Properties

Label 630.2.ce.b.557.4
Level $630$
Weight $2$
Character 630.557
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(53,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.6040479020157644046336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} - 32x^{8} - 567x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.4
Root \(-1.47240 - 0.912166i\) of defining polynomial
Character \(\chi\) \(=\) 630.557
Dual form 630.2.ce.b.233.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(1.87809 - 1.21358i) q^{5} +(-1.94831 + 1.79000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.12819 - 0.686141i) q^{10} +(2.64338 + 1.52616i) q^{11} +(1.00000 - 1.00000i) q^{13} +(-2.34521 + 1.22474i) q^{14} +(0.500000 + 0.866025i) q^{16} +(1.11722 + 4.16954i) q^{17} +(5.47036 - 3.15831i) q^{19} +(2.23326 - 0.111944i) q^{20} +(2.15831 + 2.15831i) q^{22} +(-0.435690 + 1.62602i) q^{23} +(2.05446 - 4.55842i) q^{25} +(1.22474 - 0.707107i) q^{26} +(-2.58228 + 0.576028i) q^{28} -5.88074 q^{29} +(1.50000 - 2.59808i) q^{31} +(0.258819 + 0.965926i) q^{32} +4.31662i q^{34} +(-1.48680 + 5.72620i) q^{35} +(1.83013 - 6.83013i) q^{37} +(6.10139 - 1.63486i) q^{38} +(2.18614 + 0.469882i) q^{40} -2.82843i q^{41} +(-7.63325 + 7.63325i) q^{43} +(1.52616 + 2.64338i) q^{44} +(-0.841688 + 1.45785i) q^{46} +(-0.305836 - 0.0819485i) q^{47} +(0.591820 - 6.97494i) q^{49} +(3.16426 - 3.87137i) q^{50} +(1.36603 - 0.366025i) q^{52} +(1.57760 - 0.422716i) q^{53} +(6.81662 - 0.341688i) q^{55} +(-2.64338 - 0.111944i) q^{56} +(-5.68036 - 1.52205i) q^{58} +(-5.99269 + 10.3796i) q^{59} +(-3.15831 - 5.47036i) q^{61} +(2.12132 - 2.12132i) q^{62} +1.00000i q^{64} +(0.664513 - 3.09167i) q^{65} +(-14.5253 + 3.89204i) q^{67} +(-1.11722 + 4.16954i) q^{68} +(-2.91819 + 5.14628i) q^{70} -1.86199i q^{71} +(-0.982183 - 3.66556i) q^{73} +(3.53553 - 6.12372i) q^{74} +6.31662 q^{76} +(-7.88194 + 1.75822i) q^{77} +(3.14649 - 1.81662i) q^{79} +(1.99004 + 1.01969i) q^{80} +(0.732051 - 2.73205i) q^{82} +(8.67372 + 8.67372i) q^{83} +(7.15831 + 6.47494i) q^{85} +(-9.34878 + 5.39752i) q^{86} +(0.789997 + 2.94831i) q^{88} +(6.32852 + 10.9613i) q^{89} +(-0.158312 + 3.73831i) q^{91} +(-1.19033 + 1.19033i) q^{92} +(-0.274205 - 0.158312i) q^{94} +(6.44097 - 12.5703i) q^{95} +(-5.84169 - 5.84169i) q^{97} +(2.37690 - 6.58410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{7} + 16 q^{13} + 8 q^{16} + 8 q^{22} - 12 q^{28} + 24 q^{31} - 40 q^{37} + 12 q^{40} - 16 q^{43} - 40 q^{46} + 8 q^{52} + 56 q^{55} - 20 q^{58} - 24 q^{61} - 32 q^{67} + 4 q^{70} + 48 q^{73}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 + 0.258819i 0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 1.87809 1.21358i 0.839908 0.542729i
\(6\) 0 0
\(7\) −1.94831 + 1.79000i −0.736392 + 0.676555i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.12819 0.686141i 0.672994 0.216977i
\(11\) 2.64338 + 1.52616i 0.797010 + 0.460154i 0.842424 0.538814i \(-0.181128\pi\)
−0.0454148 + 0.998968i \(0.514461\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000i 0.277350 0.277350i −0.554700 0.832050i \(-0.687167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) −2.34521 + 1.22474i −0.626783 + 0.327327i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.11722 + 4.16954i 0.270967 + 1.01126i 0.958496 + 0.285105i \(0.0920286\pi\)
−0.687529 + 0.726157i \(0.741305\pi\)
\(18\) 0 0
\(19\) 5.47036 3.15831i 1.25499 0.724567i 0.282891 0.959152i \(-0.408707\pi\)
0.972095 + 0.234586i \(0.0753733\pi\)
\(20\) 2.23326 0.111944i 0.499373 0.0250314i
\(21\) 0 0
\(22\) 2.15831 + 2.15831i 0.460154 + 0.460154i
\(23\) −0.435690 + 1.62602i −0.0908476 + 0.339048i −0.996357 0.0852780i \(-0.972822\pi\)
0.905510 + 0.424326i \(0.139489\pi\)
\(24\) 0 0
\(25\) 2.05446 4.55842i 0.410891 0.911684i
\(26\) 1.22474 0.707107i 0.240192 0.138675i
\(27\) 0 0
\(28\) −2.58228 + 0.576028i −0.488006 + 0.108859i
\(29\) −5.88074 −1.09203 −0.546013 0.837777i \(-0.683855\pi\)
−0.546013 + 0.837777i \(0.683855\pi\)
\(30\) 0 0
\(31\) 1.50000 2.59808i 0.269408 0.466628i −0.699301 0.714827i \(-0.746505\pi\)
0.968709 + 0.248199i \(0.0798387\pi\)
\(32\) 0.258819 + 0.965926i 0.0457532 + 0.170753i
\(33\) 0 0
\(34\) 4.31662i 0.740295i
\(35\) −1.48680 + 5.72620i −0.251315 + 0.967905i
\(36\) 0 0
\(37\) 1.83013 6.83013i 0.300871 1.12287i −0.635571 0.772043i \(-0.719235\pi\)
0.936442 0.350823i \(-0.114098\pi\)
\(38\) 6.10139 1.63486i 0.989776 0.265210i
\(39\) 0 0
\(40\) 2.18614 + 0.469882i 0.345659 + 0.0742949i
\(41\) 2.82843i 0.441726i −0.975305 0.220863i \(-0.929113\pi\)
0.975305 0.220863i \(-0.0708874\pi\)
\(42\) 0 0
\(43\) −7.63325 + 7.63325i −1.16406 + 1.16406i −0.180481 + 0.983578i \(0.557766\pi\)
−0.983578 + 0.180481i \(0.942234\pi\)
\(44\) 1.52616 + 2.64338i 0.230077 + 0.398505i
\(45\) 0 0
\(46\) −0.841688 + 1.45785i −0.124100 + 0.214948i
\(47\) −0.305836 0.0819485i −0.0446108 0.0119534i 0.236445 0.971645i \(-0.424018\pi\)
−0.281055 + 0.959692i \(0.590684\pi\)
\(48\) 0 0
\(49\) 0.591820 6.97494i 0.0845458 0.996420i
\(50\) 3.16426 3.87137i 0.447494 0.547494i
\(51\) 0 0
\(52\) 1.36603 0.366025i 0.189434 0.0507586i
\(53\) 1.57760 0.422716i 0.216700 0.0580645i −0.148836 0.988862i \(-0.547553\pi\)
0.365535 + 0.930797i \(0.380886\pi\)
\(54\) 0 0
\(55\) 6.81662 0.341688i 0.919153 0.0460731i
\(56\) −2.64338 0.111944i −0.353237 0.0149591i
\(57\) 0 0
\(58\) −5.68036 1.52205i −0.745868 0.199855i
\(59\) −5.99269 + 10.3796i −0.780181 + 1.35131i 0.151655 + 0.988434i \(0.451540\pi\)
−0.931836 + 0.362880i \(0.881794\pi\)
\(60\) 0 0
\(61\) −3.15831 5.47036i −0.404380 0.700408i 0.589869 0.807499i \(-0.299179\pi\)
−0.994249 + 0.107092i \(0.965846\pi\)
\(62\) 2.12132 2.12132i 0.269408 0.269408i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.664513 3.09167i 0.0824227 0.383474i
\(66\) 0 0
\(67\) −14.5253 + 3.89204i −1.77455 + 0.475488i −0.989572 0.144040i \(-0.953991\pi\)
−0.784975 + 0.619528i \(0.787324\pi\)
\(68\) −1.11722 + 4.16954i −0.135483 + 0.505631i
\(69\) 0 0
\(70\) −2.91819 + 5.14628i −0.348791 + 0.615098i
\(71\) 1.86199i 0.220977i −0.993877 0.110489i \(-0.964758\pi\)
0.993877 0.110489i \(-0.0352416\pi\)
\(72\) 0 0
\(73\) −0.982183 3.66556i −0.114956 0.429021i 0.884328 0.466867i \(-0.154617\pi\)
−0.999284 + 0.0378455i \(0.987951\pi\)
\(74\) 3.53553 6.12372i 0.410997 0.711868i
\(75\) 0 0
\(76\) 6.31662 0.724567
\(77\) −7.88194 + 1.75822i −0.898231 + 0.200368i
\(78\) 0 0
\(79\) 3.14649 1.81662i 0.354007 0.204386i −0.312441 0.949937i \(-0.601147\pi\)
0.666449 + 0.745551i \(0.267813\pi\)
\(80\) 1.99004 + 1.01969i 0.222493 + 0.114004i
\(81\) 0 0
\(82\) 0.732051 2.73205i 0.0808415 0.301705i
\(83\) 8.67372 + 8.67372i 0.952065 + 0.952065i 0.998903 0.0468375i \(-0.0149143\pi\)
−0.0468375 + 0.998903i \(0.514914\pi\)
\(84\) 0 0
\(85\) 7.15831 + 6.47494i 0.776428 + 0.702306i
\(86\) −9.34878 + 5.39752i −1.00811 + 0.582030i
\(87\) 0 0
\(88\) 0.789997 + 2.94831i 0.0842140 + 0.314291i
\(89\) 6.32852 + 10.9613i 0.670821 + 1.16190i 0.977672 + 0.210139i \(0.0673916\pi\)
−0.306850 + 0.951758i \(0.599275\pi\)
\(90\) 0 0
\(91\) −0.158312 + 3.73831i −0.0165956 + 0.391881i
\(92\) −1.19033 + 1.19033i −0.124100 + 0.124100i
\(93\) 0 0
\(94\) −0.274205 0.158312i −0.0282821 0.0163287i
\(95\) 6.44097 12.5703i 0.660830 1.28969i
\(96\) 0 0
\(97\) −5.84169 5.84169i −0.593134 0.593134i 0.345343 0.938477i \(-0.387763\pi\)
−0.938477 + 0.345343i \(0.887763\pi\)
\(98\) 2.37690 6.58410i 0.240103 0.665094i
\(99\) 0 0
\(100\) 4.05842 2.92048i 0.405842 0.292048i
\(101\) −14.6355 8.44984i −1.45629 0.840790i −0.457465 0.889228i \(-0.651243\pi\)
−0.998826 + 0.0484373i \(0.984576\pi\)
\(102\) 0 0
\(103\) 4.96311 + 1.32986i 0.489030 + 0.131035i 0.494904 0.868948i \(-0.335203\pi\)
−0.00587425 + 0.999983i \(0.501870\pi\)
\(104\) 1.41421 0.138675
\(105\) 0 0
\(106\) 1.63325 0.158635
\(107\) −13.1687 3.52854i −1.27307 0.341117i −0.441862 0.897083i \(-0.645682\pi\)
−0.831205 + 0.555966i \(0.812349\pi\)
\(108\) 0 0
\(109\) −14.9532 8.63325i −1.43226 0.826915i −0.434966 0.900447i \(-0.643240\pi\)
−0.997293 + 0.0735313i \(0.976573\pi\)
\(110\) 6.67279 + 1.43423i 0.636225 + 0.136748i
\(111\) 0 0
\(112\) −2.52434 0.792287i −0.238528 0.0748641i
\(113\) 1.41421 + 1.41421i 0.133038 + 0.133038i 0.770490 0.637452i \(-0.220012\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(114\) 0 0
\(115\) 1.15503 + 3.58255i 0.107707 + 0.334074i
\(116\) −5.09287 2.94037i −0.472861 0.273007i
\(117\) 0 0
\(118\) −8.47494 + 8.47494i −0.780181 + 0.780181i
\(119\) −9.64016 6.12372i −0.883712 0.561361i
\(120\) 0 0
\(121\) −0.841688 1.45785i −0.0765171 0.132531i
\(122\) −1.63486 6.10139i −0.148014 0.552394i
\(123\) 0 0
\(124\) 2.59808 1.50000i 0.233314 0.134704i
\(125\) −1.67355 11.0544i −0.149686 0.988734i
\(126\) 0 0
\(127\) −4.79156 4.79156i −0.425182 0.425182i 0.461801 0.886983i \(-0.347203\pi\)
−0.886983 + 0.461801i \(0.847203\pi\)
\(128\) −0.258819 + 0.965926i −0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 1.44205 2.81433i 0.126476 0.246834i
\(131\) 10.8288 6.25202i 0.946118 0.546241i 0.0542449 0.998528i \(-0.482725\pi\)
0.891873 + 0.452286i \(0.149392\pi\)
\(132\) 0 0
\(133\) −5.00458 + 15.9453i −0.433952 + 1.38263i
\(134\) −15.0377 −1.29906
\(135\) 0 0
\(136\) −2.15831 + 3.73831i −0.185074 + 0.320557i
\(137\) −4.65874 17.3867i −0.398023 1.48544i −0.816569 0.577247i \(-0.804127\pi\)
0.418546 0.908196i \(-0.362540\pi\)
\(138\) 0 0
\(139\) 13.2665i 1.12525i −0.826712 0.562625i \(-0.809792\pi\)
0.826712 0.562625i \(-0.190208\pi\)
\(140\) −4.15071 + 4.21564i −0.350799 + 0.356286i
\(141\) 0 0
\(142\) 0.481918 1.79854i 0.0404417 0.150930i
\(143\) 4.16954 1.11722i 0.348674 0.0934270i
\(144\) 0 0
\(145\) −11.0446 + 7.13674i −0.917202 + 0.592674i
\(146\) 3.79487i 0.314065i
\(147\) 0 0
\(148\) 5.00000 5.00000i 0.410997 0.410997i
\(149\) −3.53553 6.12372i −0.289642 0.501675i 0.684082 0.729405i \(-0.260203\pi\)
−0.973724 + 0.227730i \(0.926870\pi\)
\(150\) 0 0
\(151\) −8.34169 + 14.4482i −0.678837 + 1.17578i 0.296495 + 0.955035i \(0.404182\pi\)
−0.975331 + 0.220745i \(0.929151\pi\)
\(152\) 6.10139 + 1.63486i 0.494888 + 0.132605i
\(153\) 0 0
\(154\) −8.06843 0.341688i −0.650173 0.0275340i
\(155\) −0.335831 6.69979i −0.0269746 0.538140i
\(156\) 0 0
\(157\) 5.03158 1.34821i 0.401564 0.107599i −0.0523837 0.998627i \(-0.516682\pi\)
0.453948 + 0.891028i \(0.350015\pi\)
\(158\) 3.50945 0.940354i 0.279197 0.0748106i
\(159\) 0 0
\(160\) 1.65831 + 1.50000i 0.131101 + 0.118585i
\(161\) −2.06171 3.94786i −0.162485 0.311135i
\(162\) 0 0
\(163\) 10.8597 + 2.90986i 0.850600 + 0.227918i 0.657680 0.753297i \(-0.271538\pi\)
0.192919 + 0.981215i \(0.438204\pi\)
\(164\) 1.41421 2.44949i 0.110432 0.191273i
\(165\) 0 0
\(166\) 6.13325 + 10.6231i 0.476032 + 0.824512i
\(167\) 5.65685 5.65685i 0.437741 0.437741i −0.453510 0.891251i \(-0.649829\pi\)
0.891251 + 0.453510i \(0.149829\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 5.23856 + 8.10702i 0.401779 + 0.621780i
\(171\) 0 0
\(172\) −10.4272 + 2.79396i −0.795068 + 0.213038i
\(173\) −5.15043 + 19.2217i −0.391580 + 1.46140i 0.435947 + 0.899972i \(0.356413\pi\)
−0.827528 + 0.561425i \(0.810253\pi\)
\(174\) 0 0
\(175\) 4.15685 + 12.5587i 0.314228 + 0.949348i
\(176\) 3.05231i 0.230077i
\(177\) 0 0
\(178\) 3.27588 + 12.2258i 0.245538 + 0.916359i
\(179\) 0.707107 1.22474i 0.0528516 0.0915417i −0.838389 0.545072i \(-0.816502\pi\)
0.891241 + 0.453530i \(0.149836\pi\)
\(180\) 0 0
\(181\) 24.6332 1.83098 0.915488 0.402346i \(-0.131805\pi\)
0.915488 + 0.402346i \(0.131805\pi\)
\(182\) −1.12046 + 3.56995i −0.0830542 + 0.264623i
\(183\) 0 0
\(184\) −1.45785 + 0.841688i −0.107474 + 0.0620500i
\(185\) −4.85175 15.0486i −0.356708 1.10640i
\(186\) 0 0
\(187\) −3.41012 + 12.7267i −0.249373 + 0.930672i
\(188\) −0.223888 0.223888i −0.0163287 0.0163287i
\(189\) 0 0
\(190\) 9.47494 10.4749i 0.687384 0.759932i
\(191\) 17.9220 10.3473i 1.29679 0.748702i 0.316942 0.948445i \(-0.397344\pi\)
0.979848 + 0.199743i \(0.0640107\pi\)
\(192\) 0 0
\(193\) −2.73602 10.2110i −0.196943 0.735001i −0.991755 0.128146i \(-0.959098\pi\)
0.794813 0.606855i \(-0.207569\pi\)
\(194\) −4.13070 7.15458i −0.296567 0.513669i
\(195\) 0 0
\(196\) 4.00000 5.74456i 0.285714 0.410326i
\(197\) −18.3139 + 18.3139i −1.30481 + 1.30481i −0.379701 + 0.925109i \(0.623973\pi\)
−0.925109 + 0.379701i \(0.876027\pi\)
\(198\) 0 0
\(199\) 4.01251 + 2.31662i 0.284439 + 0.164221i 0.635431 0.772157i \(-0.280822\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(200\) 4.67601 1.77057i 0.330644 0.125198i
\(201\) 0 0
\(202\) −11.9499 11.9499i −0.840790 0.840790i
\(203\) 11.4575 10.5265i 0.804159 0.738816i
\(204\) 0 0
\(205\) −3.43252 5.31205i −0.239737 0.371009i
\(206\) 4.44980 + 2.56910i 0.310033 + 0.178997i
\(207\) 0 0
\(208\) 1.36603 + 0.366025i 0.0947168 + 0.0253793i
\(209\) 19.2803 1.33365
\(210\) 0 0
\(211\) −4.94987 −0.340763 −0.170382 0.985378i \(-0.554500\pi\)
−0.170382 + 0.985378i \(0.554500\pi\)
\(212\) 1.57760 + 0.422716i 0.108350 + 0.0290323i
\(213\) 0 0
\(214\) −11.8067 6.81662i −0.807092 0.465975i
\(215\) −5.07240 + 23.5995i −0.345935 + 1.60947i
\(216\) 0 0
\(217\) 1.72808 + 7.74685i 0.117310 + 0.525891i
\(218\) −12.2093 12.2093i −0.826915 0.826915i
\(219\) 0 0
\(220\) 6.07421 + 3.11240i 0.409523 + 0.209838i
\(221\) 5.28676 + 3.05231i 0.355626 + 0.205321i
\(222\) 0 0
\(223\) −16.1583 + 16.1583i −1.08204 + 1.08204i −0.0857215 + 0.996319i \(0.527320\pi\)
−0.996319 + 0.0857215i \(0.972680\pi\)
\(224\) −2.23326 1.41864i −0.149216 0.0947867i
\(225\) 0 0
\(226\) 1.00000 + 1.73205i 0.0665190 + 0.115214i
\(227\) 4.31798 + 16.1149i 0.286594 + 1.06958i 0.947667 + 0.319262i \(0.103435\pi\)
−0.661073 + 0.750322i \(0.729898\pi\)
\(228\) 0 0
\(229\) 22.5167 13.0000i 1.48794 0.859064i 0.488037 0.872823i \(-0.337713\pi\)
0.999905 + 0.0137585i \(0.00437961\pi\)
\(230\) 0.188443 + 3.75942i 0.0124256 + 0.247889i
\(231\) 0 0
\(232\) −4.15831 4.15831i −0.273007 0.273007i
\(233\) −5.42223 + 20.2360i −0.355222 + 1.32571i 0.524983 + 0.851113i \(0.324072\pi\)
−0.880205 + 0.474593i \(0.842595\pi\)
\(234\) 0 0
\(235\) −0.673839 + 0.217249i −0.0439564 + 0.0141718i
\(236\) −10.3796 + 5.99269i −0.675657 + 0.390091i
\(237\) 0 0
\(238\) −7.72675 8.41012i −0.500851 0.545147i
\(239\) 0.966438 0.0625137 0.0312569 0.999511i \(-0.490049\pi\)
0.0312569 + 0.999511i \(0.490049\pi\)
\(240\) 0 0
\(241\) 3.29156 5.70115i 0.212028 0.367244i −0.740321 0.672254i \(-0.765326\pi\)
0.952349 + 0.305010i \(0.0986598\pi\)
\(242\) −0.435690 1.62602i −0.0280072 0.104524i
\(243\) 0 0
\(244\) 6.31662i 0.404380i
\(245\) −7.35314 13.8178i −0.469775 0.882786i
\(246\) 0 0
\(247\) 2.31205 8.62867i 0.147112 0.549029i
\(248\) 2.89778 0.776457i 0.184009 0.0493051i
\(249\) 0 0
\(250\) 1.24456 11.1109i 0.0787131 0.702712i
\(251\) 17.1236i 1.08083i −0.841399 0.540415i \(-0.818267\pi\)
0.841399 0.540415i \(-0.181733\pi\)
\(252\) 0 0
\(253\) −3.63325 + 3.63325i −0.228420 + 0.228420i
\(254\) −3.38815 5.86844i −0.212591 0.368219i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 20.5419 + 5.50418i 1.28137 + 0.343341i 0.834375 0.551197i \(-0.185829\pi\)
0.446991 + 0.894538i \(0.352496\pi\)
\(258\) 0 0
\(259\) 8.66025 + 16.5831i 0.538122 + 1.03043i
\(260\) 2.12132 2.34521i 0.131559 0.145444i
\(261\) 0 0
\(262\) 12.0780 3.23628i 0.746179 0.199938i
\(263\) 5.39288 1.44502i 0.332539 0.0891037i −0.0886860 0.996060i \(-0.528267\pi\)
0.421225 + 0.906956i \(0.361600\pi\)
\(264\) 0 0
\(265\) 2.44987 2.70844i 0.150495 0.166378i
\(266\) −8.96100 + 14.1067i −0.549434 + 0.864937i
\(267\) 0 0
\(268\) −14.5253 3.89204i −0.887273 0.237744i
\(269\) −6.73524 + 11.6658i −0.410655 + 0.711275i −0.994961 0.100258i \(-0.968033\pi\)
0.584307 + 0.811533i \(0.301366\pi\)
\(270\) 0 0
\(271\) −8.65831 14.9966i −0.525955 0.910981i −0.999543 0.0302342i \(-0.990375\pi\)
0.473588 0.880747i \(-0.342959\pi\)
\(272\) −3.05231 + 3.05231i −0.185074 + 0.185074i
\(273\) 0 0
\(274\) 18.0000i 1.08742i
\(275\) 12.3876 8.91423i 0.746999 0.537548i
\(276\) 0 0
\(277\) 18.1224 4.85588i 1.08887 0.291761i 0.330644 0.943756i \(-0.392734\pi\)
0.758224 + 0.651994i \(0.226067\pi\)
\(278\) 3.43362 12.8145i 0.205935 0.768560i
\(279\) 0 0
\(280\) −5.10037 + 2.99771i −0.304805 + 0.179147i
\(281\) 19.7990i 1.18111i 0.806998 + 0.590554i \(0.201091\pi\)
−0.806998 + 0.590554i \(0.798909\pi\)
\(282\) 0 0
\(283\) −0.481918 1.79854i −0.0286471 0.106912i 0.950122 0.311879i \(-0.100958\pi\)
−0.978769 + 0.204966i \(0.934292\pi\)
\(284\) 0.930994 1.61253i 0.0552443 0.0956860i
\(285\) 0 0
\(286\) 4.31662 0.255247
\(287\) 5.06288 + 5.51065i 0.298852 + 0.325283i
\(288\) 0 0
\(289\) −1.41444 + 0.816625i −0.0832021 + 0.0480368i
\(290\) −12.5154 + 4.03502i −0.734927 + 0.236944i
\(291\) 0 0
\(292\) 0.982183 3.66556i 0.0574779 0.214511i
\(293\) −0.707107 0.707107i −0.0413096 0.0413096i 0.686150 0.727460i \(-0.259299\pi\)
−0.727460 + 0.686150i \(0.759299\pi\)
\(294\) 0 0
\(295\) 1.34169 + 26.7665i 0.0781161 + 1.55841i
\(296\) 6.12372 3.53553i 0.355934 0.205499i
\(297\) 0 0
\(298\) −1.83013 6.83013i −0.106016 0.395659i
\(299\) 1.19033 + 2.06171i 0.0688383 + 0.119231i
\(300\) 0 0
\(301\) 1.20844 28.5354i 0.0696532 1.64475i
\(302\) −11.7969 + 11.7969i −0.678837 + 0.678837i
\(303\) 0 0
\(304\) 5.47036 + 3.15831i 0.313747 + 0.181142i
\(305\) −12.5703 6.44097i −0.719774 0.368809i
\(306\) 0 0
\(307\) −9.00000 9.00000i −0.513657 0.513657i 0.401988 0.915645i \(-0.368319\pi\)
−0.915645 + 0.401988i \(0.868319\pi\)
\(308\) −7.70507 2.41831i −0.439037 0.137796i
\(309\) 0 0
\(310\) 1.40965 6.55842i 0.0800625 0.372493i
\(311\) 12.6352 + 7.29496i 0.716478 + 0.413659i 0.813455 0.581628i \(-0.197584\pi\)
−0.0969768 + 0.995287i \(0.530917\pi\)
\(312\) 0 0
\(313\) −6.11288 1.63794i −0.345520 0.0925819i 0.0818856 0.996642i \(-0.473906\pi\)
−0.427406 + 0.904060i \(0.640572\pi\)
\(314\) 5.20908 0.293965
\(315\) 0 0
\(316\) 3.63325 0.204386
\(317\) 3.81529 + 1.02230i 0.214288 + 0.0574182i 0.364366 0.931256i \(-0.381286\pi\)
−0.150078 + 0.988674i \(0.547952\pi\)
\(318\) 0 0
\(319\) −15.5450 8.97494i −0.870356 0.502500i
\(320\) 1.21358 + 1.87809i 0.0678411 + 0.104989i
\(321\) 0 0
\(322\) −0.969672 4.34695i −0.0540377 0.242246i
\(323\) 19.2803 + 19.2803i 1.07279 + 1.07279i
\(324\) 0 0
\(325\) −2.50397 6.61288i −0.138895 0.366816i
\(326\) 9.73657 + 5.62141i 0.539259 + 0.311341i
\(327\) 0 0
\(328\) 2.00000 2.00000i 0.110432 0.110432i
\(329\) 0.742551 0.387785i 0.0409382 0.0213793i
\(330\) 0 0
\(331\) 1.68338 + 2.91569i 0.0925267 + 0.160261i 0.908574 0.417725i \(-0.137172\pi\)
−0.816047 + 0.577986i \(0.803839\pi\)
\(332\) 3.17480 + 11.8485i 0.174240 + 0.650272i
\(333\) 0 0
\(334\) 6.92820 4.00000i 0.379094 0.218870i
\(335\) −22.5565 + 24.9372i −1.23239 + 1.36246i
\(336\) 0 0
\(337\) 17.1082 + 17.1082i 0.931942 + 0.931942i 0.997827 0.0658849i \(-0.0209870\pi\)
−0.0658849 + 0.997827i \(0.520987\pi\)
\(338\) −2.84701 + 10.6252i −0.154857 + 0.577934i
\(339\) 0 0
\(340\) 2.96181 + 9.18662i 0.160627 + 0.498214i
\(341\) 7.93015 4.57847i 0.429441 0.247938i
\(342\) 0 0
\(343\) 11.3321 + 14.6487i 0.611874 + 0.790955i
\(344\) −10.7950 −0.582030
\(345\) 0 0
\(346\) −9.94987 + 17.2337i −0.534909 + 0.926489i
\(347\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(348\) 0 0
\(349\) 4.00000i 0.214115i 0.994253 + 0.107058i \(0.0341429\pi\)
−0.994253 + 0.107058i \(0.965857\pi\)
\(350\) 0.764778 + 13.2066i 0.0408791 + 0.705924i
\(351\) 0 0
\(352\) −0.789997 + 2.94831i −0.0421070 + 0.157145i
\(353\) −15.3580 + 4.11516i −0.817423 + 0.219028i −0.643219 0.765682i \(-0.722402\pi\)
−0.174203 + 0.984710i \(0.555735\pi\)
\(354\) 0 0
\(355\) −2.25967 3.49699i −0.119931 0.185601i
\(356\) 12.6570i 0.670821i
\(357\) 0 0
\(358\) 1.00000 1.00000i 0.0528516 0.0528516i
\(359\) 3.27620 + 5.67455i 0.172911 + 0.299491i 0.939436 0.342723i \(-0.111349\pi\)
−0.766525 + 0.642214i \(0.778016\pi\)
\(360\) 0 0
\(361\) 10.4499 18.0997i 0.549993 0.952616i
\(362\) 23.7939 + 6.37555i 1.25058 + 0.335092i
\(363\) 0 0
\(364\) −2.00626 + 3.15831i −0.105156 + 0.165541i
\(365\) −6.29307 5.69230i −0.329394 0.297949i
\(366\) 0 0
\(367\) 8.84493 2.36999i 0.461702 0.123713i −0.0204680 0.999791i \(-0.506516\pi\)
0.482169 + 0.876078i \(0.339849\pi\)
\(368\) −1.62602 + 0.435690i −0.0847619 + 0.0227119i
\(369\) 0 0
\(370\) −0.791562 15.7916i −0.0411513 0.820964i
\(371\) −2.31699 + 3.64748i −0.120292 + 0.189368i
\(372\) 0 0
\(373\) 22.2889 + 5.97230i 1.15408 + 0.309234i 0.784598 0.620005i \(-0.212870\pi\)
0.369479 + 0.929239i \(0.379536\pi\)
\(374\) −6.58785 + 11.4105i −0.340650 + 0.590022i
\(375\) 0 0
\(376\) −0.158312 0.274205i −0.00816434 0.0141410i
\(377\) −5.88074 + 5.88074i −0.302874 + 0.302874i
\(378\) 0 0
\(379\) 30.6332i 1.57352i 0.617256 + 0.786762i \(0.288244\pi\)
−0.617256 + 0.786762i \(0.711756\pi\)
\(380\) 11.8632 7.66572i 0.608569 0.393243i
\(381\) 0 0
\(382\) 19.9894 5.35614i 1.02275 0.274044i
\(383\) 0.517638 1.93185i 0.0264501 0.0987130i −0.951439 0.307837i \(-0.900395\pi\)
0.977889 + 0.209124i \(0.0670614\pi\)
\(384\) 0 0
\(385\) −12.6693 + 12.8675i −0.645686 + 0.655786i
\(386\) 10.5712i 0.538058i
\(387\) 0 0
\(388\) −2.13821 7.97989i −0.108551 0.405118i
\(389\) 13.1403 22.7596i 0.666237 1.15396i −0.312711 0.949848i \(-0.601237\pi\)
0.978948 0.204108i \(-0.0654295\pi\)
\(390\) 0 0
\(391\) −7.26650 −0.367483
\(392\) 5.35051 4.51355i 0.270241 0.227968i
\(393\) 0 0
\(394\) −22.4298 + 12.9499i −1.13000 + 0.652405i
\(395\) 3.70477 7.23030i 0.186407 0.363796i
\(396\) 0 0
\(397\) 1.92767 7.19417i 0.0967471 0.361065i −0.900531 0.434791i \(-0.856822\pi\)
0.997279 + 0.0737258i \(0.0234890\pi\)
\(398\) 3.27620 + 3.27620i 0.164221 + 0.164221i
\(399\) 0 0
\(400\) 4.97494 0.500000i 0.248747 0.0250000i
\(401\) 18.3098 10.5712i 0.914347 0.527898i 0.0325197 0.999471i \(-0.489647\pi\)
0.881827 + 0.471573i \(0.156314\pi\)
\(402\) 0 0
\(403\) −1.09808 4.09808i −0.0546991 0.204140i
\(404\) −8.44984 14.6355i −0.420395 0.728146i
\(405\) 0 0
\(406\) 13.7916 7.20241i 0.684464 0.357450i
\(407\) 15.2616 15.2616i 0.756488 0.756488i
\(408\) 0 0
\(409\) −29.3146 16.9248i −1.44952 0.836878i −0.451063 0.892492i \(-0.648955\pi\)
−0.998452 + 0.0556140i \(0.982288\pi\)
\(410\) −1.94070 6.01944i −0.0958443 0.297279i
\(411\) 0 0
\(412\) 3.63325 + 3.63325i 0.178997 + 0.178997i
\(413\) −6.90391 30.9496i −0.339719 1.52293i
\(414\) 0 0
\(415\) 26.8163 + 5.76381i 1.31636 + 0.282934i
\(416\) 1.22474 + 0.707107i 0.0600481 + 0.0346688i
\(417\) 0 0
\(418\) 18.6234 + 4.99012i 0.910899 + 0.244075i
\(419\) 6.17552 0.301694 0.150847 0.988557i \(-0.451800\pi\)
0.150847 + 0.988557i \(0.451800\pi\)
\(420\) 0 0
\(421\) −31.5831 −1.53927 −0.769634 0.638486i \(-0.779561\pi\)
−0.769634 + 0.638486i \(0.779561\pi\)
\(422\) −4.78121 1.28112i −0.232746 0.0623640i
\(423\) 0 0
\(424\) 1.41444 + 0.816625i 0.0686911 + 0.0396588i
\(425\) 21.3018 + 3.47335i 1.03329 + 0.168482i
\(426\) 0 0
\(427\) 15.9453 + 5.00458i 0.771647 + 0.242189i
\(428\) −9.64016 9.64016i −0.465975 0.465975i
\(429\) 0 0
\(430\) −11.0076 + 21.4825i −0.530831 + 1.03598i
\(431\) 11.0841 + 6.39941i 0.533902 + 0.308249i 0.742604 0.669731i \(-0.233591\pi\)
−0.208702 + 0.977979i \(0.566924\pi\)
\(432\) 0 0
\(433\) −6.05013 + 6.05013i −0.290750 + 0.290750i −0.837377 0.546626i \(-0.815912\pi\)
0.546626 + 0.837377i \(0.315912\pi\)
\(434\) −0.335831 + 7.93015i −0.0161204 + 0.380659i
\(435\) 0 0
\(436\) −8.63325 14.9532i −0.413458 0.716130i
\(437\) 2.75209 + 10.2709i 0.131650 + 0.491325i
\(438\) 0 0
\(439\) 3.96910 2.29156i 0.189435 0.109370i −0.402283 0.915515i \(-0.631783\pi\)
0.591718 + 0.806145i \(0.298450\pi\)
\(440\) 5.06169 + 4.57847i 0.241307 + 0.218270i
\(441\) 0 0
\(442\) 4.31662 + 4.31662i 0.205321 + 0.205321i
\(443\) −5.68105 + 21.2020i −0.269915 + 1.00734i 0.689259 + 0.724515i \(0.257936\pi\)
−0.959173 + 0.282820i \(0.908730\pi\)
\(444\) 0 0
\(445\) 25.1879 + 12.9062i 1.19402 + 0.611813i
\(446\) −19.7898 + 11.4257i −0.937075 + 0.541020i
\(447\) 0 0
\(448\) −1.79000 1.94831i −0.0845694 0.0920490i
\(449\) 23.4521 1.10677 0.553386 0.832925i \(-0.313335\pi\)
0.553386 + 0.832925i \(0.313335\pi\)
\(450\) 0 0
\(451\) 4.31662 7.47661i 0.203262 0.352060i
\(452\) 0.517638 + 1.93185i 0.0243476 + 0.0908667i
\(453\) 0 0
\(454\) 16.6834i 0.782990i
\(455\) 4.23940 + 7.21301i 0.198746 + 0.338151i
\(456\) 0 0
\(457\) −8.68997 + 32.4314i −0.406500 + 1.51708i 0.394774 + 0.918778i \(0.370823\pi\)
−0.801273 + 0.598299i \(0.795844\pi\)
\(458\) 25.1141 6.72930i 1.17350 0.314439i
\(459\) 0 0
\(460\) −0.790988 + 3.68009i −0.0368800 + 0.171585i
\(461\) 0.0708883i 0.00330160i −0.999999 0.00165080i \(-0.999475\pi\)
0.999999 0.00165080i \(-0.000525466\pi\)
\(462\) 0 0
\(463\) 27.6332 27.6332i 1.28423 1.28423i 0.345987 0.938239i \(-0.387544\pi\)
0.938239 0.345987i \(-0.112456\pi\)
\(464\) −2.94037 5.09287i −0.136503 0.236431i
\(465\) 0 0
\(466\) −10.4749 + 18.1431i −0.485242 + 0.840464i
\(467\) −37.2200 9.97307i −1.72234 0.461499i −0.743942 0.668244i \(-0.767046\pi\)
−0.978395 + 0.206745i \(0.933713\pi\)
\(468\) 0 0
\(469\) 21.3330 33.5831i 0.985067 1.55072i
\(470\) −0.707107 + 0.0354442i −0.0326164 + 0.00163492i
\(471\) 0 0
\(472\) −11.5770 + 3.10204i −0.532874 + 0.142783i
\(473\) −31.8271 + 8.52806i −1.46341 + 0.392120i
\(474\) 0 0
\(475\) −3.15831 31.4248i −0.144913 1.44187i
\(476\) −5.28676 10.1234i −0.242318 0.464004i
\(477\) 0 0
\(478\) 0.933508 + 0.250133i 0.0426977 + 0.0114408i
\(479\) −5.17364 + 8.96100i −0.236389 + 0.409438i −0.959676 0.281110i \(-0.909297\pi\)
0.723286 + 0.690548i \(0.242631\pi\)
\(480\) 0 0
\(481\) −5.00000 8.66025i −0.227980 0.394874i
\(482\) 4.65497 4.65497i 0.212028 0.212028i
\(483\) 0 0
\(484\) 1.68338i 0.0765171i
\(485\) −18.0606 3.88188i −0.820088 0.176267i
\(486\) 0 0
\(487\) −15.6751 + 4.20012i −0.710305 + 0.190326i −0.595842 0.803102i \(-0.703181\pi\)
−0.114463 + 0.993428i \(0.536515\pi\)
\(488\) 1.63486 6.10139i 0.0740068 0.276197i
\(489\) 0 0
\(490\) −3.52628 15.2501i −0.159301 0.688929i
\(491\) 13.8474i 0.624923i −0.949930 0.312461i \(-0.898847\pi\)
0.949930 0.312461i \(-0.101153\pi\)
\(492\) 0 0
\(493\) −6.57011 24.5200i −0.295903 1.10432i
\(494\) 4.46653 7.73625i 0.200959 0.348071i
\(495\) 0 0
\(496\) 3.00000 0.134704
\(497\) 3.33295 + 3.62773i 0.149503 + 0.162726i
\(498\) 0 0
\(499\) −19.0526 + 11.0000i −0.852910 + 0.492428i −0.861632 0.507534i \(-0.830557\pi\)
0.00872186 + 0.999962i \(0.497224\pi\)
\(500\) 4.07786 10.4101i 0.182367 0.465556i
\(501\) 0 0
\(502\) 4.43190 16.5401i 0.197806 0.738220i
\(503\) −12.4331 12.4331i −0.554367 0.554367i 0.373331 0.927698i \(-0.378215\pi\)
−0.927698 + 0.373331i \(0.878215\pi\)
\(504\) 0 0
\(505\) −37.7414 + 1.89181i −1.67947 + 0.0841846i
\(506\) −4.44980 + 2.56910i −0.197818 + 0.114210i
\(507\) 0 0
\(508\) −1.75383 6.54540i −0.0778138 0.290405i
\(509\) −7.40690 12.8291i −0.328305 0.568641i 0.653871 0.756606i \(-0.273144\pi\)
−0.982176 + 0.187965i \(0.939811\pi\)
\(510\) 0 0
\(511\) 8.47494 + 5.38354i 0.374909 + 0.238154i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.4173 + 10.6332i 0.812354 + 0.469013i
\(515\) 10.9351 3.52552i 0.481857 0.155353i
\(516\) 0 0
\(517\) −0.683375 0.683375i −0.0300548 0.0300548i
\(518\) 4.07313 + 18.2595i 0.178963 + 0.802277i
\(519\) 0 0
\(520\) 2.65602 1.71626i 0.116474 0.0752629i
\(521\) 14.6355 + 8.44984i 0.641195 + 0.370194i 0.785075 0.619401i \(-0.212625\pi\)
−0.143880 + 0.989595i \(0.545958\pi\)
\(522\) 0 0
\(523\) 15.4588 + 4.14217i 0.675966 + 0.181125i 0.580441 0.814302i \(-0.302880\pi\)
0.0955252 + 0.995427i \(0.469547\pi\)
\(524\) 12.5040 0.546241
\(525\) 0 0
\(526\) 5.58312 0.243436
\(527\) 12.5086 + 3.35167i 0.544884 + 0.146001i
\(528\) 0 0
\(529\) 17.4645 + 10.0831i 0.759325 + 0.438397i
\(530\) 3.06739 1.98208i 0.133239 0.0860959i
\(531\) 0 0
\(532\) −12.3067 + 11.3067i −0.533565 + 0.490209i
\(533\) −2.82843 2.82843i −0.122513 0.122513i
\(534\) 0 0
\(535\) −29.0142 + 9.35433i −1.25439 + 0.404423i
\(536\) −13.0230 7.51884i −0.562509 0.324765i
\(537\) 0 0
\(538\) −9.52506 + 9.52506i −0.410655 + 0.410655i
\(539\) 12.2093 17.5342i 0.525890 0.755252i
\(540\) 0 0
\(541\) 14.7916 + 25.6197i 0.635939 + 1.10148i 0.986315 + 0.164870i \(0.0527203\pi\)
−0.350376 + 0.936609i \(0.613946\pi\)
\(542\) −4.48187 16.7266i −0.192513 0.718468i
\(543\) 0 0
\(544\) −3.73831 + 2.15831i −0.160279 + 0.0925369i
\(545\) −38.5607 + 1.93288i −1.65176 + 0.0827954i
\(546\) 0 0
\(547\) −3.31662 3.31662i −0.141809 0.141809i 0.632639 0.774447i \(-0.281972\pi\)
−0.774447 + 0.632639i \(0.781972\pi\)
\(548\) 4.65874 17.3867i 0.199012 0.742722i
\(549\) 0 0
\(550\) 14.2727 5.40434i 0.608588 0.230442i
\(551\) −32.1698 + 18.5732i −1.37048 + 0.791246i
\(552\) 0 0
\(553\) −2.87858 + 9.17155i −0.122410 + 0.390014i
\(554\) 18.7617 0.797107
\(555\) 0 0
\(556\) 6.63325 11.4891i 0.281312 0.487247i
\(557\) −9.38646 35.0307i −0.397717 1.48430i −0.817103 0.576492i \(-0.804421\pi\)
0.419386 0.907808i \(-0.362246\pi\)
\(558\) 0 0
\(559\) 15.2665i 0.645704i
\(560\) −5.70244 + 1.57549i −0.240972 + 0.0665768i
\(561\) 0 0
\(562\) −5.12436 + 19.1244i −0.216158 + 0.806712i
\(563\) −5.74714 + 1.53994i −0.242213 + 0.0649008i −0.377883 0.925853i \(-0.623348\pi\)
0.135670 + 0.990754i \(0.456681\pi\)
\(564\) 0 0
\(565\) 4.37228 + 0.939764i 0.183943 + 0.0395362i
\(566\) 1.86199i 0.0782652i
\(567\) 0 0
\(568\) 1.31662 1.31662i 0.0552443 0.0552443i
\(569\) 8.44984 + 14.6355i 0.354236 + 0.613554i 0.986987 0.160801i \(-0.0514078\pi\)
−0.632751 + 0.774355i \(0.718074\pi\)
\(570\) 0 0
\(571\) −20.4248 + 35.3768i −0.854752 + 1.48047i 0.0221234 + 0.999755i \(0.492957\pi\)
−0.876875 + 0.480718i \(0.840376\pi\)
\(572\) 4.16954 + 1.11722i 0.174337 + 0.0467135i
\(573\) 0 0
\(574\) 3.46410 + 6.63325i 0.144589 + 0.276866i
\(575\) 6.51696 + 5.32663i 0.271776 + 0.222136i
\(576\) 0 0
\(577\) −2.08327 + 0.558212i −0.0867279 + 0.0232387i −0.301922 0.953333i \(-0.597628\pi\)
0.215194 + 0.976571i \(0.430962\pi\)
\(578\) −1.57760 + 0.422716i −0.0656194 + 0.0175827i
\(579\) 0 0
\(580\) −13.1332 + 0.658312i −0.545329 + 0.0273349i
\(581\) −32.4250 1.37316i −1.34522 0.0569682i
\(582\) 0 0
\(583\) 4.81533 + 1.29026i 0.199430 + 0.0534372i
\(584\) 1.89743 3.28645i 0.0785163 0.135994i
\(585\) 0 0
\(586\) −0.500000 0.866025i −0.0206548 0.0357752i
\(587\) 1.15488 1.15488i 0.0476671 0.0476671i −0.682871 0.730539i \(-0.739269\pi\)
0.730539 + 0.682871i \(0.239269\pi\)
\(588\) 0 0
\(589\) 18.9499i 0.780816i
\(590\) −5.63171 + 26.2017i −0.231854 + 1.07871i
\(591\) 0 0
\(592\) 6.83013 1.83013i 0.280716 0.0752178i
\(593\) 7.32888 27.3518i 0.300961 1.12320i −0.635406 0.772179i \(-0.719167\pi\)
0.936367 0.351024i \(-0.114166\pi\)
\(594\) 0 0
\(595\) −25.5367 + 0.198177i −1.04690 + 0.00812446i
\(596\) 7.07107i 0.289642i
\(597\) 0 0
\(598\) 0.616158 + 2.29953i 0.0251966 + 0.0940349i
\(599\) −11.7615 + 20.3715i −0.480561 + 0.832356i −0.999751 0.0223024i \(-0.992900\pi\)
0.519190 + 0.854659i \(0.326234\pi\)
\(600\) 0 0
\(601\) 18.3668 0.749195 0.374598 0.927187i \(-0.377781\pi\)
0.374598 + 0.927187i \(0.377781\pi\)
\(602\) 8.55277 27.2503i 0.348585 1.11064i
\(603\) 0 0
\(604\) −14.4482 + 8.34169i −0.587890 + 0.339418i
\(605\) −3.34998 1.71651i −0.136196 0.0697862i
\(606\) 0 0
\(607\) −3.96833 + 14.8100i −0.161070 + 0.601120i 0.837439 + 0.546530i \(0.184052\pi\)
−0.998509 + 0.0545897i \(0.982615\pi\)
\(608\) 4.46653 + 4.46653i 0.181142 + 0.181142i
\(609\) 0 0
\(610\) −10.4749 9.47494i −0.424118 0.383629i
\(611\) −0.387785 + 0.223888i −0.0156881 + 0.00905752i
\(612\) 0 0
\(613\) −5.99065 22.3574i −0.241960 0.903007i −0.974887 0.222700i \(-0.928513\pi\)
0.732927 0.680307i \(-0.238154\pi\)
\(614\) −6.36396 11.0227i −0.256829 0.444840i
\(615\) 0 0
\(616\) −6.81662 4.33013i −0.274650 0.174466i
\(617\) 10.6420 10.6420i 0.428433 0.428433i −0.459662 0.888094i \(-0.652029\pi\)
0.888094 + 0.459662i \(0.152029\pi\)
\(618\) 0 0
\(619\) 4.83513 + 2.79156i 0.194340 + 0.112202i 0.594013 0.804456i \(-0.297543\pi\)
−0.399673 + 0.916658i \(0.630876\pi\)
\(620\) 3.05906 5.97011i 0.122855 0.239765i
\(621\) 0 0
\(622\) 10.3166 + 10.3166i 0.413659 + 0.413659i
\(623\) −31.9506 10.0280i −1.28007 0.401763i
\(624\) 0 0
\(625\) −16.5584 18.7302i −0.662337 0.749206i
\(626\) −5.48066 3.16426i −0.219051 0.126469i
\(627\) 0 0
\(628\) 5.03158 + 1.34821i 0.200782 + 0.0537994i
\(629\) 30.5231 1.21704
\(630\) 0 0
\(631\) −31.5330 −1.25531 −0.627654 0.778492i \(-0.715985\pi\)
−0.627654 + 0.778492i \(0.715985\pi\)
\(632\) 3.50945 + 0.940354i 0.139598 + 0.0374053i
\(633\) 0 0
\(634\) 3.42069 + 1.97494i 0.135853 + 0.0784348i
\(635\) −14.8139 3.18406i −0.587873 0.126355i
\(636\) 0 0
\(637\) −6.38312 7.56676i −0.252908 0.299806i
\(638\) −12.6925 12.6925i −0.502500 0.502500i
\(639\) 0 0
\(640\) 0.686141 + 2.12819i 0.0271221 + 0.0841243i
\(641\) 26.8830 + 15.5209i 1.06181 + 0.613039i 0.925934 0.377686i \(-0.123280\pi\)
0.135881 + 0.990725i \(0.456614\pi\)
\(642\) 0 0
\(643\) 7.89975 7.89975i 0.311536 0.311536i −0.533969 0.845504i \(-0.679300\pi\)
0.845504 + 0.533969i \(0.179300\pi\)
\(644\) 0.188443 4.44980i 0.00742571 0.175347i
\(645\) 0 0
\(646\) 13.6332 + 23.6135i 0.536393 + 0.929060i
\(647\) −8.33821 31.1186i −0.327809 1.22340i −0.911458 0.411393i \(-0.865042\pi\)
0.583649 0.812006i \(-0.301624\pi\)
\(648\) 0 0
\(649\) −31.6819 + 18.2916i −1.24362 + 0.718007i
\(650\) −0.707107 7.03562i −0.0277350 0.275960i
\(651\) 0 0
\(652\) 7.94987 + 7.94987i 0.311341 + 0.311341i
\(653\) 5.84494 21.8136i 0.228730 0.853633i −0.752145 0.658997i \(-0.770981\pi\)
0.980876 0.194636i \(-0.0623525\pi\)
\(654\) 0 0
\(655\) 12.7502 24.8835i 0.498191 0.972278i
\(656\) 2.44949 1.41421i 0.0956365 0.0552158i
\(657\) 0 0
\(658\) 0.817615 0.182385i 0.0318740 0.00711010i
\(659\) −47.5646 −1.85285 −0.926427 0.376475i \(-0.877136\pi\)
−0.926427 + 0.376475i \(0.877136\pi\)
\(660\) 0 0
\(661\) −24.1082 + 41.7566i −0.937700 + 1.62414i −0.167952 + 0.985795i \(0.553715\pi\)
−0.769747 + 0.638349i \(0.779618\pi\)
\(662\) 0.871379 + 3.25203i 0.0338671 + 0.126394i
\(663\) 0 0
\(664\) 12.2665i 0.476032i
\(665\) 9.95180 + 36.0202i 0.385914 + 1.39680i
\(666\) 0 0
\(667\) 2.56218 9.56218i 0.0992079 0.370249i
\(668\) 7.72741 2.07055i 0.298982 0.0801121i
\(669\) 0 0
\(670\) −28.2422 + 18.2494i −1.09109 + 0.705036i
\(671\) 19.2803i 0.744309i
\(672\) 0 0
\(673\) 10.7414 10.7414i 0.414052 0.414052i −0.469096 0.883147i \(-0.655420\pi\)
0.883147 + 0.469096i \(0.155420\pi\)
\(674\) 12.0973 + 20.9532i 0.465971 + 0.807086i
\(675\) 0 0
\(676\) −5.50000 + 9.52628i −0.211538 + 0.366395i
\(677\) −6.45564 1.72978i −0.248111 0.0664810i 0.132620 0.991167i \(-0.457661\pi\)
−0.380731 + 0.924686i \(0.624328\pi\)
\(678\) 0 0
\(679\) 21.8380 + 0.924812i 0.838066 + 0.0354910i
\(680\) 0.483219 + 9.64016i 0.0185306 + 0.369683i
\(681\) 0 0
\(682\) 8.84493 2.36999i 0.338690 0.0907517i
\(683\) −31.6819 + 8.48913i −1.21227 + 0.324828i −0.807654 0.589657i \(-0.799263\pi\)
−0.404620 + 0.914485i \(0.632596\pi\)
\(684\) 0 0
\(685\) −29.8496 27.0000i −1.14050 1.03162i
\(686\) 7.15458 + 17.0825i 0.273163 + 0.652213i
\(687\) 0 0
\(688\) −10.4272 2.79396i −0.397534 0.106519i
\(689\) 1.15488 2.00031i 0.0439975 0.0762059i
\(690\) 0 0
\(691\) −24.0000 41.5692i −0.913003 1.58137i −0.809799 0.586707i \(-0.800424\pi\)
−0.103204 0.994660i \(-0.532909\pi\)
\(692\) −14.0712 + 14.0712i −0.534909 + 0.534909i
\(693\) 0 0
\(694\) 0 0
\(695\) −16.0999 24.9157i −0.610705 0.945106i
\(696\) 0 0
\(697\) 11.7932 3.15999i 0.446701 0.119693i
\(698\) −1.03528 + 3.86370i −0.0391858 + 0.146243i
\(699\) 0 0
\(700\) −2.67941 + 12.9546i −0.101272 + 0.489637i
\(701\) 29.3328i 1.10789i 0.832555 + 0.553943i \(0.186877\pi\)
−0.832555 + 0.553943i \(0.813123\pi\)
\(702\) 0 0
\(703\) −11.5602 43.1433i −0.436002 1.62718i
\(704\) −1.52616 + 2.64338i −0.0575192 + 0.0996262i
\(705\) 0 0
\(706\) −15.8997 −0.598395
\(707\) 43.6398 9.73469i 1.64124 0.366111i
\(708\) 0 0
\(709\) 13.2212 7.63325i 0.496532 0.286673i −0.230748 0.973013i \(-0.574117\pi\)
0.727280 + 0.686341i \(0.240784\pi\)
\(710\) −1.27759 3.96267i −0.0479470 0.148716i
\(711\) 0 0
\(712\) −3.27588 + 12.2258i −0.122769 + 0.458180i
\(713\) 3.57098 + 3.57098i 0.133734 + 0.133734i
\(714\) 0 0
\(715\) 6.47494 7.15831i 0.242149 0.267706i
\(716\) 1.22474 0.707107i 0.0457709 0.0264258i
\(717\) 0 0
\(718\) 1.69589 + 6.32914i 0.0632899 + 0.236201i
\(719\) −6.62329 11.4719i −0.247007 0.427829i 0.715687 0.698421i \(-0.246114\pi\)
−0.962694 + 0.270592i \(0.912780\pi\)
\(720\) 0 0
\(721\) −12.0501 + 6.29297i −0.448770 + 0.234363i
\(722\) 14.7784 14.7784i 0.549993 0.549993i
\(723\) 0 0
\(724\) 21.3330 + 12.3166i 0.792835 + 0.457744i
\(725\) −12.0817 + 26.8069i −0.448704 + 0.995583i
\(726\) 0 0
\(727\) −31.1082 31.1082i −1.15374 1.15374i −0.985797 0.167942i \(-0.946288\pi\)
−0.167942 0.985797i \(-0.553712\pi\)
\(728\) −2.75533 + 2.53144i −0.102119 + 0.0938213i
\(729\) 0 0
\(730\) −4.60537 7.12711i −0.170452 0.263786i
\(731\) −40.3552 23.2991i −1.49259 0.861748i
\(732\) 0 0
\(733\) 7.83211 + 2.09861i 0.289286 + 0.0775138i 0.400544 0.916278i \(-0.368821\pi\)
−0.111258 + 0.993792i \(0.535488\pi\)
\(734\) 9.15694 0.337989
\(735\) 0 0
\(736\) −1.68338 −0.0620500
\(737\) −44.3358 11.8797i −1.63313 0.437595i
\(738\) 0 0
\(739\) 12.0375 + 6.94987i 0.442808 + 0.255655i 0.704788 0.709418i \(-0.251042\pi\)
−0.261980 + 0.965073i \(0.584375\pi\)
\(740\) 3.32257 15.4583i 0.122140 0.568260i
\(741\) 0 0
\(742\) −3.18208 + 2.92351i −0.116818 + 0.107326i
\(743\) 21.1423 + 21.1423i 0.775636 + 0.775636i 0.979086 0.203449i \(-0.0652152\pi\)
−0.203449 + 0.979086i \(0.565215\pi\)
\(744\) 0 0
\(745\) −14.0717 7.21027i −0.515546 0.264164i
\(746\) 19.9837 + 11.5376i 0.731655 + 0.422421i
\(747\) 0 0
\(748\) −9.31662 + 9.31662i −0.340650 + 0.340650i
\(749\) 31.9728 16.6973i 1.16826 0.610104i
\(750\) 0 0
\(751\) −0.500000 0.866025i −0.0182453 0.0316017i 0.856759 0.515718i \(-0.172475\pi\)
−0.875004 + 0.484116i \(0.839141\pi\)
\(752\) −0.0819485 0.305836i −0.00298836 0.0111527i
\(753\) 0 0
\(754\) −7.20241 + 4.15831i −0.262296 + 0.151437i
\(755\) 1.86760 + 37.2584i 0.0679689 + 1.35597i
\(756\) 0 0
\(757\) −12.2665 12.2665i −0.445833 0.445833i 0.448133 0.893967i \(-0.352089\pi\)
−0.893967 + 0.448133i \(0.852089\pi\)
\(758\) −7.92847 + 29.5894i −0.287975 + 1.07474i
\(759\) 0 0
\(760\) 13.4430 4.33409i 0.487629 0.157214i
\(761\) −2.12310 + 1.22577i −0.0769622 + 0.0444341i −0.537987 0.842953i \(-0.680815\pi\)
0.461025 + 0.887387i \(0.347482\pi\)
\(762\) 0 0
\(763\) 44.5870 9.94599i 1.61416 0.360069i
\(764\) 20.6945 0.748702
\(765\) 0 0
\(766\) 1.00000 1.73205i 0.0361315 0.0625815i
\(767\) 4.38695 + 16.3723i 0.158404 + 0.591170i
\(768\) 0 0
\(769\) 35.6332i 1.28497i 0.766299 + 0.642484i \(0.222096\pi\)
−0.766299 + 0.642484i \(0.777904\pi\)
\(770\) −15.5679 + 9.14995i −0.561029 + 0.329741i
\(771\) 0 0
\(772\) 2.73602 10.2110i 0.0984714 0.367500i
\(773\) 24.4056 6.53945i 0.877807 0.235208i 0.208346 0.978055i \(-0.433192\pi\)
0.669461 + 0.742847i \(0.266525\pi\)
\(774\) 0 0
\(775\) −8.76144 12.1753i −0.314720 0.437348i
\(776\) 8.26139i 0.296567i
\(777\) 0 0
\(778\) 18.5831 18.5831i 0.666237 0.666237i
\(779\) −8.93306 15.4725i −0.320060 0.554360i
\(780\) 0 0
\(781\) 2.84169 4.92195i 0.101684 0.176121i
\(782\) −7.01890 1.88071i −0.250995 0.0672540i
\(783\) 0 0
\(784\) 6.33638 2.97494i 0.226299 0.106248i
\(785\) 7.81362 8.63828i 0.278880 0.308313i
\(786\) 0 0
\(787\) 29.9841 8.03421i 1.06882 0.286389i 0.318810 0.947819i \(-0.396717\pi\)
0.750007 + 0.661430i \(0.230050\pi\)
\(788\) −25.0172 + 6.70335i −0.891202 + 0.238797i
\(789\) 0 0
\(790\) 5.44987 6.02506i 0.193898 0.214362i
\(791\) −5.28676 0.223888i −0.187976 0.00796052i
\(792\) 0 0
\(793\) −8.62867 2.31205i −0.306413 0.0821031i
\(794\) 3.72398 6.45012i 0.132159 0.228906i
\(795\) 0 0
\(796\) 2.31662 + 4.01251i 0.0821106 + 0.142220i
\(797\) −27.2824 + 27.2824i −0.966392 + 0.966392i −0.999453 0.0330615i \(-0.989474\pi\)
0.0330615 + 0.999453i \(0.489474\pi\)
\(798\) 0 0
\(799\) 1.36675i 0.0483522i
\(800\) 4.93483 + 0.804646i 0.174473 + 0.0284485i
\(801\) 0 0
\(802\) 20.4219 5.47203i 0.721123 0.193224i
\(803\) 2.99793 11.1884i 0.105795 0.394831i
\(804\) 0 0
\(805\) −8.66311 4.91241i −0.305335 0.173140i
\(806\) 4.24264i 0.149441i
\(807\) 0 0
\(808\) −4.37396 16.3238i −0.153875 0.574270i
\(809\) −27.3178 + 47.3159i −0.960444 + 1.66354i −0.239057 + 0.971006i \(0.576838\pi\)
−0.721387 + 0.692532i \(0.756495\pi\)
\(810\) 0 0
\(811\) 49.8997 1.75222 0.876109 0.482114i \(-0.160131\pi\)
0.876109 + 0.482114i \(0.160131\pi\)
\(812\) 15.1857 3.38747i 0.532915 0.118877i
\(813\) 0 0
\(814\) 18.6915 10.7916i 0.655138 0.378244i
\(815\) 23.9269 7.71416i 0.838123 0.270215i
\(816\) 0 0
\(817\) −17.6484 + 65.8648i −0.617440 + 2.30432i
\(818\) −23.9353 23.9353i −0.836878 0.836878i
\(819\) 0 0
\(820\) −0.316625 6.31662i −0.0110570 0.220586i
\(821\) −2.19421 + 1.26683i −0.0765783 + 0.0442125i −0.537800 0.843072i \(-0.680745\pi\)
0.461222 + 0.887285i \(0.347411\pi\)
\(822\) 0 0
\(823\) −7.64984 28.5496i −0.266657 0.995176i −0.961229 0.275753i \(-0.911073\pi\)
0.694572 0.719423i \(-0.255594\pi\)
\(824\) 2.56910 + 4.44980i 0.0894987 + 0.155016i
\(825\) 0 0
\(826\) 1.34169 31.6819i 0.0466833 1.10235i
\(827\) 27.8011 27.8011i 0.966737 0.966737i −0.0327270 0.999464i \(-0.510419\pi\)
0.999464 + 0.0327270i \(0.0104192\pi\)
\(828\) 0 0
\(829\) 14.5922 + 8.42481i 0.506808 + 0.292606i 0.731521 0.681819i \(-0.238811\pi\)
−0.224713 + 0.974425i \(0.572144\pi\)
\(830\) 24.4108 + 12.5080i 0.847310 + 0.434158i
\(831\) 0 0
\(832\) 1.00000 + 1.00000i 0.0346688 + 0.0346688i
\(833\) 29.7435 5.32495i 1.03055 0.184499i
\(834\) 0 0
\(835\) 3.75906 17.4891i 0.130087 0.605236i
\(836\) 16.6973 + 9.64016i 0.577487 + 0.333412i
\(837\) 0 0
\(838\) 5.96509 + 1.59834i 0.206061 + 0.0552138i
\(839\) −24.3476 −0.840573 −0.420287 0.907391i \(-0.638071\pi\)
−0.420287 + 0.907391i \(0.638071\pi\)
\(840\) 0 0
\(841\) 5.58312 0.192522
\(842\) −30.5070 8.17431i −1.05134 0.281705i
\(843\) 0 0
\(844\) −4.28672 2.47494i −0.147555 0.0851909i
\(845\) 13.3494 + 20.6590i 0.459232 + 0.710691i
\(846\) 0 0
\(847\) 4.24941 + 1.33372i 0.146011 + 0.0458270i
\(848\) 1.15488 + 1.15488i 0.0396588 + 0.0396588i
\(849\) 0 0
\(850\) 19.6770 + 8.86832i 0.674915 + 0.304181i
\(851\) 10.3085 + 5.95163i 0.353372 + 0.204019i
\(852\) 0 0
\(853\) 15.6834 15.6834i 0.536989 0.536989i −0.385655 0.922643i \(-0.626024\pi\)
0.922643 + 0.385655i \(0.126024\pi\)
\(854\) 14.1067 + 8.96100i 0.482721 + 0.306639i
\(855\) 0 0
\(856\) −6.81662 11.8067i −0.232987 0.403546i
\(857\) 11.3061 + 42.1949i 0.386209 + 1.44135i 0.836253 + 0.548344i \(0.184742\pi\)
−0.450044 + 0.893006i \(0.648592\pi\)
\(858\) 0 0
\(859\) −11.1281 + 6.42481i −0.379686 + 0.219212i −0.677682 0.735355i \(-0.737015\pi\)
0.297996 + 0.954567i \(0.403682\pi\)
\(860\) −16.1926 + 17.9016i −0.552162 + 0.610438i
\(861\) 0 0
\(862\) 9.05013 + 9.05013i 0.308249 + 0.308249i
\(863\) 6.67740 24.9204i 0.227301 0.848300i −0.754168 0.656681i \(-0.771960\pi\)
0.981469 0.191619i \(-0.0613737\pi\)
\(864\) 0 0
\(865\) 13.6540 + 42.3505i 0.464251 + 1.43996i
\(866\) −7.40986 + 4.27808i −0.251797 + 0.145375i
\(867\) 0 0
\(868\) −2.37686 + 7.57301i −0.0806759 + 0.257045i
\(869\) 11.0898 0.376196
\(870\) 0 0
\(871\) −10.6332 + 18.4173i −0.360294 + 0.624047i
\(872\) −4.46890 16.6782i −0.151336 0.564794i
\(873\) 0 0
\(874\) 10.6332i 0.359675i
\(875\) 23.0479 + 18.5417i 0.779161 + 0.626824i
\(876\) 0 0
\(877\) 4.35561 16.2554i 0.147079 0.548904i −0.852576 0.522604i \(-0.824961\pi\)
0.999654 0.0263005i \(-0.00837268\pi\)
\(878\) 4.42696 1.18620i 0.149403 0.0400323i
\(879\) 0 0
\(880\) 3.70422 + 5.73253i 0.124869 + 0.193243i
\(881\) 20.6945i 0.697217i −0.937268 0.348608i \(-0.886654\pi\)
0.937268 0.348608i \(-0.113346\pi\)
\(882\) 0 0
\(883\) 3.68338 3.68338i 0.123955 0.123955i −0.642408 0.766363i \(-0.722064\pi\)
0.766363 + 0.642408i \(0.222064\pi\)
\(884\) 3.05231 + 5.28676i 0.102660 + 0.177813i
\(885\) 0 0
\(886\) −10.9749 + 19.0091i −0.368710 + 0.638625i
\(887\) 0.917508 + 0.245846i 0.0308069 + 0.00825469i 0.274190 0.961676i \(-0.411590\pi\)
−0.243383 + 0.969930i \(0.578257\pi\)
\(888\) 0 0
\(889\) 17.9123 + 0.758564i 0.600760 + 0.0254414i
\(890\) 20.9893 + 18.9856i 0.703563 + 0.636397i
\(891\) 0 0
\(892\) −22.0727 + 5.91435i −0.739047 + 0.198027i
\(893\) −1.93185 + 0.517638i −0.0646470 + 0.0173221i
\(894\) 0 0
\(895\) −0.158312 3.15831i −0.00529180 0.105571i
\(896\) −1.22474 2.34521i −0.0409159 0.0783479i
\(897\) 0 0
\(898\) 22.6530 + 6.06984i 0.755939 + 0.202553i
\(899\) −8.82111 + 15.2786i −0.294201 + 0.509570i
\(900\) 0 0
\(901\) 3.52506 + 6.10559i 0.117437 + 0.203407i
\(902\) 6.10463 6.10463i 0.203262 0.203262i
\(903\) 0 0
\(904\) 2.00000i 0.0665190i
\(905\) 46.2635 29.8944i 1.53785 0.993723i
\(906\) 0 0
\(907\) 18.7603 5.02681i 0.622926 0.166912i 0.0664684 0.997789i \(-0.478827\pi\)
0.556458 + 0.830876i \(0.312160\pi\)
\(908\) −4.31798 + 16.1149i −0.143297 + 0.534792i
\(909\) 0 0
\(910\) 2.22808 + 8.06447i 0.0738603 + 0.267334i
\(911\) 6.48152i 0.214742i 0.994219 + 0.107371i \(0.0342433\pi\)
−0.994219 + 0.107371i \(0.965757\pi\)
\(912\) 0 0
\(913\) 9.69050 + 36.1654i 0.320709 + 1.19690i
\(914\) −16.7877 + 29.0772i −0.555289 + 0.961788i
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) −9.90678 + 31.5644i −0.327151 + 1.04235i
\(918\) 0 0
\(919\) −16.6853 + 9.63325i −0.550397 + 0.317772i −0.749282 0.662251i \(-0.769601\pi\)
0.198885 + 0.980023i \(0.436268\pi\)
\(920\) −1.71651 + 3.34998i −0.0565918 + 0.110445i
\(921\) 0 0
\(922\) 0.0183473 0.0684729i 0.000604235 0.00225503i
\(923\) −1.86199 1.86199i −0.0612881 0.0612881i
\(924\) 0 0
\(925\) −27.3747 22.3747i −0.900074 0.735675i
\(926\) 33.8437 19.5397i 1.11217 0.642113i
\(927\) 0 0
\(928\) −1.52205 5.68036i −0.0499637 0.186467i
\(929\) 14.1776 + 24.5563i 0.465151 + 0.805666i 0.999208 0.0397827i \(-0.0126666\pi\)
−0.534057 + 0.845448i \(0.679333\pi\)
\(930\) 0 0
\(931\) −18.7916 40.0246i −0.615869 1.31175i
\(932\) −14.8138 + 14.8138i −0.485242 + 0.485242i
\(933\) 0 0
\(934\) −33.3706 19.2665i −1.09192 0.630419i
\(935\) 9.04038 + 28.0404i 0.295652 + 0.917021i
\(936\) 0 0
\(937\) 33.3747 + 33.3747i 1.09030 + 1.09030i 0.995496 + 0.0948079i \(0.0302237\pi\)
0.0948079 + 0.995496i \(0.469776\pi\)
\(938\) 29.2981 26.9174i 0.956616 0.878885i
\(939\) 0 0
\(940\) −0.692186 0.148776i −0.0225766 0.00485255i
\(941\) 4.19452 + 2.42171i 0.136737 + 0.0789454i 0.566808 0.823850i \(-0.308178\pi\)
−0.430071 + 0.902795i \(0.641511\pi\)
\(942\) 0 0
\(943\) 4.59907 + 1.23232i 0.149766 + 0.0401297i
\(944\) −11.9854 −0.390091
\(945\) 0 0
\(946\) −32.9499 −1.07129
\(947\) 23.7939 + 6.37555i 0.773198 + 0.207178i 0.623784 0.781597i \(-0.285595\pi\)
0.149414 + 0.988775i \(0.452261\pi\)
\(948\) 0 0
\(949\) −4.64774 2.68338i −0.150872 0.0871060i
\(950\) 5.08264 31.1715i 0.164903 1.01134i
\(951\) 0 0
\(952\) −2.48650 11.1468i −0.0805879 0.361268i
\(953\) −24.1237 24.1237i −0.781445 0.781445i 0.198630 0.980075i \(-0.436351\pi\)
−0.980075 + 0.198630i \(0.936351\pi\)
\(954\) 0 0
\(955\) 21.1019 41.1829i 0.682842 1.33265i
\(956\) 0.836960 + 0.483219i 0.0270692 + 0.0156284i
\(957\) 0 0
\(958\) −7.31662 + 7.31662i −0.236389 + 0.236389i
\(959\) 40.1988 + 25.5355i 1.29809 + 0.824583i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) −2.58819 9.65926i −0.0834466 0.311427i
\(963\) 0 0
\(964\) 5.70115 3.29156i 0.183622 0.106014i
\(965\) −17.5303 15.8567i −0.564320 0.510446i
\(966\) 0 0
\(967\) 27.6913 + 27.6913i 0.890493 + 0.890493i 0.994569 0.104077i \(-0.0331888\pi\)
−0.104077 + 0.994569i \(0.533189\pi\)
\(968\) 0.435690 1.62602i 0.0140036 0.0522621i
\(969\) 0 0
\(970\) −16.4405 8.42403i −0.527872 0.270479i
\(971\) 24.9538 14.4071i 0.800805 0.462345i −0.0429474 0.999077i \(-0.513675\pi\)
0.843753 + 0.536732i \(0.180341\pi\)
\(972\) 0 0
\(973\) 23.7470 + 25.8472i 0.761294 + 0.828625i
\(974\) −16.2280 −0.519979
\(975\) 0 0
\(976\) 3.15831 5.47036i 0.101095 0.175102i
\(977\) 3.02388 + 11.2853i 0.0967425 + 0.361048i 0.997278 0.0737348i \(-0.0234918\pi\)
−0.900535 + 0.434783i \(0.856825\pi\)
\(978\) 0 0
\(979\) 38.6332i 1.23472i
\(980\) 0.540890 15.6431i 0.0172781 0.499701i
\(981\) 0 0
\(982\) 3.58396 13.3755i 0.114369 0.426830i
\(983\) −8.43591 + 2.26040i −0.269064 + 0.0720954i −0.390828 0.920464i \(-0.627811\pi\)
0.121764 + 0.992559i \(0.461145\pi\)
\(984\) 0 0
\(985\) −12.1698 + 56.6205i −0.387763 + 1.80408i
\(986\) 25.3850i 0.808422i
\(987\) 0 0
\(988\) 6.31662 6.31662i 0.200959 0.200959i
\(989\) −9.08606 15.7375i −0.288920 0.500424i
\(990\) 0 0
\(991\) −8.65831 + 14.9966i −0.275040 + 0.476384i −0.970145 0.242524i \(-0.922025\pi\)
0.695105 + 0.718908i \(0.255358\pi\)
\(992\) 2.89778 + 0.776457i 0.0920045 + 0.0246525i
\(993\) 0 0
\(994\) 2.28046 + 4.36675i 0.0723318 + 0.138505i
\(995\) 10.3473 0.518663i 0.328031 0.0164427i
\(996\) 0 0
\(997\) 11.3607 3.04410i 0.359798 0.0964075i −0.0743918 0.997229i \(-0.523702\pi\)
0.434189 + 0.900822i \(0.357035\pi\)
\(998\) −21.2504 + 5.69402i −0.672669 + 0.180241i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.ce.b.557.4 yes 16
3.2 odd 2 inner 630.2.ce.b.557.1 yes 16
5.3 odd 4 inner 630.2.ce.b.53.4 yes 16
7.2 even 3 inner 630.2.ce.b.107.1 yes 16
15.8 even 4 inner 630.2.ce.b.53.1 16
21.2 odd 6 inner 630.2.ce.b.107.4 yes 16
35.23 odd 12 inner 630.2.ce.b.233.1 yes 16
105.23 even 12 inner 630.2.ce.b.233.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.ce.b.53.1 16 15.8 even 4 inner
630.2.ce.b.53.4 yes 16 5.3 odd 4 inner
630.2.ce.b.107.1 yes 16 7.2 even 3 inner
630.2.ce.b.107.4 yes 16 21.2 odd 6 inner
630.2.ce.b.233.1 yes 16 35.23 odd 12 inner
630.2.ce.b.233.4 yes 16 105.23 even 12 inner
630.2.ce.b.557.1 yes 16 3.2 odd 2 inner
630.2.ce.b.557.4 yes 16 1.1 even 1 trivial