Defining parameters
| Level: | \( N \) | \(=\) | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 630.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 27 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(630))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 448 | 30 | 418 |
| Cusp forms | 416 | 30 | 386 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(32\) | \(2\) | \(30\) | \(30\) | \(2\) | \(28\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(26\) | \(1\) | \(25\) | \(24\) | \(1\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(26\) | \(1\) | \(25\) | \(24\) | \(1\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(27\) | \(2\) | \(25\) | \(25\) | \(2\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(29\) | \(2\) | \(27\) | \(27\) | \(2\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(28\) | \(1\) | \(27\) | \(26\) | \(1\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(26\) | \(2\) | \(24\) | \(24\) | \(2\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(30\) | \(1\) | \(29\) | \(28\) | \(1\) | \(27\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(29\) | \(3\) | \(26\) | \(27\) | \(3\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(27\) | \(2\) | \(25\) | \(25\) | \(2\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(228\) | \(18\) | \(210\) | \(212\) | \(18\) | \(194\) | \(16\) | \(0\) | \(16\) | ||||||
| Minus space | \(-\) | \(220\) | \(12\) | \(208\) | \(204\) | \(12\) | \(192\) | \(16\) | \(0\) | \(16\) | ||||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(630))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(630))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(630)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(315))\)\(^{\oplus 2}\)