
\(978\) 0 0
\(979\) 8496.00 0.277358
\(980\) −980.000 −0.0319438
\(981\) 0 0
\(982\) −5112.00 −0.166121
\(983\) 2118.00 0.0687220 0.0343610 0.999409i \(-0.489060\pi\)
0.0343610 + 0.999409i \(0.489060\pi\)
\(984\) 0 0
\(985\) 23850.0 0.771497
\(986\) 7776.00 0.251154
\(987\) 0 0
\(988\) −10064.0 −0.324067
\(989\) −5712.00 −0.183651
\(990\) 0 0
\(991\) −35656.0 −1.14294 −0.571468 0.820624i \(-0.693626\pi\)
−0.571468 + 0.820624i \(0.693626\pi\)
\(992\) 4096.00 0.131097
\(993\) 0 0
\(994\) −2772.00 −0.0884532
\(995\) −460.000 −0.0146563
\(996\) 0 0
\(997\) −45718.0 −1.45226 −0.726130 0.687557i \(-0.758683\pi\)
−0.726130 + 0.687557i \(0.758683\pi\)
\(998\) −8528.00 −0.270490
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.a.p.1.1 yes 1
3.2 odd 2 630.4.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.4.a.i.1.1 1 3.2 odd 2
630.4.a.p.1.1 yes 1 1.1 even 1 trivial