Properties

Label 630.2.ce.b.557.1
Level $630$
Weight $2$
Character 630.557
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(53,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.6040479020157644046336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} - 32x^{8} - 567x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.1
Root \(1.47240 + 0.912166i\) of defining polynomial
Character \(\chi\) \(=\) 630.557
Dual form 630.2.ce.b.233.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-1.87809 + 1.21358i) q^{5} +(-1.94831 + 1.79000i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.12819 - 0.686141i) q^{10} +(-2.64338 - 1.52616i) q^{11} +(1.00000 - 1.00000i) q^{13} +(2.34521 - 1.22474i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.11722 - 4.16954i) q^{17} +(5.47036 - 3.15831i) q^{19} +(-2.23326 + 0.111944i) q^{20} +(2.15831 + 2.15831i) q^{22} +(0.435690 - 1.62602i) q^{23} +(2.05446 - 4.55842i) q^{25} +(-1.22474 + 0.707107i) q^{26} +(-2.58228 + 0.576028i) q^{28} +5.88074 q^{29} +(1.50000 - 2.59808i) q^{31} +(-0.258819 - 0.965926i) q^{32} +4.31662i q^{34} +(1.48680 - 5.72620i) q^{35} +(1.83013 - 6.83013i) q^{37} +(-6.10139 + 1.63486i) q^{38} +(2.18614 + 0.469882i) q^{40} +2.82843i q^{41} +(-7.63325 + 7.63325i) q^{43} +(-1.52616 - 2.64338i) q^{44} +(-0.841688 + 1.45785i) q^{46} +(0.305836 + 0.0819485i) q^{47} +(0.591820 - 6.97494i) q^{49} +(-3.16426 + 3.87137i) q^{50} +(1.36603 - 0.366025i) q^{52} +(-1.57760 + 0.422716i) q^{53} +(6.81662 - 0.341688i) q^{55} +(2.64338 + 0.111944i) q^{56} +(-5.68036 - 1.52205i) q^{58} +(5.99269 - 10.3796i) q^{59} +(-3.15831 - 5.47036i) q^{61} +(-2.12132 + 2.12132i) q^{62} +1.00000i q^{64} +(-0.664513 + 3.09167i) q^{65} +(-14.5253 + 3.89204i) q^{67} +(1.11722 - 4.16954i) q^{68} +(-2.91819 + 5.14628i) q^{70} +1.86199i q^{71} +(-0.982183 - 3.66556i) q^{73} +(-3.53553 + 6.12372i) q^{74} +6.31662 q^{76} +(7.88194 - 1.75822i) q^{77} +(3.14649 - 1.81662i) q^{79} +(-1.99004 - 1.01969i) q^{80} +(0.732051 - 2.73205i) q^{82} +(-8.67372 - 8.67372i) q^{83} +(7.15831 + 6.47494i) q^{85} +(9.34878 - 5.39752i) q^{86} +(0.789997 + 2.94831i) q^{88} +(-6.32852 - 10.9613i) q^{89} +(-0.158312 + 3.73831i) q^{91} +(1.19033 - 1.19033i) q^{92} +(-0.274205 - 0.158312i) q^{94} +(-6.44097 + 12.5703i) q^{95} +(-5.84169 - 5.84169i) q^{97} +(-2.37690 + 6.58410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{7} + 16 q^{13} + 8 q^{16} + 8 q^{22} - 12 q^{28} + 24 q^{31} - 40 q^{37} + 12 q^{40} - 16 q^{43} - 40 q^{46} + 8 q^{52} + 56 q^{55} - 20 q^{58} - 24 q^{61} - 32 q^{67} + 4 q^{70} + 48 q^{73}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 0.258819i −0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) −1.87809 + 1.21358i −0.839908 + 0.542729i
\(6\) 0 0
\(7\) −1.94831 + 1.79000i −0.736392 + 0.676555i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 2.12819 0.686141i 0.672994 0.216977i
\(11\) −2.64338 1.52616i −0.797010 0.460154i 0.0454148 0.998968i \(-0.485539\pi\)
−0.842424 + 0.538814i \(0.818872\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000i 0.277350 0.277350i −0.554700 0.832050i \(-0.687167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 2.34521 1.22474i 0.626783 0.327327i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.11722 4.16954i −0.270967 1.01126i −0.958496 0.285105i \(-0.907971\pi\)
0.687529 0.726157i \(-0.258695\pi\)
\(18\) 0 0
\(19\) 5.47036 3.15831i 1.25499 0.724567i 0.282891 0.959152i \(-0.408707\pi\)
0.972095 + 0.234586i \(0.0753733\pi\)
\(20\) −2.23326 + 0.111944i −0.499373 + 0.0250314i
\(21\) 0 0
\(22\) 2.15831 + 2.15831i 0.460154 + 0.460154i
\(23\) 0.435690 1.62602i 0.0908476 0.339048i −0.905510 0.424326i \(-0.860511\pi\)
0.996357 + 0.0852780i \(0.0271778\pi\)
\(24\) 0 0
\(25\) 2.05446 4.55842i 0.410891 0.911684i
\(26\) −1.22474 + 0.707107i −0.240192 + 0.138675i
\(27\) 0 0
\(28\) −2.58228 + 0.576028i −0.488006 + 0.108859i
\(29\) 5.88074 1.09203 0.546013 0.837777i \(-0.316145\pi\)
0.546013 + 0.837777i \(0.316145\pi\)
\(30\) 0 0
\(31\) 1.50000 2.59808i 0.269408 0.466628i −0.699301 0.714827i \(-0.746505\pi\)
0.968709 + 0.248199i \(0.0798387\pi\)
\(32\) −0.258819 0.965926i −0.0457532 0.170753i
\(33\) 0 0
\(34\) 4.31662i 0.740295i
\(35\) 1.48680 5.72620i 0.251315 0.967905i
\(36\) 0 0
\(37\) 1.83013 6.83013i 0.300871 1.12287i −0.635571 0.772043i \(-0.719235\pi\)
0.936442 0.350823i \(-0.114098\pi\)
\(38\) −6.10139 + 1.63486i −0.989776 + 0.265210i
\(39\) 0 0
\(40\) 2.18614 + 0.469882i 0.345659 + 0.0742949i
\(41\) 2.82843i 0.441726i 0.975305 + 0.220863i \(0.0708874\pi\)
−0.975305 + 0.220863i \(0.929113\pi\)
\(42\) 0 0
\(43\) −7.63325 + 7.63325i −1.16406 + 1.16406i −0.180481 + 0.983578i \(0.557766\pi\)
−0.983578 + 0.180481i \(0.942234\pi\)
\(44\) −1.52616 2.64338i −0.230077 0.398505i
\(45\) 0 0
\(46\) −0.841688 + 1.45785i −0.124100 + 0.214948i
\(47\) 0.305836 + 0.0819485i 0.0446108 + 0.0119534i 0.281055 0.959692i \(-0.409316\pi\)
−0.236445 + 0.971645i \(0.575982\pi\)
\(48\) 0 0
\(49\) 0.591820 6.97494i 0.0845458 0.996420i
\(50\) −3.16426 + 3.87137i −0.447494 + 0.547494i
\(51\) 0 0
\(52\) 1.36603 0.366025i 0.189434 0.0507586i
\(53\) −1.57760 + 0.422716i −0.216700 + 0.0580645i −0.365535 0.930797i \(-0.619114\pi\)
0.148836 + 0.988862i \(0.452447\pi\)
\(54\) 0 0
\(55\) 6.81662 0.341688i 0.919153 0.0460731i
\(56\) 2.64338 + 0.111944i 0.353237 + 0.0149591i
\(57\) 0 0
\(58\) −5.68036 1.52205i −0.745868 0.199855i
\(59\) 5.99269 10.3796i 0.780181 1.35131i −0.151655 0.988434i \(-0.548460\pi\)
0.931836 0.362880i \(-0.118206\pi\)
\(60\) 0 0
\(61\) −3.15831 5.47036i −0.404380 0.700408i 0.589869 0.807499i \(-0.299179\pi\)
−0.994249 + 0.107092i \(0.965846\pi\)
\(62\) −2.12132 + 2.12132i −0.269408 + 0.269408i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.664513 + 3.09167i −0.0824227 + 0.383474i
\(66\) 0 0
\(67\) −14.5253 + 3.89204i −1.77455 + 0.475488i −0.989572 0.144040i \(-0.953991\pi\)
−0.784975 + 0.619528i \(0.787324\pi\)
\(68\) 1.11722 4.16954i 0.135483 0.505631i
\(69\) 0 0
\(70\) −2.91819 + 5.14628i −0.348791 + 0.615098i
\(71\) 1.86199i 0.220977i 0.993877 + 0.110489i \(0.0352416\pi\)
−0.993877 + 0.110489i \(0.964758\pi\)
\(72\) 0 0
\(73\) −0.982183 3.66556i −0.114956 0.429021i 0.884328 0.466867i \(-0.154617\pi\)
−0.999284 + 0.0378455i \(0.987951\pi\)
\(74\) −3.53553 + 6.12372i −0.410997 + 0.711868i
\(75\) 0 0
\(76\) 6.31662 0.724567
\(77\) 7.88194 1.75822i 0.898231 0.200368i
\(78\) 0 0
\(79\) 3.14649 1.81662i 0.354007 0.204386i −0.312441 0.949937i \(-0.601147\pi\)
0.666449 + 0.745551i \(0.267813\pi\)
\(80\) −1.99004 1.01969i −0.222493 0.114004i
\(81\) 0 0
\(82\) 0.732051 2.73205i 0.0808415 0.301705i
\(83\) −8.67372 8.67372i −0.952065 0.952065i 0.0468375 0.998903i \(-0.485086\pi\)
−0.998903 + 0.0468375i \(0.985086\pi\)
\(84\) 0 0
\(85\) 7.15831 + 6.47494i 0.776428 + 0.702306i
\(86\) 9.34878 5.39752i 1.00811 0.582030i
\(87\) 0 0
\(88\) 0.789997 + 2.94831i 0.0842140 + 0.314291i
\(89\) −6.32852 10.9613i −0.670821 1.16190i −0.977672 0.210139i \(-0.932608\pi\)
0.306850 0.951758i \(-0.400725\pi\)
\(90\) 0 0
\(91\) −0.158312 + 3.73831i −0.0165956 + 0.391881i
\(92\) 1.19033 1.19033i 0.124100 0.124100i
\(93\) 0 0
\(94\) −0.274205 0.158312i −0.0282821 0.0163287i
\(95\) −6.44097 + 12.5703i −0.660830 + 1.28969i
\(96\) 0 0
\(97\) −5.84169 5.84169i −0.593134 0.593134i 0.345343 0.938477i \(-0.387763\pi\)
−0.938477 + 0.345343i \(0.887763\pi\)
\(98\) −2.37690 + 6.58410i −0.240103 + 0.665094i
\(99\) 0 0
\(100\) 4.05842 2.92048i 0.405842 0.292048i
\(101\) 14.6355 + 8.44984i 1.45629 + 0.840790i 0.998826 0.0484373i \(-0.0154241\pi\)
0.457465 + 0.889228i \(0.348757\pi\)
\(102\) 0 0
\(103\) 4.96311 + 1.32986i 0.489030 + 0.131035i 0.494904 0.868948i \(-0.335203\pi\)
−0.00587425 + 0.999983i \(0.501870\pi\)
\(104\) −1.41421 −0.138675
\(105\) 0 0
\(106\) 1.63325 0.158635
\(107\) 13.1687 + 3.52854i 1.27307 + 0.341117i 0.831205 0.555966i \(-0.187651\pi\)
0.441862 + 0.897083i \(0.354318\pi\)
\(108\) 0 0
\(109\) −14.9532 8.63325i −1.43226 0.826915i −0.434966 0.900447i \(-0.643240\pi\)
−0.997293 + 0.0735313i \(0.976573\pi\)
\(110\) −6.67279 1.43423i −0.636225 0.136748i
\(111\) 0 0
\(112\) −2.52434 0.792287i −0.238528 0.0748641i
\(113\) −1.41421 1.41421i −0.133038 0.133038i 0.637452 0.770490i \(-0.279988\pi\)
−0.770490 + 0.637452i \(0.779988\pi\)
\(114\) 0 0
\(115\) 1.15503 + 3.58255i 0.107707 + 0.334074i
\(116\) 5.09287 + 2.94037i 0.472861 + 0.273007i
\(117\) 0 0
\(118\) −8.47494 + 8.47494i −0.780181 + 0.780181i
\(119\) 9.64016 + 6.12372i 0.883712 + 0.561361i
\(120\) 0 0
\(121\) −0.841688 1.45785i −0.0765171 0.132531i
\(122\) 1.63486 + 6.10139i 0.148014 + 0.552394i
\(123\) 0 0
\(124\) 2.59808 1.50000i 0.233314 0.134704i
\(125\) 1.67355 + 11.0544i 0.149686 + 0.988734i
\(126\) 0 0
\(127\) −4.79156 4.79156i −0.425182 0.425182i 0.461801 0.886983i \(-0.347203\pi\)
−0.886983 + 0.461801i \(0.847203\pi\)
\(128\) 0.258819 0.965926i 0.0228766 0.0853766i
\(129\) 0 0
\(130\) 1.44205 2.81433i 0.126476 0.246834i
\(131\) −10.8288 + 6.25202i −0.946118 + 0.546241i −0.891873 0.452286i \(-0.850608\pi\)
−0.0542449 + 0.998528i \(0.517275\pi\)
\(132\) 0 0
\(133\) −5.00458 + 15.9453i −0.433952 + 1.38263i
\(134\) 15.0377 1.29906
\(135\) 0 0
\(136\) −2.15831 + 3.73831i −0.185074 + 0.320557i
\(137\) 4.65874 + 17.3867i 0.398023 + 1.48544i 0.816569 + 0.577247i \(0.195873\pi\)
−0.418546 + 0.908196i \(0.637460\pi\)
\(138\) 0 0
\(139\) 13.2665i 1.12525i −0.826712 0.562625i \(-0.809792\pi\)
0.826712 0.562625i \(-0.190208\pi\)
\(140\) 4.15071 4.21564i 0.350799 0.356286i
\(141\) 0 0
\(142\) 0.481918 1.79854i 0.0404417 0.150930i
\(143\) −4.16954 + 1.11722i −0.348674 + 0.0934270i
\(144\) 0 0
\(145\) −11.0446 + 7.13674i −0.917202 + 0.592674i
\(146\) 3.79487i 0.314065i
\(147\) 0 0
\(148\) 5.00000 5.00000i 0.410997 0.410997i
\(149\) 3.53553 + 6.12372i 0.289642 + 0.501675i 0.973724 0.227730i \(-0.0731303\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(150\) 0 0
\(151\) −8.34169 + 14.4482i −0.678837 + 1.17578i 0.296495 + 0.955035i \(0.404182\pi\)
−0.975331 + 0.220745i \(0.929151\pi\)
\(152\) −6.10139 1.63486i −0.494888 0.132605i
\(153\) 0 0
\(154\) −8.06843 0.341688i −0.650173 0.0275340i
\(155\) 0.335831 + 6.69979i 0.0269746 + 0.538140i
\(156\) 0 0
\(157\) 5.03158 1.34821i 0.401564 0.107599i −0.0523837 0.998627i \(-0.516682\pi\)
0.453948 + 0.891028i \(0.350015\pi\)
\(158\) −3.50945 + 0.940354i −0.279197 + 0.0748106i
\(159\) 0 0
\(160\) 1.65831 + 1.50000i 0.131101 + 0.118585i
\(161\) 2.06171 + 3.94786i 0.162485 + 0.311135i
\(162\) 0 0
\(163\) 10.8597 + 2.90986i 0.850600 + 0.227918i 0.657680 0.753297i \(-0.271538\pi\)
0.192919 + 0.981215i \(0.438204\pi\)
\(164\) −1.41421 + 2.44949i −0.110432 + 0.191273i
\(165\) 0 0
\(166\) 6.13325 + 10.6231i 0.476032 + 0.824512i
\(167\) −5.65685 + 5.65685i −0.437741 + 0.437741i −0.891251 0.453510i \(-0.850171\pi\)
0.453510 + 0.891251i \(0.350171\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) −5.23856 8.10702i −0.401779 0.621780i
\(171\) 0 0
\(172\) −10.4272 + 2.79396i −0.795068 + 0.213038i
\(173\) 5.15043 19.2217i 0.391580 1.46140i −0.435947 0.899972i \(-0.643587\pi\)
0.827528 0.561425i \(-0.189747\pi\)
\(174\) 0 0
\(175\) 4.15685 + 12.5587i 0.314228 + 0.949348i
\(176\) 3.05231i 0.230077i
\(177\) 0 0
\(178\) 3.27588 + 12.2258i 0.245538 + 0.916359i
\(179\) −0.707107 + 1.22474i −0.0528516 + 0.0915417i −0.891241 0.453530i \(-0.850164\pi\)
0.838389 + 0.545072i \(0.183498\pi\)
\(180\) 0 0
\(181\) 24.6332 1.83098 0.915488 0.402346i \(-0.131805\pi\)
0.915488 + 0.402346i \(0.131805\pi\)
\(182\) 1.12046 3.56995i 0.0830542 0.264623i
\(183\) 0 0
\(184\) −1.45785 + 0.841688i −0.107474 + 0.0620500i
\(185\) 4.85175 + 15.0486i 0.356708 + 1.10640i
\(186\) 0 0
\(187\) −3.41012 + 12.7267i −0.249373 + 0.930672i
\(188\) 0.223888 + 0.223888i 0.0163287 + 0.0163287i
\(189\) 0 0
\(190\) 9.47494 10.4749i 0.687384 0.759932i
\(191\) −17.9220 + 10.3473i −1.29679 + 0.748702i −0.979848 0.199743i \(-0.935989\pi\)
−0.316942 + 0.948445i \(0.602656\pi\)
\(192\) 0 0
\(193\) −2.73602 10.2110i −0.196943 0.735001i −0.991755 0.128146i \(-0.959098\pi\)
0.794813 0.606855i \(-0.207569\pi\)
\(194\) 4.13070 + 7.15458i 0.296567 + 0.513669i
\(195\) 0 0
\(196\) 4.00000 5.74456i 0.285714 0.410326i
\(197\) 18.3139 18.3139i 1.30481 1.30481i 0.379701 0.925109i \(-0.376027\pi\)
0.925109 0.379701i \(-0.123973\pi\)
\(198\) 0 0
\(199\) 4.01251 + 2.31662i 0.284439 + 0.164221i 0.635431 0.772157i \(-0.280822\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(200\) −4.67601 + 1.77057i −0.330644 + 0.125198i
\(201\) 0 0
\(202\) −11.9499 11.9499i −0.840790 0.840790i
\(203\) −11.4575 + 10.5265i −0.804159 + 0.738816i
\(204\) 0 0
\(205\) −3.43252 5.31205i −0.239737 0.371009i
\(206\) −4.44980 2.56910i −0.310033 0.178997i
\(207\) 0 0
\(208\) 1.36603 + 0.366025i 0.0947168 + 0.0253793i
\(209\) −19.2803 −1.33365
\(210\) 0 0
\(211\) −4.94987 −0.340763 −0.170382 0.985378i \(-0.554500\pi\)
−0.170382 + 0.985378i \(0.554500\pi\)
\(212\) −1.57760 0.422716i −0.108350 0.0290323i
\(213\) 0 0
\(214\) −11.8067 6.81662i −0.807092 0.465975i
\(215\) 5.07240 23.5995i 0.345935 1.60947i
\(216\) 0 0
\(217\) 1.72808 + 7.74685i 0.117310 + 0.525891i
\(218\) 12.2093 + 12.2093i 0.826915 + 0.826915i
\(219\) 0 0
\(220\) 6.07421 + 3.11240i 0.409523 + 0.209838i
\(221\) −5.28676 3.05231i −0.355626 0.205321i
\(222\) 0 0
\(223\) −16.1583 + 16.1583i −1.08204 + 1.08204i −0.0857215 + 0.996319i \(0.527320\pi\)
−0.996319 + 0.0857215i \(0.972680\pi\)
\(224\) 2.23326 + 1.41864i 0.149216 + 0.0947867i
\(225\) 0 0
\(226\) 1.00000 + 1.73205i 0.0665190 + 0.115214i
\(227\) −4.31798 16.1149i −0.286594 1.06958i −0.947667 0.319262i \(-0.896565\pi\)
0.661073 0.750322i \(-0.270102\pi\)
\(228\) 0 0
\(229\) 22.5167 13.0000i 1.48794 0.859064i 0.488037 0.872823i \(-0.337713\pi\)
0.999905 + 0.0137585i \(0.00437961\pi\)
\(230\) −0.188443 3.75942i −0.0124256 0.247889i
\(231\) 0 0
\(232\) −4.15831 4.15831i −0.273007 0.273007i
\(233\) 5.42223 20.2360i 0.355222 1.32571i −0.524983 0.851113i \(-0.675928\pi\)
0.880205 0.474593i \(-0.157405\pi\)
\(234\) 0 0
\(235\) −0.673839 + 0.217249i −0.0439564 + 0.0141718i
\(236\) 10.3796 5.99269i 0.675657 0.390091i
\(237\) 0 0
\(238\) −7.72675 8.41012i −0.500851 0.545147i
\(239\) −0.966438 −0.0625137 −0.0312569 0.999511i \(-0.509951\pi\)
−0.0312569 + 0.999511i \(0.509951\pi\)
\(240\) 0 0
\(241\) 3.29156 5.70115i 0.212028 0.367244i −0.740321 0.672254i \(-0.765326\pi\)
0.952349 + 0.305010i \(0.0986598\pi\)
\(242\) 0.435690 + 1.62602i 0.0280072 + 0.104524i
\(243\) 0 0
\(244\) 6.31662i 0.404380i
\(245\) 7.35314 + 13.8178i 0.469775 + 0.882786i
\(246\) 0 0
\(247\) 2.31205 8.62867i 0.147112 0.549029i
\(248\) −2.89778 + 0.776457i −0.184009 + 0.0493051i
\(249\) 0 0
\(250\) 1.24456 11.1109i 0.0787131 0.702712i
\(251\) 17.1236i 1.08083i 0.841399 + 0.540415i \(0.181733\pi\)
−0.841399 + 0.540415i \(0.818267\pi\)
\(252\) 0 0
\(253\) −3.63325 + 3.63325i −0.228420 + 0.228420i
\(254\) 3.38815 + 5.86844i 0.212591 + 0.368219i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −20.5419 5.50418i −1.28137 0.343341i −0.446991 0.894538i \(-0.647504\pi\)
−0.834375 + 0.551197i \(0.814171\pi\)
\(258\) 0 0
\(259\) 8.66025 + 16.5831i 0.538122 + 1.03043i
\(260\) −2.12132 + 2.34521i −0.131559 + 0.145444i
\(261\) 0 0
\(262\) 12.0780 3.23628i 0.746179 0.199938i
\(263\) −5.39288 + 1.44502i −0.332539 + 0.0891037i −0.421225 0.906956i \(-0.638400\pi\)
0.0886860 + 0.996060i \(0.471733\pi\)
\(264\) 0 0
\(265\) 2.44987 2.70844i 0.150495 0.166378i
\(266\) 8.96100 14.1067i 0.549434 0.864937i
\(267\) 0 0
\(268\) −14.5253 3.89204i −0.887273 0.237744i
\(269\) 6.73524 11.6658i 0.410655 0.711275i −0.584307 0.811533i \(-0.698634\pi\)
0.994961 + 0.100258i \(0.0319669\pi\)
\(270\) 0 0
\(271\) −8.65831 14.9966i −0.525955 0.910981i −0.999543 0.0302342i \(-0.990375\pi\)
0.473588 0.880747i \(-0.342959\pi\)
\(272\) 3.05231 3.05231i 0.185074 0.185074i
\(273\) 0 0
\(274\) 18.0000i 1.08742i
\(275\) −12.3876 + 8.91423i −0.746999 + 0.537548i
\(276\) 0 0
\(277\) 18.1224 4.85588i 1.08887 0.291761i 0.330644 0.943756i \(-0.392734\pi\)
0.758224 + 0.651994i \(0.226067\pi\)
\(278\) −3.43362 + 12.8145i −0.205935 + 0.768560i
\(279\) 0 0
\(280\) −5.10037 + 2.99771i −0.304805 + 0.179147i
\(281\) 19.7990i 1.18111i −0.806998 0.590554i \(-0.798909\pi\)
0.806998 0.590554i \(-0.201091\pi\)
\(282\) 0 0
\(283\) −0.481918 1.79854i −0.0286471 0.106912i 0.950122 0.311879i \(-0.100958\pi\)
−0.978769 + 0.204966i \(0.934292\pi\)
\(284\) −0.930994 + 1.61253i −0.0552443 + 0.0956860i
\(285\) 0 0
\(286\) 4.31662 0.255247
\(287\) −5.06288 5.51065i −0.298852 0.325283i
\(288\) 0 0
\(289\) −1.41444 + 0.816625i −0.0832021 + 0.0480368i
\(290\) 12.5154 4.03502i 0.734927 0.236944i
\(291\) 0 0
\(292\) 0.982183 3.66556i 0.0574779 0.214511i
\(293\) 0.707107 + 0.707107i 0.0413096 + 0.0413096i 0.727460 0.686150i \(-0.240701\pi\)
−0.686150 + 0.727460i \(0.740701\pi\)
\(294\) 0 0
\(295\) 1.34169 + 26.7665i 0.0781161 + 1.55841i
\(296\) −6.12372 + 3.53553i −0.355934 + 0.205499i
\(297\) 0 0
\(298\) −1.83013 6.83013i −0.106016 0.395659i
\(299\) −1.19033 2.06171i −0.0688383 0.119231i
\(300\) 0 0
\(301\) 1.20844 28.5354i 0.0696532 1.64475i
\(302\) 11.7969 11.7969i 0.678837 0.678837i
\(303\) 0 0
\(304\) 5.47036 + 3.15831i 0.313747 + 0.181142i
\(305\) 12.5703 + 6.44097i 0.719774 + 0.368809i
\(306\) 0 0
\(307\) −9.00000 9.00000i −0.513657 0.513657i 0.401988 0.915645i \(-0.368319\pi\)
−0.915645 + 0.401988i \(0.868319\pi\)
\(308\) 7.70507 + 2.41831i 0.439037 + 0.137796i
\(309\) 0 0
\(310\) 1.40965 6.55842i 0.0800625 0.372493i
\(311\) −12.6352 7.29496i −0.716478 0.413659i 0.0969768 0.995287i \(-0.469083\pi\)
−0.813455 + 0.581628i \(0.802416\pi\)
\(312\) 0 0
\(313\) −6.11288 1.63794i −0.345520 0.0925819i 0.0818856 0.996642i \(-0.473906\pi\)
−0.427406 + 0.904060i \(0.640572\pi\)
\(314\) −5.20908 −0.293965
\(315\) 0 0
\(316\) 3.63325 0.204386
\(317\) −3.81529 1.02230i −0.214288 0.0574182i 0.150078 0.988674i \(-0.452048\pi\)
−0.364366 + 0.931256i \(0.618714\pi\)
\(318\) 0 0
\(319\) −15.5450 8.97494i −0.870356 0.502500i
\(320\) −1.21358 1.87809i −0.0678411 0.104989i
\(321\) 0 0
\(322\) −0.969672 4.34695i −0.0540377 0.242246i
\(323\) −19.2803 19.2803i −1.07279 1.07279i
\(324\) 0 0
\(325\) −2.50397 6.61288i −0.138895 0.366816i
\(326\) −9.73657 5.62141i −0.539259 0.311341i
\(327\) 0 0
\(328\) 2.00000 2.00000i 0.110432 0.110432i
\(329\) −0.742551 + 0.387785i −0.0409382 + 0.0213793i
\(330\) 0 0
\(331\) 1.68338 + 2.91569i 0.0925267 + 0.160261i 0.908574 0.417725i \(-0.137172\pi\)
−0.816047 + 0.577986i \(0.803839\pi\)
\(332\) −3.17480 11.8485i −0.174240 0.650272i
\(333\) 0 0
\(334\) 6.92820 4.00000i 0.379094 0.218870i
\(335\) 22.5565 24.9372i 1.23239 1.36246i
\(336\) 0 0
\(337\) 17.1082 + 17.1082i 0.931942 + 0.931942i 0.997827 0.0658849i \(-0.0209870\pi\)
−0.0658849 + 0.997827i \(0.520987\pi\)
\(338\) 2.84701 10.6252i 0.154857 0.577934i
\(339\) 0 0
\(340\) 2.96181 + 9.18662i 0.160627 + 0.498214i
\(341\) −7.93015 + 4.57847i −0.429441 + 0.247938i
\(342\) 0 0
\(343\) 11.3321 + 14.6487i 0.611874 + 0.790955i
\(344\) 10.7950 0.582030
\(345\) 0 0
\(346\) −9.94987 + 17.2337i −0.534909 + 0.926489i
\(347\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(348\) 0 0
\(349\) 4.00000i 0.214115i 0.994253 + 0.107058i \(0.0341429\pi\)
−0.994253 + 0.107058i \(0.965857\pi\)
\(350\) −0.764778 13.2066i −0.0408791 0.705924i
\(351\) 0 0
\(352\) −0.789997 + 2.94831i −0.0421070 + 0.157145i
\(353\) 15.3580 4.11516i 0.817423 0.219028i 0.174203 0.984710i \(-0.444265\pi\)
0.643219 + 0.765682i \(0.277598\pi\)
\(354\) 0 0
\(355\) −2.25967 3.49699i −0.119931 0.185601i
\(356\) 12.6570i 0.670821i
\(357\) 0 0
\(358\) 1.00000 1.00000i 0.0528516 0.0528516i
\(359\) −3.27620 5.67455i −0.172911 0.299491i 0.766525 0.642214i \(-0.221984\pi\)
−0.939436 + 0.342723i \(0.888651\pi\)
\(360\) 0 0
\(361\) 10.4499 18.0997i 0.549993 0.952616i
\(362\) −23.7939 6.37555i −1.25058 0.335092i
\(363\) 0 0
\(364\) −2.00626 + 3.15831i −0.105156 + 0.165541i
\(365\) 6.29307 + 5.69230i 0.329394 + 0.297949i
\(366\) 0 0
\(367\) 8.84493 2.36999i 0.461702 0.123713i −0.0204680 0.999791i \(-0.506516\pi\)
0.482169 + 0.876078i \(0.339849\pi\)
\(368\) 1.62602 0.435690i 0.0847619 0.0227119i
\(369\) 0 0
\(370\) −0.791562 15.7916i −0.0411513 0.820964i
\(371\) 2.31699 3.64748i 0.120292 0.189368i
\(372\) 0 0
\(373\) 22.2889 + 5.97230i 1.15408 + 0.309234i 0.784598 0.620005i \(-0.212870\pi\)
0.369479 + 0.929239i \(0.379536\pi\)
\(374\) 6.58785 11.4105i 0.340650 0.590022i
\(375\) 0 0
\(376\) −0.158312 0.274205i −0.00816434 0.0141410i
\(377\) 5.88074 5.88074i 0.302874 0.302874i
\(378\) 0 0
\(379\) 30.6332i 1.57352i 0.617256 + 0.786762i \(0.288244\pi\)
−0.617256 + 0.786762i \(0.711756\pi\)
\(380\) −11.8632 + 7.66572i −0.608569 + 0.393243i
\(381\) 0 0
\(382\) 19.9894 5.35614i 1.02275 0.274044i
\(383\) −0.517638 + 1.93185i −0.0264501 + 0.0987130i −0.977889 0.209124i \(-0.932939\pi\)
0.951439 + 0.307837i \(0.0996053\pi\)
\(384\) 0 0
\(385\) −12.6693 + 12.8675i −0.645686 + 0.655786i
\(386\) 10.5712i 0.538058i
\(387\) 0 0
\(388\) −2.13821 7.97989i −0.108551 0.405118i
\(389\) −13.1403 + 22.7596i −0.666237 + 1.15396i 0.312711 + 0.949848i \(0.398763\pi\)
−0.978948 + 0.204108i \(0.934570\pi\)
\(390\) 0 0
\(391\) −7.26650 −0.367483
\(392\) −5.35051 + 4.51355i −0.270241 + 0.227968i
\(393\) 0 0
\(394\) −22.4298 + 12.9499i −1.13000 + 0.652405i
\(395\) −3.70477 + 7.23030i −0.186407 + 0.363796i
\(396\) 0 0
\(397\) 1.92767 7.19417i 0.0967471 0.361065i −0.900531 0.434791i \(-0.856822\pi\)
0.997279 + 0.0737258i \(0.0234890\pi\)
\(398\) −3.27620 3.27620i −0.164221 0.164221i
\(399\) 0 0
\(400\) 4.97494 0.500000i 0.248747 0.0250000i
\(401\) −18.3098 + 10.5712i −0.914347 + 0.527898i −0.881827 0.471573i \(-0.843686\pi\)
−0.0325197 + 0.999471i \(0.510353\pi\)
\(402\) 0 0
\(403\) −1.09808 4.09808i −0.0546991 0.204140i
\(404\) 8.44984 + 14.6355i 0.420395 + 0.728146i
\(405\) 0 0
\(406\) 13.7916 7.20241i 0.684464 0.357450i
\(407\) −15.2616 + 15.2616i −0.756488 + 0.756488i
\(408\) 0 0
\(409\) −29.3146 16.9248i −1.44952 0.836878i −0.451063 0.892492i \(-0.648955\pi\)
−0.998452 + 0.0556140i \(0.982288\pi\)
\(410\) 1.94070 + 6.01944i 0.0958443 + 0.297279i
\(411\) 0 0
\(412\) 3.63325 + 3.63325i 0.178997 + 0.178997i
\(413\) 6.90391 + 30.9496i 0.339719 + 1.52293i
\(414\) 0 0
\(415\) 26.8163 + 5.76381i 1.31636 + 0.282934i
\(416\) −1.22474 0.707107i −0.0600481 0.0346688i
\(417\) 0 0
\(418\) 18.6234 + 4.99012i 0.910899 + 0.244075i
\(419\) −6.17552 −0.301694 −0.150847 0.988557i \(-0.548200\pi\)
−0.150847 + 0.988557i \(0.548200\pi\)
\(420\) 0 0
\(421\) −31.5831 −1.53927 −0.769634 0.638486i \(-0.779561\pi\)
−0.769634 + 0.638486i \(0.779561\pi\)
\(422\) 4.78121 + 1.28112i 0.232746 + 0.0623640i
\(423\) 0 0
\(424\) 1.41444 + 0.816625i 0.0686911 + 0.0396588i
\(425\) −21.3018 3.47335i −1.03329 0.168482i
\(426\) 0 0
\(427\) 15.9453 + 5.00458i 0.771647 + 0.242189i
\(428\) 9.64016 + 9.64016i 0.465975 + 0.465975i
\(429\) 0 0
\(430\) −11.0076 + 21.4825i −0.530831 + 1.03598i
\(431\) −11.0841 6.39941i −0.533902 0.308249i 0.208702 0.977979i \(-0.433076\pi\)
−0.742604 + 0.669731i \(0.766409\pi\)
\(432\) 0 0
\(433\) −6.05013 + 6.05013i −0.290750 + 0.290750i −0.837377 0.546626i \(-0.815912\pi\)
0.546626 + 0.837377i \(0.315912\pi\)
\(434\) 0.335831 7.93015i 0.0161204 0.380659i
\(435\) 0 0
\(436\) −8.63325 14.9532i −0.413458 0.716130i
\(437\) −2.75209 10.2709i −0.131650 0.491325i
\(438\) 0 0
\(439\) 3.96910 2.29156i 0.189435 0.109370i −0.402283 0.915515i \(-0.631783\pi\)
0.591718 + 0.806145i \(0.298450\pi\)
\(440\) −5.06169 4.57847i −0.241307 0.218270i
\(441\) 0 0
\(442\) 4.31662 + 4.31662i 0.205321 + 0.205321i
\(443\) 5.68105 21.2020i 0.269915 1.00734i −0.689259 0.724515i \(-0.742064\pi\)
0.959173 0.282820i \(-0.0912698\pi\)
\(444\) 0 0
\(445\) 25.1879 + 12.9062i 1.19402 + 0.611813i
\(446\) 19.7898 11.4257i 0.937075 0.541020i
\(447\) 0 0
\(448\) −1.79000 1.94831i −0.0845694 0.0920490i
\(449\) −23.4521 −1.10677 −0.553386 0.832925i \(-0.686665\pi\)
−0.553386 + 0.832925i \(0.686665\pi\)
\(450\) 0 0
\(451\) 4.31662 7.47661i 0.203262 0.352060i
\(452\) −0.517638 1.93185i −0.0243476 0.0908667i
\(453\) 0 0
\(454\) 16.6834i 0.782990i
\(455\) −4.23940 7.21301i −0.198746 0.338151i
\(456\) 0 0
\(457\) −8.68997 + 32.4314i −0.406500 + 1.51708i 0.394774 + 0.918778i \(0.370823\pi\)
−0.801273 + 0.598299i \(0.795844\pi\)
\(458\) −25.1141 + 6.72930i −1.17350 + 0.314439i
\(459\) 0 0
\(460\) −0.790988 + 3.68009i −0.0368800 + 0.171585i
\(461\) 0.0708883i 0.00330160i 0.999999 + 0.00165080i \(0.000525466\pi\)
−0.999999 + 0.00165080i \(0.999475\pi\)
\(462\) 0 0
\(463\) 27.6332 27.6332i 1.28423 1.28423i 0.345987 0.938239i \(-0.387544\pi\)
0.938239 0.345987i \(-0.112456\pi\)
\(464\) 2.94037 + 5.09287i 0.136503 + 0.236431i
\(465\) 0 0
\(466\) −10.4749 + 18.1431i −0.485242 + 0.840464i
\(467\) 37.2200 + 9.97307i 1.72234 + 0.461499i 0.978395 0.206745i \(-0.0662871\pi\)
0.743942 + 0.668244i \(0.232954\pi\)
\(468\) 0 0
\(469\) 21.3330 33.5831i 0.985067 1.55072i
\(470\) 0.707107 0.0354442i 0.0326164 0.00163492i
\(471\) 0 0
\(472\) −11.5770 + 3.10204i −0.532874 + 0.142783i
\(473\) 31.8271 8.52806i 1.46341 0.392120i
\(474\) 0 0
\(475\) −3.15831 31.4248i −0.144913 1.44187i
\(476\) 5.28676 + 10.1234i 0.242318 + 0.464004i
\(477\) 0 0
\(478\) 0.933508 + 0.250133i 0.0426977 + 0.0114408i
\(479\) 5.17364 8.96100i 0.236389 0.409438i −0.723286 0.690548i \(-0.757369\pi\)
0.959676 + 0.281110i \(0.0907026\pi\)
\(480\) 0 0
\(481\) −5.00000 8.66025i −0.227980 0.394874i
\(482\) −4.65497 + 4.65497i −0.212028 + 0.212028i
\(483\) 0 0
\(484\) 1.68338i 0.0765171i
\(485\) 18.0606 + 3.88188i 0.820088 + 0.176267i
\(486\) 0 0
\(487\) −15.6751 + 4.20012i −0.710305 + 0.190326i −0.595842 0.803102i \(-0.703181\pi\)
−0.114463 + 0.993428i \(0.536515\pi\)
\(488\) −1.63486 + 6.10139i −0.0740068 + 0.276197i
\(489\) 0 0
\(490\) −3.52628 15.2501i −0.159301 0.688929i
\(491\) 13.8474i 0.624923i 0.949930 + 0.312461i \(0.101153\pi\)
−0.949930 + 0.312461i \(0.898847\pi\)
\(492\) 0 0
\(493\) −6.57011 24.5200i −0.295903 1.10432i
\(494\) −4.46653 + 7.73625i −0.200959 + 0.348071i
\(495\) 0 0
\(496\) 3.00000 0.134704
\(497\) −3.33295 3.62773i −0.149503 0.162726i
\(498\) 0 0
\(499\) −19.0526 + 11.0000i −0.852910 + 0.492428i −0.861632 0.507534i \(-0.830557\pi\)
0.00872186 + 0.999962i \(0.497224\pi\)
\(500\) −4.07786 + 10.4101i −0.182367 + 0.465556i
\(501\) 0 0
\(502\) 4.43190 16.5401i 0.197806 0.738220i
\(503\) 12.4331 + 12.4331i 0.554367 + 0.554367i 0.927698 0.373331i \(-0.121785\pi\)
−0.373331 + 0.927698i \(0.621785\pi\)
\(504\) 0 0
\(505\) −37.7414 + 1.89181i −1.67947 + 0.0841846i
\(506\) 4.44980 2.56910i 0.197818 0.114210i
\(507\) 0 0
\(508\) −1.75383 6.54540i −0.0778138 0.290405i
\(509\) 7.40690 + 12.8291i 0.328305 + 0.568641i 0.982176 0.187965i \(-0.0601893\pi\)
−0.653871 + 0.756606i \(0.726856\pi\)
\(510\) 0 0
\(511\) 8.47494 + 5.38354i 0.374909 + 0.238154i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 18.4173 + 10.6332i 0.812354 + 0.469013i
\(515\) −10.9351 + 3.52552i −0.481857 + 0.155353i
\(516\) 0 0
\(517\) −0.683375 0.683375i −0.0300548 0.0300548i
\(518\) −4.07313 18.2595i −0.178963 0.802277i
\(519\) 0 0
\(520\) 2.65602 1.71626i 0.116474 0.0752629i
\(521\) −14.6355 8.44984i −0.641195 0.370194i 0.143880 0.989595i \(-0.454042\pi\)
−0.785075 + 0.619401i \(0.787375\pi\)
\(522\) 0 0
\(523\) 15.4588 + 4.14217i 0.675966 + 0.181125i 0.580441 0.814302i \(-0.302880\pi\)
0.0955252 + 0.995427i \(0.469547\pi\)
\(524\) −12.5040 −0.546241
\(525\) 0 0
\(526\) 5.58312 0.243436
\(527\) −12.5086 3.35167i −0.544884 0.146001i
\(528\) 0 0
\(529\) 17.4645 + 10.0831i 0.759325 + 0.438397i
\(530\) −3.06739 + 1.98208i −0.133239 + 0.0860959i
\(531\) 0 0
\(532\) −12.3067 + 11.3067i −0.533565 + 0.490209i
\(533\) 2.82843 + 2.82843i 0.122513 + 0.122513i
\(534\) 0 0
\(535\) −29.0142 + 9.35433i −1.25439 + 0.404423i
\(536\) 13.0230 + 7.51884i 0.562509 + 0.324765i
\(537\) 0 0
\(538\) −9.52506 + 9.52506i −0.410655 + 0.410655i
\(539\) −12.2093 + 17.5342i −0.525890 + 0.755252i
\(540\) 0 0
\(541\) 14.7916 + 25.6197i 0.635939 + 1.10148i 0.986315 + 0.164870i \(0.0527203\pi\)
−0.350376 + 0.936609i \(0.613946\pi\)
\(542\) 4.48187 + 16.7266i 0.192513 + 0.718468i
\(543\) 0 0
\(544\) −3.73831 + 2.15831i −0.160279 + 0.0925369i
\(545\) 38.5607 1.93288i 1.65176 0.0827954i
\(546\) 0 0
\(547\) −3.31662 3.31662i −0.141809 0.141809i 0.632639 0.774447i \(-0.281972\pi\)
−0.774447 + 0.632639i \(0.781972\pi\)
\(548\) −4.65874 + 17.3867i −0.199012 + 0.742722i
\(549\) 0 0
\(550\) 14.2727 5.40434i 0.608588 0.230442i
\(551\) 32.1698 18.5732i 1.37048 0.791246i
\(552\) 0 0
\(553\) −2.87858 + 9.17155i −0.122410 + 0.390014i
\(554\) −18.7617 −0.797107
\(555\) 0 0
\(556\) 6.63325 11.4891i 0.281312 0.487247i
\(557\) 9.38646 + 35.0307i 0.397717 + 1.48430i 0.817103 + 0.576492i \(0.195579\pi\)
−0.419386 + 0.907808i \(0.637754\pi\)
\(558\) 0 0
\(559\) 15.2665i 0.645704i
\(560\) 5.70244 1.57549i 0.240972 0.0665768i
\(561\) 0 0
\(562\) −5.12436 + 19.1244i −0.216158 + 0.806712i
\(563\) 5.74714 1.53994i 0.242213 0.0649008i −0.135670 0.990754i \(-0.543319\pi\)
0.377883 + 0.925853i \(0.376652\pi\)
\(564\) 0 0
\(565\) 4.37228 + 0.939764i 0.183943 + 0.0395362i
\(566\) 1.86199i 0.0782652i
\(567\) 0 0
\(568\) 1.31662 1.31662i 0.0552443 0.0552443i
\(569\) −8.44984 14.6355i −0.354236 0.613554i 0.632751 0.774355i \(-0.281926\pi\)
−0.986987 + 0.160801i \(0.948592\pi\)
\(570\) 0 0
\(571\) −20.4248 + 35.3768i −0.854752 + 1.48047i 0.0221234 + 0.999755i \(0.492957\pi\)
−0.876875 + 0.480718i \(0.840376\pi\)
\(572\) −4.16954 1.11722i −0.174337 0.0467135i
\(573\) 0 0
\(574\) 3.46410 + 6.63325i 0.144589 + 0.276866i
\(575\) −6.51696 5.32663i −0.271776 0.222136i
\(576\) 0 0
\(577\) −2.08327 + 0.558212i −0.0867279 + 0.0232387i −0.301922 0.953333i \(-0.597628\pi\)
0.215194 + 0.976571i \(0.430962\pi\)
\(578\) 1.57760 0.422716i 0.0656194 0.0175827i
\(579\) 0 0
\(580\) −13.1332 + 0.658312i −0.545329 + 0.0273349i
\(581\) 32.4250 + 1.37316i 1.34522 + 0.0569682i
\(582\) 0 0
\(583\) 4.81533 + 1.29026i 0.199430 + 0.0534372i
\(584\) −1.89743 + 3.28645i −0.0785163 + 0.135994i
\(585\) 0 0
\(586\) −0.500000 0.866025i −0.0206548 0.0357752i
\(587\) −1.15488 + 1.15488i −0.0476671 + 0.0476671i −0.730539 0.682871i \(-0.760731\pi\)
0.682871 + 0.730539i \(0.260731\pi\)
\(588\) 0 0
\(589\) 18.9499i 0.780816i
\(590\) 5.63171 26.2017i 0.231854 1.07871i
\(591\) 0 0
\(592\) 6.83013 1.83013i 0.280716 0.0752178i
\(593\) −7.32888 + 27.3518i −0.300961 + 1.12320i 0.635406 + 0.772179i \(0.280833\pi\)
−0.936367 + 0.351024i \(0.885834\pi\)
\(594\) 0 0
\(595\) −25.5367 + 0.198177i −1.04690 + 0.00812446i
\(596\) 7.07107i 0.289642i
\(597\) 0 0
\(598\) 0.616158 + 2.29953i 0.0251966 + 0.0940349i
\(599\) 11.7615 20.3715i 0.480561 0.832356i −0.519190 0.854659i \(-0.673766\pi\)
0.999751 + 0.0223024i \(0.00709966\pi\)
\(600\) 0 0
\(601\) 18.3668 0.749195 0.374598 0.927187i \(-0.377781\pi\)
0.374598 + 0.927187i \(0.377781\pi\)
\(602\) −8.55277 + 27.2503i −0.348585 + 1.11064i
\(603\) 0 0
\(604\) −14.4482 + 8.34169i −0.587890 + 0.339418i
\(605\) 3.34998 + 1.71651i 0.136196 + 0.0697862i
\(606\) 0 0
\(607\) −3.96833 + 14.8100i −0.161070 + 0.601120i 0.837439 + 0.546530i \(0.184052\pi\)
−0.998509 + 0.0545897i \(0.982615\pi\)
\(608\) −4.46653 4.46653i −0.181142 0.181142i
\(609\) 0 0
\(610\) −10.4749 9.47494i −0.424118 0.383629i
\(611\) 0.387785 0.223888i 0.0156881 0.00905752i
\(612\) 0 0
\(613\) −5.99065 22.3574i −0.241960 0.903007i −0.974887 0.222700i \(-0.928513\pi\)
0.732927 0.680307i \(-0.238154\pi\)
\(614\) 6.36396 + 11.0227i 0.256829 + 0.444840i
\(615\) 0 0
\(616\) −6.81662 4.33013i −0.274650 0.174466i
\(617\) −10.6420 + 10.6420i −0.428433 + 0.428433i −0.888094 0.459662i \(-0.847971\pi\)
0.459662 + 0.888094i \(0.347971\pi\)
\(618\) 0 0
\(619\) 4.83513 + 2.79156i 0.194340 + 0.112202i 0.594013 0.804456i \(-0.297543\pi\)
−0.399673 + 0.916658i \(0.630876\pi\)
\(620\) −3.05906 + 5.97011i −0.122855 + 0.239765i
\(621\) 0 0
\(622\) 10.3166 + 10.3166i 0.413659 + 0.413659i
\(623\) 31.9506 + 10.0280i 1.28007 + 0.401763i
\(624\) 0 0
\(625\) −16.5584 18.7302i −0.662337 0.749206i
\(626\) 5.48066 + 3.16426i 0.219051 + 0.126469i
\(627\) 0 0
\(628\) 5.03158 + 1.34821i 0.200782 + 0.0537994i
\(629\) −30.5231 −1.21704
\(630\) 0 0
\(631\) −31.5330 −1.25531 −0.627654 0.778492i \(-0.715985\pi\)
−0.627654 + 0.778492i \(0.715985\pi\)
\(632\) −3.50945 0.940354i −0.139598 0.0374053i
\(633\) 0 0
\(634\) 3.42069 + 1.97494i 0.135853 + 0.0784348i
\(635\) 14.8139 + 3.18406i 0.587873 + 0.126355i
\(636\) 0 0
\(637\) −6.38312 7.56676i −0.252908 0.299806i
\(638\) 12.6925 + 12.6925i 0.502500 + 0.502500i
\(639\) 0 0
\(640\) 0.686141 + 2.12819i 0.0271221 + 0.0841243i
\(641\) −26.8830 15.5209i −1.06181 0.613039i −0.135881 0.990725i \(-0.543386\pi\)
−0.925934 + 0.377686i \(0.876720\pi\)
\(642\) 0 0
\(643\) 7.89975 7.89975i 0.311536 0.311536i −0.533969 0.845504i \(-0.679300\pi\)
0.845504 + 0.533969i \(0.179300\pi\)
\(644\) −0.188443 + 4.44980i −0.00742571 + 0.175347i
\(645\) 0 0
\(646\) 13.6332 + 23.6135i 0.536393 + 0.929060i
\(647\) 8.33821 + 31.1186i 0.327809 + 1.22340i 0.911458 + 0.411393i \(0.134958\pi\)
−0.583649 + 0.812006i \(0.698376\pi\)
\(648\) 0 0
\(649\) −31.6819 + 18.2916i −1.24362 + 0.718007i
\(650\) 0.707107 + 7.03562i 0.0277350 + 0.275960i
\(651\) 0 0
\(652\) 7.94987 + 7.94987i 0.311341 + 0.311341i
\(653\) −5.84494 + 21.8136i −0.228730 + 0.853633i 0.752145 + 0.658997i \(0.229019\pi\)
−0.980876 + 0.194636i \(0.937648\pi\)
\(654\) 0 0
\(655\) 12.7502 24.8835i 0.498191 0.972278i
\(656\) −2.44949 + 1.41421i −0.0956365 + 0.0552158i
\(657\) 0 0
\(658\) 0.817615 0.182385i 0.0318740 0.00711010i
\(659\) 47.5646 1.85285 0.926427 0.376475i \(-0.122864\pi\)
0.926427 + 0.376475i \(0.122864\pi\)
\(660\) 0 0
\(661\) −24.1082 + 41.7566i −0.937700 + 1.62414i −0.167952 + 0.985795i \(0.553715\pi\)
−0.769747 + 0.638349i \(0.779618\pi\)
\(662\) −0.871379 3.25203i −0.0338671 0.126394i
\(663\) 0 0
\(664\) 12.2665i 0.476032i
\(665\) −9.95180 36.0202i −0.385914 1.39680i
\(666\) 0 0
\(667\) 2.56218 9.56218i 0.0992079 0.370249i
\(668\) −7.72741 + 2.07055i −0.298982 + 0.0801121i
\(669\) 0 0
\(670\) −28.2422 + 18.2494i −1.09109 + 0.705036i
\(671\) 19.2803i 0.744309i
\(672\) 0 0
\(673\) 10.7414 10.7414i 0.414052 0.414052i −0.469096 0.883147i \(-0.655420\pi\)
0.883147 + 0.469096i \(0.155420\pi\)
\(674\) −12.0973 20.9532i −0.465971 0.807086i
\(675\) 0 0
\(676\) −5.50000 + 9.52628i −0.211538 + 0.366395i
\(677\) 6.45564 + 1.72978i 0.248111 + 0.0664810i 0.380731 0.924686i \(-0.375672\pi\)
−0.132620 + 0.991167i \(0.542339\pi\)
\(678\) 0 0
\(679\) 21.8380 + 0.924812i 0.838066 + 0.0354910i
\(680\) −0.483219 9.64016i −0.0185306 0.369683i
\(681\) 0 0
\(682\) 8.84493 2.36999i 0.338690 0.0907517i
\(683\) 31.6819 8.48913i 1.21227 0.324828i 0.404620 0.914485i \(-0.367404\pi\)
0.807654 + 0.589657i \(0.200737\pi\)
\(684\) 0 0
\(685\) −29.8496 27.0000i −1.14050 1.03162i
\(686\) −7.15458 17.0825i −0.273163 0.652213i
\(687\) 0 0
\(688\) −10.4272 2.79396i −0.397534 0.106519i
\(689\) −1.15488 + 2.00031i −0.0439975 + 0.0762059i
\(690\) 0 0
\(691\) −24.0000 41.5692i −0.913003 1.58137i −0.809799 0.586707i \(-0.800424\pi\)
−0.103204 0.994660i \(-0.532909\pi\)
\(692\) 14.0712 14.0712i 0.534909 0.534909i
\(693\) 0 0
\(694\) 0 0
\(695\) 16.0999 + 24.9157i 0.610705 + 0.945106i
\(696\) 0 0
\(697\) 11.7932 3.15999i 0.446701 0.119693i
\(698\) 1.03528 3.86370i 0.0391858 0.146243i
\(699\) 0 0
\(700\) −2.67941 + 12.9546i −0.101272 + 0.489637i
\(701\) 29.3328i 1.10789i −0.832555 0.553943i \(-0.813123\pi\)
0.832555 0.553943i \(-0.186877\pi\)
\(702\) 0 0
\(703\) −11.5602 43.1433i −0.436002 1.62718i
\(704\) 1.52616 2.64338i 0.0575192 0.0996262i
\(705\) 0 0
\(706\) −15.8997 −0.598395
\(707\) −43.6398 + 9.73469i −1.64124 + 0.366111i
\(708\) 0 0
\(709\) 13.2212 7.63325i 0.496532 0.286673i −0.230748 0.973013i \(-0.574117\pi\)
0.727280 + 0.686341i \(0.240784\pi\)
\(710\) 1.27759 + 3.96267i 0.0479470 + 0.148716i
\(711\) 0 0
\(712\) −3.27588 + 12.2258i −0.122769 + 0.458180i
\(713\) −3.57098 3.57098i −0.133734 0.133734i
\(714\) 0 0
\(715\) 6.47494 7.15831i 0.242149 0.267706i
\(716\) −1.22474 + 0.707107i −0.0457709 + 0.0264258i
\(717\) 0 0
\(718\) 1.69589 + 6.32914i 0.0632899 + 0.236201i
\(719\) 6.62329 + 11.4719i 0.247007 + 0.427829i 0.962694 0.270592i \(-0.0872196\pi\)
−0.715687 + 0.698421i \(0.753886\pi\)
\(720\) 0 0
\(721\) −12.0501 + 6.29297i −0.448770 + 0.234363i
\(722\) −14.7784 + 14.7784i −0.549993 + 0.549993i
\(723\) 0 0
\(724\) 21.3330 + 12.3166i 0.792835 + 0.457744i
\(725\) 12.0817 26.8069i 0.448704 0.995583i
\(726\) 0 0
\(727\) −31.1082 31.1082i −1.15374 1.15374i −0.985797 0.167942i \(-0.946288\pi\)
−0.167942 0.985797i \(-0.553712\pi\)
\(728\) 2.75533 2.53144i 0.102119 0.0938213i
\(729\) 0 0
\(730\) −4.60537 7.12711i −0.170452 0.263786i
\(731\) 40.3552 + 23.2991i 1.49259 + 0.861748i
\(732\) 0 0
\(733\) 7.83211 + 2.09861i 0.289286 + 0.0775138i 0.400544 0.916278i \(-0.368821\pi\)
−0.111258 + 0.993792i \(0.535488\pi\)
\(734\) −9.15694 −0.337989
\(735\) 0 0
\(736\) −1.68338 −0.0620500
\(737\) 44.3358 + 11.8797i 1.63313 + 0.437595i
\(738\) 0 0
\(739\) 12.0375 + 6.94987i 0.442808 + 0.255655i 0.704788 0.709418i \(-0.251042\pi\)
−0.261980 + 0.965073i \(0.584375\pi\)
\(740\) −3.32257 + 15.4583i −0.122140 + 0.568260i
\(741\) 0 0
\(742\) −3.18208 + 2.92351i −0.116818 + 0.107326i
\(743\) −21.1423 21.1423i −0.775636 0.775636i 0.203449 0.979086i \(-0.434785\pi\)
−0.979086 + 0.203449i \(0.934785\pi\)
\(744\) 0 0
\(745\) −14.0717 7.21027i −0.515546 0.264164i
\(746\) −19.9837 11.5376i −0.731655 0.422421i
\(747\) 0 0
\(748\) −9.31662 + 9.31662i −0.340650 + 0.340650i
\(749\) −31.9728 + 16.6973i −1.16826 + 0.610104i
\(750\) 0 0
\(751\) −0.500000 0.866025i −0.0182453 0.0316017i 0.856759 0.515718i \(-0.172475\pi\)
−0.875004 + 0.484116i \(0.839141\pi\)
\(752\) 0.0819485 + 0.305836i 0.00298836 + 0.0111527i
\(753\) 0 0
\(754\) −7.20241 + 4.15831i −0.262296 + 0.151437i
\(755\) −1.86760 37.2584i −0.0679689 1.35597i
\(756\) 0 0
\(757\) −12.2665 12.2665i −0.445833 0.445833i 0.448133 0.893967i \(-0.352089\pi\)
−0.893967 + 0.448133i \(0.852089\pi\)
\(758\) 7.92847 29.5894i 0.287975 1.07474i
\(759\) 0 0
\(760\) 13.4430 4.33409i 0.487629 0.157214i
\(761\) 2.12310 1.22577i 0.0769622 0.0444341i −0.461025 0.887387i \(-0.652518\pi\)
0.537987 + 0.842953i \(0.319185\pi\)
\(762\) 0 0
\(763\) 44.5870 9.94599i 1.61416 0.360069i
\(764\) −20.6945 −0.748702
\(765\) 0 0
\(766\) 1.00000 1.73205i 0.0361315 0.0625815i
\(767\) −4.38695 16.3723i −0.158404 0.591170i
\(768\) 0 0
\(769\) 35.6332i 1.28497i 0.766299 + 0.642484i \(0.222096\pi\)
−0.766299 + 0.642484i \(0.777904\pi\)
\(770\) 15.5679 9.14995i 0.561029 0.329741i
\(771\) 0 0
\(772\) 2.73602 10.2110i 0.0984714 0.367500i
\(773\) −24.4056 + 6.53945i −0.877807 + 0.235208i −0.669461 0.742847i \(-0.733475\pi\)
−0.208346 + 0.978055i \(0.566808\pi\)
\(774\) 0 0
\(775\) −8.76144 12.1753i −0.314720 0.437348i
\(776\) 8.26139i 0.296567i
\(777\) 0 0
\(778\) 18.5831 18.5831i 0.666237 0.666237i
\(779\) 8.93306 + 15.4725i 0.320060 + 0.554360i
\(780\) 0 0
\(781\) 2.84169 4.92195i 0.101684 0.176121i
\(782\) 7.01890 + 1.88071i 0.250995 + 0.0672540i
\(783\) 0 0
\(784\) 6.33638 2.97494i 0.226299 0.106248i
\(785\) −7.81362 + 8.63828i −0.278880 + 0.308313i
\(786\) 0 0
\(787\) 29.9841 8.03421i 1.06882 0.286389i 0.318810 0.947819i \(-0.396717\pi\)
0.750007 + 0.661430i \(0.230050\pi\)
\(788\) 25.0172 6.70335i 0.891202 0.238797i
\(789\) 0 0
\(790\) 5.44987 6.02506i 0.193898 0.214362i
\(791\) 5.28676 + 0.223888i 0.187976 + 0.00796052i
\(792\) 0 0
\(793\) −8.62867 2.31205i −0.306413 0.0821031i
\(794\) −3.72398 + 6.45012i −0.132159 + 0.228906i
\(795\) 0 0
\(796\) 2.31662 + 4.01251i 0.0821106 + 0.142220i
\(797\) 27.2824 27.2824i 0.966392 0.966392i −0.0330615 0.999453i \(-0.510526\pi\)
0.999453 + 0.0330615i \(0.0105257\pi\)
\(798\) 0 0
\(799\) 1.36675i 0.0483522i
\(800\) −4.93483 0.804646i −0.174473 0.0284485i
\(801\) 0 0
\(802\) 20.4219 5.47203i 0.721123 0.193224i
\(803\) −2.99793 + 11.1884i −0.105795 + 0.394831i
\(804\) 0 0
\(805\) −8.66311 4.91241i −0.305335 0.173140i
\(806\) 4.24264i 0.149441i
\(807\) 0 0
\(808\) −4.37396 16.3238i −0.153875 0.574270i
\(809\) 27.3178 47.3159i 0.960444 1.66354i 0.239057 0.971006i \(-0.423162\pi\)
0.721387 0.692532i \(-0.243505\pi\)
\(810\) 0 0
\(811\) 49.8997 1.75222 0.876109 0.482114i \(-0.160131\pi\)
0.876109 + 0.482114i \(0.160131\pi\)
\(812\) −15.1857 + 3.38747i −0.532915 + 0.118877i
\(813\) 0 0
\(814\) 18.6915 10.7916i 0.655138 0.378244i
\(815\) −23.9269 + 7.71416i −0.838123 + 0.270215i
\(816\) 0 0
\(817\) −17.6484 + 65.8648i −0.617440 + 2.30432i
\(818\) 23.9353 + 23.9353i 0.836878 + 0.836878i
\(819\) 0 0
\(820\) −0.316625 6.31662i −0.0110570 0.220586i
\(821\) 2.19421 1.26683i 0.0765783 0.0442125i −0.461222 0.887285i \(-0.652589\pi\)
0.537800 + 0.843072i \(0.319255\pi\)
\(822\) 0 0
\(823\) −7.64984 28.5496i −0.266657 0.995176i −0.961229 0.275753i \(-0.911073\pi\)
0.694572 0.719423i \(-0.255594\pi\)
\(824\) −2.56910 4.44980i −0.0894987 0.155016i
\(825\) 0 0
\(826\) 1.34169 31.6819i 0.0466833 1.10235i
\(827\) −27.8011 + 27.8011i −0.966737 + 0.966737i −0.999464 0.0327270i \(-0.989581\pi\)
0.0327270 + 0.999464i \(0.489581\pi\)
\(828\) 0 0
\(829\) 14.5922 + 8.42481i 0.506808 + 0.292606i 0.731521 0.681819i \(-0.238811\pi\)
−0.224713 + 0.974425i \(0.572144\pi\)
\(830\) −24.4108 12.5080i −0.847310 0.434158i
\(831\) 0 0
\(832\) 1.00000 + 1.00000i 0.0346688 + 0.0346688i
\(833\) −29.7435 + 5.32495i −1.03055 + 0.184499i
\(834\) 0 0
\(835\) 3.75906 17.4891i 0.130087 0.605236i
\(836\) −16.6973 9.64016i −0.577487 0.333412i
\(837\) 0 0
\(838\) 5.96509 + 1.59834i 0.206061 + 0.0552138i
\(839\) 24.3476 0.840573 0.420287 0.907391i \(-0.361929\pi\)
0.420287 + 0.907391i \(0.361929\pi\)
\(840\) 0 0
\(841\) 5.58312 0.192522
\(842\) 30.5070 + 8.17431i 1.05134 + 0.281705i
\(843\) 0 0
\(844\) −4.28672 2.47494i −0.147555 0.0851909i
\(845\) −13.3494 20.6590i −0.459232 0.710691i
\(846\) 0 0
\(847\) 4.24941 + 1.33372i 0.146011 + 0.0458270i
\(848\) −1.15488 1.15488i −0.0396588 0.0396588i
\(849\) 0 0
\(850\) 19.6770 + 8.86832i 0.674915 + 0.304181i
\(851\) −10.3085 5.95163i −0.353372 0.204019i
\(852\) 0 0
\(853\) 15.6834 15.6834i 0.536989 0.536989i −0.385655 0.922643i \(-0.626024\pi\)
0.922643 + 0.385655i \(0.126024\pi\)
\(854\) −14.1067 8.96100i −0.482721 0.306639i
\(855\) 0 0
\(856\) −6.81662 11.8067i −0.232987 0.403546i
\(857\) −11.3061 42.1949i −0.386209 1.44135i −0.836253 0.548344i \(-0.815258\pi\)
0.450044 0.893006i \(-0.351408\pi\)
\(858\) 0 0
\(859\) −11.1281 + 6.42481i −0.379686 + 0.219212i −0.677682 0.735355i \(-0.737015\pi\)
0.297996 + 0.954567i \(0.403682\pi\)
\(860\) 16.1926 17.9016i 0.552162 0.610438i
\(861\) 0 0
\(862\) 9.05013 + 9.05013i 0.308249 + 0.308249i
\(863\) −6.67740 + 24.9204i −0.227301 + 0.848300i 0.754168 + 0.656681i \(0.228040\pi\)
−0.981469 + 0.191619i \(0.938626\pi\)
\(864\) 0 0
\(865\) 13.6540 + 42.3505i 0.464251 + 1.43996i
\(866\) 7.40986 4.27808i 0.251797 0.145375i
\(867\) 0 0
\(868\) −2.37686 + 7.57301i −0.0806759 + 0.257045i
\(869\) −11.0898 −0.376196
\(870\) 0 0
\(871\) −10.6332 + 18.4173i −0.360294 + 0.624047i
\(872\) 4.46890 + 16.6782i 0.151336 + 0.564794i
\(873\) 0 0
\(874\) 10.6332i 0.359675i
\(875\) −23.0479 18.5417i −0.779161 0.626824i
\(876\) 0 0
\(877\) 4.35561 16.2554i 0.147079 0.548904i −0.852576 0.522604i \(-0.824961\pi\)
0.999654 0.0263005i \(-0.00837268\pi\)
\(878\) −4.42696 + 1.18620i −0.149403 + 0.0400323i
\(879\) 0 0
\(880\) 3.70422 + 5.73253i 0.124869 + 0.193243i
\(881\) 20.6945i 0.697217i 0.937268 + 0.348608i \(0.113346\pi\)
−0.937268 + 0.348608i \(0.886654\pi\)
\(882\) 0 0
\(883\) 3.68338 3.68338i 0.123955 0.123955i −0.642408 0.766363i \(-0.722064\pi\)
0.766363 + 0.642408i \(0.222064\pi\)
\(884\) −3.05231 5.28676i −0.102660 0.177813i
\(885\) 0 0
\(886\) −10.9749 + 19.0091i −0.368710 + 0.638625i
\(887\) −0.917508 0.245846i −0.0308069 0.00825469i 0.243383 0.969930i \(-0.421743\pi\)
−0.274190 + 0.961676i \(0.588410\pi\)
\(888\) 0 0
\(889\) 17.9123 + 0.758564i 0.600760 + 0.0254414i
\(890\) −20.9893 18.9856i −0.703563 0.636397i
\(891\) 0 0
\(892\) −22.0727 + 5.91435i −0.739047 + 0.198027i
\(893\) 1.93185 0.517638i 0.0646470 0.0173221i
\(894\) 0 0
\(895\) −0.158312 3.15831i −0.00529180 0.105571i
\(896\) 1.22474 + 2.34521i 0.0409159 + 0.0783479i
\(897\) 0 0
\(898\) 22.6530 + 6.06984i 0.755939 + 0.202553i
\(899\) 8.82111 15.2786i 0.294201 0.509570i
\(900\) 0 0
\(901\) 3.52506 + 6.10559i 0.117437 + 0.203407i
\(902\) −6.10463 + 6.10463i −0.203262 + 0.203262i
\(903\) 0 0
\(904\) 2.00000i 0.0665190i
\(905\) −46.2635 + 29.8944i −1.53785 + 0.993723i
\(906\) 0 0
\(907\) 18.7603 5.02681i 0.622926 0.166912i 0.0664684 0.997789i \(-0.478827\pi\)
0.556458 + 0.830876i \(0.312160\pi\)
\(908\) 4.31798 16.1149i 0.143297 0.534792i
\(909\) 0 0
\(910\) 2.22808 + 8.06447i 0.0738603 + 0.267334i
\(911\) 6.48152i 0.214742i −0.994219 0.107371i \(-0.965757\pi\)
0.994219 0.107371i \(-0.0342433\pi\)
\(912\) 0 0
\(913\) 9.69050 + 36.1654i 0.320709 + 1.19690i
\(914\) 16.7877 29.0772i 0.555289 0.961788i
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) 9.90678 31.5644i 0.327151 1.04235i
\(918\) 0 0
\(919\) −16.6853 + 9.63325i −0.550397 + 0.317772i −0.749282 0.662251i \(-0.769601\pi\)
0.198885 + 0.980023i \(0.436268\pi\)
\(920\) 1.71651 3.34998i 0.0565918 0.110445i
\(921\) 0 0
\(922\) 0.0183473 0.0684729i 0.000604235 0.00225503i
\(923\) 1.86199 + 1.86199i 0.0612881 + 0.0612881i
\(924\) 0 0
\(925\) −27.3747 22.3747i −0.900074 0.735675i
\(926\) −33.8437 + 19.5397i −1.11217 + 0.642113i
\(927\) 0 0
\(928\) −1.52205 5.68036i −0.0499637 0.186467i
\(929\) −14.1776 24.5563i −0.465151 0.805666i 0.534057 0.845448i \(-0.320667\pi\)
−0.999208 + 0.0397827i \(0.987333\pi\)
\(930\) 0 0
\(931\) −18.7916 40.0246i −0.615869 1.31175i
\(932\) 14.8138 14.8138i 0.485242 0.485242i
\(933\) 0 0
\(934\) −33.3706 19.2665i −1.09192 0.630419i
\(935\) −9.04038 28.0404i −0.295652 0.917021i
\(936\) 0 0
\(937\) 33.3747 + 33.3747i 1.09030 + 1.09030i 0.995496 + 0.0948079i \(0.0302237\pi\)
0.0948079 + 0.995496i \(0.469776\pi\)
\(938\) −29.2981 + 26.9174i −0.956616 + 0.878885i
\(939\) 0 0
\(940\) −0.692186 0.148776i −0.0225766 0.00485255i
\(941\) −4.19452 2.42171i −0.136737 0.0789454i 0.430071 0.902795i \(-0.358489\pi\)
−0.566808 + 0.823850i \(0.691822\pi\)
\(942\) 0 0
\(943\) 4.59907 + 1.23232i 0.149766 + 0.0401297i
\(944\) 11.9854 0.390091
\(945\) 0 0
\(946\) −32.9499 −1.07129
\(947\) −23.7939 6.37555i −0.773198 0.207178i −0.149414 0.988775i \(-0.547739\pi\)
−0.623784 + 0.781597i \(0.714405\pi\)
\(948\) 0 0
\(949\) −4.64774 2.68338i −0.150872 0.0871060i
\(950\) −5.08264 + 31.1715i −0.164903 + 1.01134i
\(951\) 0 0
\(952\) −2.48650 11.1468i −0.0805879 0.361268i
\(953\) 24.1237 + 24.1237i 0.781445 + 0.781445i 0.980075 0.198630i \(-0.0636492\pi\)
−0.198630 + 0.980075i \(0.563649\pi\)
\(954\) 0 0
\(955\) 21.1019 41.1829i 0.682842 1.33265i
\(956\) −0.836960 0.483219i −0.0270692 0.0156284i
\(957\) 0 0
\(958\) −7.31662 + 7.31662i −0.236389 + 0.236389i
\(959\) −40.1988 25.5355i −1.29809 0.824583i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) 2.58819 + 9.65926i 0.0834466 + 0.311427i
\(963\) 0 0
\(964\) 5.70115 3.29156i 0.183622 0.106014i
\(965\) 17.5303 + 15.8567i 0.564320 + 0.510446i
\(966\) 0 0
\(967\) 27.6913 + 27.6913i 0.890493 + 0.890493i 0.994569 0.104077i \(-0.0331888\pi\)
−0.104077 + 0.994569i \(0.533189\pi\)
\(968\) −0.435690 + 1.62602i −0.0140036 + 0.0522621i
\(969\) 0 0
\(970\) −16.4405 8.42403i −0.527872 0.270479i
\(971\) −24.9538 + 14.4071i −0.800805 + 0.462345i −0.843753 0.536732i \(-0.819659\pi\)
0.0429474 + 0.999077i \(0.486325\pi\)
\(972\) 0 0
\(973\) 23.7470 + 25.8472i 0.761294 + 0.828625i
\(974\) 16.2280 0.519979
\(975\) 0 0
\(976\) 3.15831 5.47036i 0.101095 0.175102i
\(977\) −3.02388 11.2853i −0.0967425 0.361048i 0.900535 0.434783i \(-0.143175\pi\)
−0.997278 + 0.0737348i \(0.976508\pi\)
\(978\) 0 0
\(979\) 38.6332i 1.23472i
\(980\) −0.540890 + 15.6431i −0.0172781 + 0.499701i
\(981\) 0 0
\(982\) 3.58396 13.3755i 0.114369 0.426830i
\(983\) 8.43591 2.26040i 0.269064 0.0720954i −0.121764 0.992559i \(-0.538855\pi\)
0.390828 + 0.920464i \(0.372189\pi\)
\(984\) 0 0
\(985\) −12.1698 + 56.6205i −0.387763 + 1.80408i
\(986\) 25.3850i 0.808422i
\(987\) 0 0
\(988\) 6.31662 6.31662i 0.200959 0.200959i
\(989\) 9.08606 + 15.7375i 0.288920 + 0.500424i
\(990\) 0 0
\(991\) −8.65831 + 14.9966i −0.275040 + 0.476384i −0.970145 0.242524i \(-0.922025\pi\)
0.695105 + 0.718908i \(0.255358\pi\)
\(992\) −2.89778 0.776457i −0.0920045 0.0246525i
\(993\) 0 0
\(994\) 2.28046 + 4.36675i 0.0723318 + 0.138505i
\(995\) −10.3473 + 0.518663i −0.328031 + 0.0164427i
\(996\) 0 0
\(997\) 11.3607 3.04410i 0.359798 0.0964075i −0.0743918 0.997229i \(-0.523702\pi\)
0.434189 + 0.900822i \(0.357035\pi\)
\(998\) 21.2504 5.69402i 0.672669 0.180241i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.ce.b.557.1 yes 16
3.2 odd 2 inner 630.2.ce.b.557.4 yes 16
5.3 odd 4 inner 630.2.ce.b.53.1 16
7.2 even 3 inner 630.2.ce.b.107.4 yes 16
15.8 even 4 inner 630.2.ce.b.53.4 yes 16
21.2 odd 6 inner 630.2.ce.b.107.1 yes 16
35.23 odd 12 inner 630.2.ce.b.233.4 yes 16
105.23 even 12 inner 630.2.ce.b.233.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.ce.b.53.1 16 5.3 odd 4 inner
630.2.ce.b.53.4 yes 16 15.8 even 4 inner
630.2.ce.b.107.1 yes 16 21.2 odd 6 inner
630.2.ce.b.107.4 yes 16 7.2 even 3 inner
630.2.ce.b.233.1 yes 16 105.23 even 12 inner
630.2.ce.b.233.4 yes 16 35.23 odd 12 inner
630.2.ce.b.557.1 yes 16 1.1 even 1 trivial
630.2.ce.b.557.4 yes 16 3.2 odd 2 inner