Properties

Label 630.2.ce.b.53.4
Level $630$
Weight $2$
Character 630.53
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(53,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.6040479020157644046336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} - 32x^{8} - 567x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 53.4
Root \(0.0537601 + 1.73122i\) of defining polynomial
Character \(\chi\) \(=\) 630.53
Dual form 630.2.ce.b.107.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(1.99004 - 1.01969i) q^{5} +(1.79000 + 1.94831i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.469882 - 2.18614i) q^{10} +(2.64338 + 1.52616i) q^{11} +(1.00000 + 1.00000i) q^{13} +(2.34521 - 1.22474i) q^{14} +(0.500000 + 0.866025i) q^{16} +(4.16954 - 1.11722i) q^{17} +(-5.47036 + 3.15831i) q^{19} +(-2.23326 - 0.111944i) q^{20} +(2.15831 - 2.15831i) q^{22} +(-1.62602 - 0.435690i) q^{23} +(2.92048 - 4.05842i) q^{25} +(1.22474 - 0.707107i) q^{26} +(-0.576028 - 2.58228i) q^{28} +5.88074 q^{29} +(1.50000 - 2.59808i) q^{31} +(0.965926 - 0.258819i) q^{32} -4.31662i q^{34} +(5.54882 + 2.05197i) q^{35} +(-6.83013 - 1.83013i) q^{37} +(1.63486 + 6.10139i) q^{38} +(-0.686141 + 2.12819i) q^{40} -2.82843i q^{41} +(-7.63325 - 7.63325i) q^{43} +(-1.52616 - 2.64338i) q^{44} +(-0.841688 + 1.45785i) q^{46} +(-0.0819485 + 0.305836i) q^{47} +(-0.591820 + 6.97494i) q^{49} +(-3.16426 - 3.87137i) q^{50} +(-0.366025 - 1.36603i) q^{52} +(0.422716 + 1.57760i) q^{53} +(6.81662 + 0.341688i) q^{55} +(-2.64338 - 0.111944i) q^{56} +(1.52205 - 5.68036i) q^{58} +(5.99269 - 10.3796i) q^{59} +(-3.15831 - 5.47036i) q^{61} +(-2.12132 - 2.12132i) q^{62} -1.00000i q^{64} +(3.00972 + 0.970349i) q^{65} +(3.89204 + 14.5253i) q^{67} +(-4.16954 - 1.11722i) q^{68} +(3.41819 - 4.82866i) q^{70} -1.86199i q^{71} +(3.66556 - 0.982183i) q^{73} +(-3.53553 + 6.12372i) q^{74} +6.31662 q^{76} +(1.75822 + 7.88194i) q^{77} +(-3.14649 + 1.81662i) q^{79} +(1.87809 + 1.21358i) q^{80} +(-2.73205 - 0.732051i) q^{82} +(-8.67372 + 8.67372i) q^{83} +(7.15831 - 6.47494i) q^{85} +(-9.34878 + 5.39752i) q^{86} +(-2.94831 + 0.789997i) q^{88} +(-6.32852 - 10.9613i) q^{89} +(-0.158312 + 3.73831i) q^{91} +(1.19033 + 1.19033i) q^{92} +(0.274205 + 0.158312i) q^{94} +(-7.66572 + 11.8632i) q^{95} +(-5.84169 + 5.84169i) q^{97} +(6.58410 + 2.37690i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{7} + 16 q^{13} + 8 q^{16} + 8 q^{22} - 12 q^{28} + 24 q^{31} - 40 q^{37} + 12 q^{40} - 16 q^{43} - 40 q^{46} + 8 q^{52} + 56 q^{55} - 20 q^{58} - 24 q^{61} - 32 q^{67} + 4 q^{70} + 48 q^{73}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.183013 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 1.99004 1.01969i 0.889971 0.456017i
\(6\) 0 0
\(7\) 1.79000 + 1.94831i 0.676555 + 0.736392i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.469882 2.18614i −0.148590 0.691318i
\(11\) 2.64338 + 1.52616i 0.797010 + 0.460154i 0.842424 0.538814i \(-0.181128\pi\)
−0.0454148 + 0.998968i \(0.514461\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.00000i 0.277350 + 0.277350i 0.832050 0.554700i \(-0.187167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 2.34521 1.22474i 0.626783 0.327327i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 4.16954 1.11722i 1.01126 0.270967i 0.285105 0.958496i \(-0.407971\pi\)
0.726157 + 0.687529i \(0.241305\pi\)
\(18\) 0 0
\(19\) −5.47036 + 3.15831i −1.25499 + 0.724567i −0.972095 0.234586i \(-0.924627\pi\)
−0.282891 + 0.959152i \(0.591293\pi\)
\(20\) −2.23326 0.111944i −0.499373 0.0250314i
\(21\) 0 0
\(22\) 2.15831 2.15831i 0.460154 0.460154i
\(23\) −1.62602 0.435690i −0.339048 0.0908476i 0.0852780 0.996357i \(-0.472822\pi\)
−0.424326 + 0.905510i \(0.639489\pi\)
\(24\) 0 0
\(25\) 2.92048 4.05842i 0.584096 0.811684i
\(26\) 1.22474 0.707107i 0.240192 0.138675i
\(27\) 0 0
\(28\) −0.576028 2.58228i −0.108859 0.488006i
\(29\) 5.88074 1.09203 0.546013 0.837777i \(-0.316145\pi\)
0.546013 + 0.837777i \(0.316145\pi\)
\(30\) 0 0
\(31\) 1.50000 2.59808i 0.269408 0.466628i −0.699301 0.714827i \(-0.746505\pi\)
0.968709 + 0.248199i \(0.0798387\pi\)
\(32\) 0.965926 0.258819i 0.170753 0.0457532i
\(33\) 0 0
\(34\) 4.31662i 0.740295i
\(35\) 5.54882 + 2.05197i 0.937922 + 0.346846i
\(36\) 0 0
\(37\) −6.83013 1.83013i −1.12287 0.300871i −0.350823 0.936442i \(-0.614098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 1.63486 + 6.10139i 0.265210 + 0.989776i
\(39\) 0 0
\(40\) −0.686141 + 2.12819i −0.108488 + 0.336497i
\(41\) 2.82843i 0.441726i −0.975305 0.220863i \(-0.929113\pi\)
0.975305 0.220863i \(-0.0708874\pi\)
\(42\) 0 0
\(43\) −7.63325 7.63325i −1.16406 1.16406i −0.983578 0.180481i \(-0.942234\pi\)
−0.180481 0.983578i \(-0.557766\pi\)
\(44\) −1.52616 2.64338i −0.230077 0.398505i
\(45\) 0 0
\(46\) −0.841688 + 1.45785i −0.124100 + 0.214948i
\(47\) −0.0819485 + 0.305836i −0.0119534 + 0.0446108i −0.971645 0.236445i \(-0.924018\pi\)
0.959692 + 0.281055i \(0.0906845\pi\)
\(48\) 0 0
\(49\) −0.591820 + 6.97494i −0.0845458 + 0.996420i
\(50\) −3.16426 3.87137i −0.447494 0.547494i
\(51\) 0 0
\(52\) −0.366025 1.36603i −0.0507586 0.189434i
\(53\) 0.422716 + 1.57760i 0.0580645 + 0.216700i 0.988862 0.148836i \(-0.0475526\pi\)
−0.930797 + 0.365535i \(0.880886\pi\)
\(54\) 0 0
\(55\) 6.81662 + 0.341688i 0.919153 + 0.0460731i
\(56\) −2.64338 0.111944i −0.353237 0.0149591i
\(57\) 0 0
\(58\) 1.52205 5.68036i 0.199855 0.745868i
\(59\) 5.99269 10.3796i 0.780181 1.35131i −0.151655 0.988434i \(-0.548460\pi\)
0.931836 0.362880i \(-0.118206\pi\)
\(60\) 0 0
\(61\) −3.15831 5.47036i −0.404380 0.700408i 0.589869 0.807499i \(-0.299179\pi\)
−0.994249 + 0.107092i \(0.965846\pi\)
\(62\) −2.12132 2.12132i −0.269408 0.269408i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 3.00972 + 0.970349i 0.373310 + 0.120357i
\(66\) 0 0
\(67\) 3.89204 + 14.5253i 0.475488 + 1.77455i 0.619528 + 0.784975i \(0.287324\pi\)
−0.144040 + 0.989572i \(0.546009\pi\)
\(68\) −4.16954 1.11722i −0.505631 0.135483i
\(69\) 0 0
\(70\) 3.41819 4.82866i 0.408552 0.577135i
\(71\) 1.86199i 0.220977i −0.993877 0.110489i \(-0.964758\pi\)
0.993877 0.110489i \(-0.0352416\pi\)
\(72\) 0 0
\(73\) 3.66556 0.982183i 0.429021 0.114956i −0.0378455 0.999284i \(-0.512049\pi\)
0.466867 + 0.884328i \(0.345383\pi\)
\(74\) −3.53553 + 6.12372i −0.410997 + 0.711868i
\(75\) 0 0
\(76\) 6.31662 0.724567
\(77\) 1.75822 + 7.88194i 0.200368 + 0.898231i
\(78\) 0 0
\(79\) −3.14649 + 1.81662i −0.354007 + 0.204386i −0.666449 0.745551i \(-0.732187\pi\)
0.312441 + 0.949937i \(0.398853\pi\)
\(80\) 1.87809 + 1.21358i 0.209977 + 0.135682i
\(81\) 0 0
\(82\) −2.73205 0.732051i −0.301705 0.0808415i
\(83\) −8.67372 + 8.67372i −0.952065 + 0.952065i −0.998903 0.0468375i \(-0.985086\pi\)
0.0468375 + 0.998903i \(0.485086\pi\)
\(84\) 0 0
\(85\) 7.15831 6.47494i 0.776428 0.702306i
\(86\) −9.34878 + 5.39752i −1.00811 + 0.582030i
\(87\) 0 0
\(88\) −2.94831 + 0.789997i −0.314291 + 0.0842140i
\(89\) −6.32852 10.9613i −0.670821 1.16190i −0.977672 0.210139i \(-0.932608\pi\)
0.306850 0.951758i \(-0.400725\pi\)
\(90\) 0 0
\(91\) −0.158312 + 3.73831i −0.0165956 + 0.391881i
\(92\) 1.19033 + 1.19033i 0.124100 + 0.124100i
\(93\) 0 0
\(94\) 0.274205 + 0.158312i 0.0282821 + 0.0163287i
\(95\) −7.66572 + 11.8632i −0.786486 + 1.21714i
\(96\) 0 0
\(97\) −5.84169 + 5.84169i −0.593134 + 0.593134i −0.938477 0.345343i \(-0.887763\pi\)
0.345343 + 0.938477i \(0.387763\pi\)
\(98\) 6.58410 + 2.37690i 0.665094 + 0.240103i
\(99\) 0 0
\(100\) −4.55842 + 2.05446i −0.455842 + 0.205446i
\(101\) −14.6355 8.44984i −1.45629 0.840790i −0.457465 0.889228i \(-0.651243\pi\)
−0.998826 + 0.0484373i \(0.984576\pi\)
\(102\) 0 0
\(103\) −1.32986 + 4.96311i −0.131035 + 0.489030i −0.999983 0.00587425i \(-0.998130\pi\)
0.868948 + 0.494904i \(0.164797\pi\)
\(104\) −1.41421 −0.138675
\(105\) 0 0
\(106\) 1.63325 0.158635
\(107\) −3.52854 + 13.1687i −0.341117 + 1.27307i 0.555966 + 0.831205i \(0.312349\pi\)
−0.897083 + 0.441862i \(0.854318\pi\)
\(108\) 0 0
\(109\) 14.9532 + 8.63325i 1.43226 + 0.826915i 0.997293 0.0735313i \(-0.0234269\pi\)
0.434966 + 0.900447i \(0.356760\pi\)
\(110\) 2.09432 6.49592i 0.199685 0.619362i
\(111\) 0 0
\(112\) −0.792287 + 2.52434i −0.0748641 + 0.238528i
\(113\) −1.41421 + 1.41421i −0.133038 + 0.133038i −0.770490 0.637452i \(-0.779988\pi\)
0.637452 + 0.770490i \(0.279988\pi\)
\(114\) 0 0
\(115\) −3.68009 + 0.790988i −0.343171 + 0.0737600i
\(116\) −5.09287 2.94037i −0.472861 0.273007i
\(117\) 0 0
\(118\) −8.47494 8.47494i −0.780181 0.780181i
\(119\) 9.64016 + 6.12372i 0.883712 + 0.561361i
\(120\) 0 0
\(121\) −0.841688 1.45785i −0.0765171 0.132531i
\(122\) −6.10139 + 1.63486i −0.552394 + 0.148014i
\(123\) 0 0
\(124\) −2.59808 + 1.50000i −0.233314 + 0.134704i
\(125\) 1.67355 11.0544i 0.149686 0.988734i
\(126\) 0 0
\(127\) −4.79156 + 4.79156i −0.425182 + 0.425182i −0.886983 0.461801i \(-0.847203\pi\)
0.461801 + 0.886983i \(0.347203\pi\)
\(128\) −0.965926 0.258819i −0.0853766 0.0228766i
\(129\) 0 0
\(130\) 1.71626 2.65602i 0.150526 0.232949i
\(131\) 10.8288 6.25202i 0.946118 0.546241i 0.0542449 0.998528i \(-0.482725\pi\)
0.891873 + 0.452286i \(0.149392\pi\)
\(132\) 0 0
\(133\) −15.9453 5.00458i −1.38263 0.433952i
\(134\) 15.0377 1.29906
\(135\) 0 0
\(136\) −2.15831 + 3.73831i −0.185074 + 0.320557i
\(137\) −17.3867 + 4.65874i −1.48544 + 0.398023i −0.908196 0.418546i \(-0.862540\pi\)
−0.577247 + 0.816569i \(0.695873\pi\)
\(138\) 0 0
\(139\) 13.2665i 1.12525i 0.826712 + 0.562625i \(0.190208\pi\)
−0.826712 + 0.562625i \(0.809792\pi\)
\(140\) −3.77944 4.55147i −0.319421 0.384669i
\(141\) 0 0
\(142\) −1.79854 0.481918i −0.150930 0.0404417i
\(143\) 1.11722 + 4.16954i 0.0934270 + 0.348674i
\(144\) 0 0
\(145\) 11.7029 5.99651i 0.971872 0.497983i
\(146\) 3.79487i 0.314065i
\(147\) 0 0
\(148\) 5.00000 + 5.00000i 0.410997 + 0.410997i
\(149\) 3.53553 + 6.12372i 0.289642 + 0.501675i 0.973724 0.227730i \(-0.0731303\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(150\) 0 0
\(151\) −8.34169 + 14.4482i −0.678837 + 1.17578i 0.296495 + 0.955035i \(0.404182\pi\)
−0.975331 + 0.220745i \(0.929151\pi\)
\(152\) 1.63486 6.10139i 0.132605 0.494888i
\(153\) 0 0
\(154\) 8.06843 + 0.341688i 0.650173 + 0.0275340i
\(155\) 0.335831 6.69979i 0.0269746 0.538140i
\(156\) 0 0
\(157\) −1.34821 5.03158i −0.107599 0.401564i 0.891028 0.453948i \(-0.149985\pi\)
−0.998627 + 0.0523837i \(0.983318\pi\)
\(158\) 0.940354 + 3.50945i 0.0748106 + 0.279197i
\(159\) 0 0
\(160\) 1.65831 1.50000i 0.131101 0.118585i
\(161\) −2.06171 3.94786i −0.162485 0.311135i
\(162\) 0 0
\(163\) −2.90986 + 10.8597i −0.227918 + 0.850600i 0.753297 + 0.657680i \(0.228462\pi\)
−0.981215 + 0.192919i \(0.938204\pi\)
\(164\) −1.41421 + 2.44949i −0.110432 + 0.191273i
\(165\) 0 0
\(166\) 6.13325 + 10.6231i 0.476032 + 0.824512i
\(167\) −5.65685 5.65685i −0.437741 0.437741i 0.453510 0.891251i \(-0.350171\pi\)
−0.891251 + 0.453510i \(0.850171\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) −4.40160 8.59024i −0.337587 0.658841i
\(171\) 0 0
\(172\) 2.79396 + 10.4272i 0.213038 + 0.795068i
\(173\) −19.2217 5.15043i −1.46140 0.391580i −0.561425 0.827528i \(-0.689747\pi\)
−0.899972 + 0.435947i \(0.856413\pi\)
\(174\) 0 0
\(175\) 13.1347 1.57456i 0.992891 0.119026i
\(176\) 3.05231i 0.230077i
\(177\) 0 0
\(178\) −12.2258 + 3.27588i −0.916359 + 0.245538i
\(179\) −0.707107 + 1.22474i −0.0528516 + 0.0915417i −0.891241 0.453530i \(-0.850164\pi\)
0.838389 + 0.545072i \(0.183498\pi\)
\(180\) 0 0
\(181\) 24.6332 1.83098 0.915488 0.402346i \(-0.131805\pi\)
0.915488 + 0.402346i \(0.131805\pi\)
\(182\) 3.56995 + 1.12046i 0.264623 + 0.0830542i
\(183\) 0 0
\(184\) 1.45785 0.841688i 0.107474 0.0620500i
\(185\) −15.4583 + 3.32257i −1.13652 + 0.244280i
\(186\) 0 0
\(187\) 12.7267 + 3.41012i 0.930672 + 0.249373i
\(188\) 0.223888 0.223888i 0.0163287 0.0163287i
\(189\) 0 0
\(190\) 9.47494 + 10.4749i 0.687384 + 0.759932i
\(191\) 17.9220 10.3473i 1.29679 0.748702i 0.316942 0.948445i \(-0.397344\pi\)
0.979848 + 0.199743i \(0.0640107\pi\)
\(192\) 0 0
\(193\) 10.2110 2.73602i 0.735001 0.196943i 0.128146 0.991755i \(-0.459098\pi\)
0.606855 + 0.794813i \(0.292431\pi\)
\(194\) 4.13070 + 7.15458i 0.296567 + 0.513669i
\(195\) 0 0
\(196\) 4.00000 5.74456i 0.285714 0.410326i
\(197\) 18.3139 + 18.3139i 1.30481 + 1.30481i 0.925109 + 0.379701i \(0.123973\pi\)
0.379701 + 0.925109i \(0.376027\pi\)
\(198\) 0 0
\(199\) −4.01251 2.31662i −0.284439 0.164221i 0.350992 0.936378i \(-0.385844\pi\)
−0.635431 + 0.772157i \(0.719178\pi\)
\(200\) 0.804646 + 4.93483i 0.0568970 + 0.348945i
\(201\) 0 0
\(202\) −11.9499 + 11.9499i −0.840790 + 0.840790i
\(203\) 10.5265 + 11.4575i 0.738816 + 0.804159i
\(204\) 0 0
\(205\) −2.88411 5.62867i −0.201435 0.393123i
\(206\) 4.44980 + 2.56910i 0.310033 + 0.178997i
\(207\) 0 0
\(208\) −0.366025 + 1.36603i −0.0253793 + 0.0947168i
\(209\) −19.2803 −1.33365
\(210\) 0 0
\(211\) −4.94987 −0.340763 −0.170382 0.985378i \(-0.554500\pi\)
−0.170382 + 0.985378i \(0.554500\pi\)
\(212\) 0.422716 1.57760i 0.0290323 0.108350i
\(213\) 0 0
\(214\) 11.8067 + 6.81662i 0.807092 + 0.465975i
\(215\) −22.9740 7.40692i −1.56681 0.505148i
\(216\) 0 0
\(217\) 7.74685 1.72808i 0.525891 0.117310i
\(218\) 12.2093 12.2093i 0.826915 0.826915i
\(219\) 0 0
\(220\) −5.73253 3.70422i −0.386487 0.249739i
\(221\) 5.28676 + 3.05231i 0.355626 + 0.205321i
\(222\) 0 0
\(223\) −16.1583 16.1583i −1.08204 1.08204i −0.996319 0.0857215i \(-0.972680\pi\)
−0.0857215 0.996319i \(-0.527320\pi\)
\(224\) 2.23326 + 1.41864i 0.149216 + 0.0947867i
\(225\) 0 0
\(226\) 1.00000 + 1.73205i 0.0665190 + 0.115214i
\(227\) 16.1149 4.31798i 1.06958 0.286594i 0.319262 0.947667i \(-0.396565\pi\)
0.750322 + 0.661073i \(0.229898\pi\)
\(228\) 0 0
\(229\) −22.5167 + 13.0000i −1.48794 + 0.859064i −0.999905 0.0137585i \(-0.995620\pi\)
−0.488037 + 0.872823i \(0.662287\pi\)
\(230\) −0.188443 + 3.75942i −0.0124256 + 0.247889i
\(231\) 0 0
\(232\) −4.15831 + 4.15831i −0.273007 + 0.273007i
\(233\) −20.2360 5.42223i −1.32571 0.355222i −0.474593 0.880205i \(-0.657405\pi\)
−0.851113 + 0.524983i \(0.824072\pi\)
\(234\) 0 0
\(235\) 0.148776 + 0.692186i 0.00970509 + 0.0451533i
\(236\) −10.3796 + 5.99269i −0.675657 + 0.390091i
\(237\) 0 0
\(238\) 8.41012 7.72675i 0.545147 0.500851i
\(239\) −0.966438 −0.0625137 −0.0312569 0.999511i \(-0.509951\pi\)
−0.0312569 + 0.999511i \(0.509951\pi\)
\(240\) 0 0
\(241\) 3.29156 5.70115i 0.212028 0.367244i −0.740321 0.672254i \(-0.765326\pi\)
0.952349 + 0.305010i \(0.0986598\pi\)
\(242\) −1.62602 + 0.435690i −0.104524 + 0.0280072i
\(243\) 0 0
\(244\) 6.31662i 0.404380i
\(245\) 5.93450 + 14.4838i 0.379141 + 0.925339i
\(246\) 0 0
\(247\) −8.62867 2.31205i −0.549029 0.147112i
\(248\) 0.776457 + 2.89778i 0.0493051 + 0.184009i
\(249\) 0 0
\(250\) −10.2446 4.47760i −0.647923 0.283189i
\(251\) 17.1236i 1.08083i −0.841399 0.540415i \(-0.818267\pi\)
0.841399 0.540415i \(-0.181733\pi\)
\(252\) 0 0
\(253\) −3.63325 3.63325i −0.228420 0.228420i
\(254\) 3.38815 + 5.86844i 0.212591 + 0.368219i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.50418 20.5419i 0.343341 1.28137i −0.551197 0.834375i \(-0.685829\pi\)
0.894538 0.446991i \(-0.147504\pi\)
\(258\) 0 0
\(259\) −8.66025 16.5831i −0.538122 1.03043i
\(260\) −2.12132 2.34521i −0.131559 0.145444i
\(261\) 0 0
\(262\) −3.23628 12.0780i −0.199938 0.746179i
\(263\) 1.44502 + 5.39288i 0.0891037 + 0.332539i 0.996060 0.0886860i \(-0.0282668\pi\)
−0.906956 + 0.421225i \(0.861600\pi\)
\(264\) 0 0
\(265\) 2.44987 + 2.70844i 0.150495 + 0.166378i
\(266\) −8.96100 + 14.1067i −0.549434 + 0.864937i
\(267\) 0 0
\(268\) 3.89204 14.5253i 0.237744 0.887273i
\(269\) 6.73524 11.6658i 0.410655 0.711275i −0.584307 0.811533i \(-0.698634\pi\)
0.994961 + 0.100258i \(0.0319669\pi\)
\(270\) 0 0
\(271\) −8.65831 14.9966i −0.525955 0.910981i −0.999543 0.0302342i \(-0.990375\pi\)
0.473588 0.880747i \(-0.342959\pi\)
\(272\) 3.05231 + 3.05231i 0.185074 + 0.185074i
\(273\) 0 0
\(274\) 18.0000i 1.08742i
\(275\) 13.9137 6.27085i 0.839030 0.378146i
\(276\) 0 0
\(277\) −4.85588 18.1224i −0.291761 1.08887i −0.943756 0.330644i \(-0.892734\pi\)
0.651994 0.758224i \(-0.273933\pi\)
\(278\) 12.8145 + 3.43362i 0.768560 + 0.205935i
\(279\) 0 0
\(280\) −5.37457 + 2.47265i −0.321192 + 0.147769i
\(281\) 19.7990i 1.18111i 0.806998 + 0.590554i \(0.201091\pi\)
−0.806998 + 0.590554i \(0.798909\pi\)
\(282\) 0 0
\(283\) 1.79854 0.481918i 0.106912 0.0286471i −0.204966 0.978769i \(-0.565708\pi\)
0.311879 + 0.950122i \(0.399042\pi\)
\(284\) −0.930994 + 1.61253i −0.0552443 + 0.0956860i
\(285\) 0 0
\(286\) 4.31662 0.255247
\(287\) 5.51065 5.06288i 0.325283 0.298852i
\(288\) 0 0
\(289\) 1.41444 0.816625i 0.0832021 0.0480368i
\(290\) −2.76325 12.8561i −0.162264 0.754938i
\(291\) 0 0
\(292\) −3.66556 0.982183i −0.214511 0.0574779i
\(293\) 0.707107 0.707107i 0.0413096 0.0413096i −0.686150 0.727460i \(-0.740701\pi\)
0.727460 + 0.686150i \(0.240701\pi\)
\(294\) 0 0
\(295\) 1.34169 26.7665i 0.0781161 1.55841i
\(296\) 6.12372 3.53553i 0.355934 0.205499i
\(297\) 0 0
\(298\) 6.83013 1.83013i 0.395659 0.106016i
\(299\) −1.19033 2.06171i −0.0688383 0.119231i
\(300\) 0 0
\(301\) 1.20844 28.5354i 0.0696532 1.64475i
\(302\) 11.7969 + 11.7969i 0.678837 + 0.678837i
\(303\) 0 0
\(304\) −5.47036 3.15831i −0.313747 0.181142i
\(305\) −11.8632 7.66572i −0.679285 0.438938i
\(306\) 0 0
\(307\) −9.00000 + 9.00000i −0.513657 + 0.513657i −0.915645 0.401988i \(-0.868319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(308\) 2.41831 7.70507i 0.137796 0.439037i
\(309\) 0 0
\(310\) −6.38458 2.05842i −0.362620 0.116911i
\(311\) 12.6352 + 7.29496i 0.716478 + 0.413659i 0.813455 0.581628i \(-0.197584\pi\)
−0.0969768 + 0.995287i \(0.530917\pi\)
\(312\) 0 0
\(313\) 1.63794 6.11288i 0.0925819 0.345520i −0.904060 0.427406i \(-0.859428\pi\)
0.996642 + 0.0818856i \(0.0260942\pi\)
\(314\) −5.20908 −0.293965
\(315\) 0 0
\(316\) 3.63325 0.204386
\(317\) 1.02230 3.81529i 0.0574182 0.214288i −0.931256 0.364366i \(-0.881286\pi\)
0.988674 + 0.150078i \(0.0479525\pi\)
\(318\) 0 0
\(319\) 15.5450 + 8.97494i 0.870356 + 0.502500i
\(320\) −1.01969 1.99004i −0.0570022 0.111246i
\(321\) 0 0
\(322\) −4.34695 + 0.969672i −0.242246 + 0.0540377i
\(323\) −19.2803 + 19.2803i −1.07279 + 1.07279i
\(324\) 0 0
\(325\) 6.97890 1.13794i 0.387120 0.0631216i
\(326\) 9.73657 + 5.62141i 0.539259 + 0.311341i
\(327\) 0 0
\(328\) 2.00000 + 2.00000i 0.110432 + 0.110432i
\(329\) −0.742551 + 0.387785i −0.0409382 + 0.0213793i
\(330\) 0 0
\(331\) 1.68338 + 2.91569i 0.0925267 + 0.160261i 0.908574 0.417725i \(-0.137172\pi\)
−0.816047 + 0.577986i \(0.803839\pi\)
\(332\) 11.8485 3.17480i 0.650272 0.174240i
\(333\) 0 0
\(334\) −6.92820 + 4.00000i −0.379094 + 0.218870i
\(335\) 22.5565 + 24.9372i 1.23239 + 1.36246i
\(336\) 0 0
\(337\) 17.1082 17.1082i 0.931942 0.931942i −0.0658849 0.997827i \(-0.520987\pi\)
0.997827 + 0.0658849i \(0.0209870\pi\)
\(338\) −10.6252 2.84701i −0.577934 0.154857i
\(339\) 0 0
\(340\) −9.43675 + 2.02830i −0.511780 + 0.110000i
\(341\) 7.93015 4.57847i 0.429441 0.247938i
\(342\) 0 0
\(343\) −14.6487 + 11.3321i −0.790955 + 0.611874i
\(344\) 10.7950 0.582030
\(345\) 0 0
\(346\) −9.94987 + 17.2337i −0.534909 + 0.926489i
\(347\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(348\) 0 0
\(349\) 4.00000i 0.214115i −0.994253 0.107058i \(-0.965857\pi\)
0.994253 0.107058i \(-0.0341429\pi\)
\(350\) 1.87860 13.0947i 0.100416 0.699940i
\(351\) 0 0
\(352\) 2.94831 + 0.789997i 0.157145 + 0.0421070i
\(353\) −4.11516 15.3580i −0.219028 0.817423i −0.984710 0.174203i \(-0.944265\pi\)
0.765682 0.643219i \(-0.222402\pi\)
\(354\) 0 0
\(355\) −1.89864 3.70542i −0.100770 0.196663i
\(356\) 12.6570i 0.670821i
\(357\) 0 0
\(358\) 1.00000 + 1.00000i 0.0528516 + 0.0528516i
\(359\) −3.27620 5.67455i −0.172911 0.299491i 0.766525 0.642214i \(-0.221984\pi\)
−0.939436 + 0.342723i \(0.888651\pi\)
\(360\) 0 0
\(361\) 10.4499 18.0997i 0.549993 0.952616i
\(362\) 6.37555 23.7939i 0.335092 1.25058i
\(363\) 0 0
\(364\) 2.00626 3.15831i 0.105156 0.165541i
\(365\) 6.29307 5.69230i 0.329394 0.297949i
\(366\) 0 0
\(367\) −2.36999 8.84493i −0.123713 0.461702i 0.876078 0.482169i \(-0.160151\pi\)
−0.999791 + 0.0204680i \(0.993484\pi\)
\(368\) −0.435690 1.62602i −0.0227119 0.0847619i
\(369\) 0 0
\(370\) −0.791562 + 15.7916i −0.0411513 + 0.820964i
\(371\) −2.31699 + 3.64748i −0.120292 + 0.189368i
\(372\) 0 0
\(373\) −5.97230 + 22.2889i −0.309234 + 1.15408i 0.620005 + 0.784598i \(0.287130\pi\)
−0.929239 + 0.369479i \(0.879536\pi\)
\(374\) 6.58785 11.4105i 0.340650 0.590022i
\(375\) 0 0
\(376\) −0.158312 0.274205i −0.00816434 0.0141410i
\(377\) 5.88074 + 5.88074i 0.302874 + 0.302874i
\(378\) 0 0
\(379\) 30.6332i 1.57352i −0.617256 0.786762i \(-0.711756\pi\)
0.617256 0.786762i \(-0.288244\pi\)
\(380\) 12.5703 6.44097i 0.644843 0.330415i
\(381\) 0 0
\(382\) −5.35614 19.9894i −0.274044 1.02275i
\(383\) 1.93185 + 0.517638i 0.0987130 + 0.0264501i 0.307837 0.951439i \(-0.400395\pi\)
−0.209124 + 0.977889i \(0.567061\pi\)
\(384\) 0 0
\(385\) 11.5360 + 13.8925i 0.587930 + 0.708028i
\(386\) 10.5712i 0.538058i
\(387\) 0 0
\(388\) 7.97989 2.13821i 0.405118 0.108551i
\(389\) −13.1403 + 22.7596i −0.666237 + 1.15396i 0.312711 + 0.949848i \(0.398763\pi\)
−0.978948 + 0.204108i \(0.934570\pi\)
\(390\) 0 0
\(391\) −7.26650 −0.367483
\(392\) −4.51355 5.35051i −0.227968 0.270241i
\(393\) 0 0
\(394\) 22.4298 12.9499i 1.13000 0.652405i
\(395\) −4.40923 + 6.82358i −0.221853 + 0.343331i
\(396\) 0 0
\(397\) −7.19417 1.92767i −0.361065 0.0967471i 0.0737258 0.997279i \(-0.476511\pi\)
−0.434791 + 0.900531i \(0.643178\pi\)
\(398\) −3.27620 + 3.27620i −0.164221 + 0.164221i
\(399\) 0 0
\(400\) 4.97494 + 0.500000i 0.248747 + 0.0250000i
\(401\) 18.3098 10.5712i 0.914347 0.527898i 0.0325197 0.999471i \(-0.489647\pi\)
0.881827 + 0.471573i \(0.156314\pi\)
\(402\) 0 0
\(403\) 4.09808 1.09808i 0.204140 0.0546991i
\(404\) 8.44984 + 14.6355i 0.420395 + 0.728146i
\(405\) 0 0
\(406\) 13.7916 7.20241i 0.684464 0.357450i
\(407\) −15.2616 15.2616i −0.756488 0.756488i
\(408\) 0 0
\(409\) 29.3146 + 16.9248i 1.44952 + 0.836878i 0.998452 0.0556140i \(-0.0177116\pi\)
0.451063 + 0.892492i \(0.351045\pi\)
\(410\) −6.18334 + 1.32903i −0.305373 + 0.0656360i
\(411\) 0 0
\(412\) 3.63325 3.63325i 0.178997 0.178997i
\(413\) 30.9496 6.90391i 1.52293 0.339719i
\(414\) 0 0
\(415\) −8.41654 + 26.1055i −0.413152 + 1.28147i
\(416\) 1.22474 + 0.707107i 0.0600481 + 0.0346688i
\(417\) 0 0
\(418\) −4.99012 + 18.6234i −0.244075 + 0.910899i
\(419\) −6.17552 −0.301694 −0.150847 0.988557i \(-0.548200\pi\)
−0.150847 + 0.988557i \(0.548200\pi\)
\(420\) 0 0
\(421\) −31.5831 −1.53927 −0.769634 0.638486i \(-0.779561\pi\)
−0.769634 + 0.638486i \(0.779561\pi\)
\(422\) −1.28112 + 4.78121i −0.0623640 + 0.232746i
\(423\) 0 0
\(424\) −1.41444 0.816625i −0.0686911 0.0396588i
\(425\) 7.64289 20.1846i 0.370735 0.979096i
\(426\) 0 0
\(427\) 5.00458 15.9453i 0.242189 0.771647i
\(428\) 9.64016 9.64016i 0.465975 0.465975i
\(429\) 0 0
\(430\) −13.1006 + 20.2741i −0.631769 + 0.977703i
\(431\) 11.0841 + 6.39941i 0.533902 + 0.308249i 0.742604 0.669731i \(-0.233591\pi\)
−0.208702 + 0.977979i \(0.566924\pi\)
\(432\) 0 0
\(433\) −6.05013 6.05013i −0.290750 0.290750i 0.546626 0.837377i \(-0.315912\pi\)
−0.837377 + 0.546626i \(0.815912\pi\)
\(434\) 0.335831 7.93015i 0.0161204 0.380659i
\(435\) 0 0
\(436\) −8.63325 14.9532i −0.413458 0.716130i
\(437\) 10.2709 2.75209i 0.491325 0.131650i
\(438\) 0 0
\(439\) −3.96910 + 2.29156i −0.189435 + 0.109370i −0.591718 0.806145i \(-0.701550\pi\)
0.402283 + 0.915515i \(0.368217\pi\)
\(440\) −5.06169 + 4.57847i −0.241307 + 0.218270i
\(441\) 0 0
\(442\) 4.31662 4.31662i 0.205321 0.205321i
\(443\) −21.2020 5.68105i −1.00734 0.269915i −0.282820 0.959173i \(-0.591270\pi\)
−0.724515 + 0.689259i \(0.757936\pi\)
\(444\) 0 0
\(445\) −23.7711 15.3603i −1.12686 0.728148i
\(446\) −19.7898 + 11.4257i −0.937075 + 0.541020i
\(447\) 0 0
\(448\) 1.94831 1.79000i 0.0920490 0.0845694i
\(449\) −23.4521 −1.10677 −0.553386 0.832925i \(-0.686665\pi\)
−0.553386 + 0.832925i \(0.686665\pi\)
\(450\) 0 0
\(451\) 4.31662 7.47661i 0.203262 0.352060i
\(452\) 1.93185 0.517638i 0.0908667 0.0243476i
\(453\) 0 0
\(454\) 16.6834i 0.782990i
\(455\) 3.49685 + 7.60079i 0.163935 + 0.356331i
\(456\) 0 0
\(457\) 32.4314 + 8.68997i 1.51708 + 0.406500i 0.918778 0.394774i \(-0.129177\pi\)
0.598299 + 0.801273i \(0.295844\pi\)
\(458\) 6.72930 + 25.1141i 0.314439 + 1.17350i
\(459\) 0 0
\(460\) 3.58255 + 1.15503i 0.167037 + 0.0538537i
\(461\) 0.0708883i 0.00330160i −0.999999 0.00165080i \(-0.999475\pi\)
0.999999 0.00165080i \(-0.000525466\pi\)
\(462\) 0 0
\(463\) 27.6332 + 27.6332i 1.28423 + 1.28423i 0.938239 + 0.345987i \(0.112456\pi\)
0.345987 + 0.938239i \(0.387544\pi\)
\(464\) 2.94037 + 5.09287i 0.136503 + 0.236431i
\(465\) 0 0
\(466\) −10.4749 + 18.1431i −0.485242 + 0.840464i
\(467\) −9.97307 + 37.2200i −0.461499 + 1.72234i 0.206745 + 0.978395i \(0.433713\pi\)
−0.668244 + 0.743942i \(0.732954\pi\)
\(468\) 0 0
\(469\) −21.3330 + 33.5831i −0.985067 + 1.55072i
\(470\) 0.707107 + 0.0354442i 0.0326164 + 0.00163492i
\(471\) 0 0
\(472\) 3.10204 + 11.5770i 0.142783 + 0.532874i
\(473\) −8.52806 31.8271i −0.392120 1.46341i
\(474\) 0 0
\(475\) −3.15831 + 31.4248i −0.144913 + 1.44187i
\(476\) −5.28676 10.1234i −0.242318 0.464004i
\(477\) 0 0
\(478\) −0.250133 + 0.933508i −0.0114408 + 0.0426977i
\(479\) 5.17364 8.96100i 0.236389 0.409438i −0.723286 0.690548i \(-0.757369\pi\)
0.959676 + 0.281110i \(0.0907026\pi\)
\(480\) 0 0
\(481\) −5.00000 8.66025i −0.227980 0.394874i
\(482\) −4.65497 4.65497i −0.212028 0.212028i
\(483\) 0 0
\(484\) 1.68338i 0.0765171i
\(485\) −5.66848 + 17.5819i −0.257392 + 0.798351i
\(486\) 0 0
\(487\) 4.20012 + 15.6751i 0.190326 + 0.710305i 0.993428 + 0.114463i \(0.0365147\pi\)
−0.803102 + 0.595842i \(0.796819\pi\)
\(488\) 6.10139 + 1.63486i 0.276197 + 0.0740068i
\(489\) 0 0
\(490\) 15.5263 1.98359i 0.701406 0.0896097i
\(491\) 13.8474i 0.624923i −0.949930 0.312461i \(-0.898847\pi\)
0.949930 0.312461i \(-0.101153\pi\)
\(492\) 0 0
\(493\) 24.5200 6.57011i 1.10432 0.295903i
\(494\) −4.46653 + 7.73625i −0.200959 + 0.348071i
\(495\) 0 0
\(496\) 3.00000 0.134704
\(497\) 3.62773 3.33295i 0.162726 0.149503i
\(498\) 0 0
\(499\) 19.0526 11.0000i 0.852910 0.492428i −0.00872186 0.999962i \(-0.502776\pi\)
0.861632 + 0.507534i \(0.169443\pi\)
\(500\) −6.97652 + 8.73660i −0.312000 + 0.390713i
\(501\) 0 0
\(502\) −16.5401 4.43190i −0.738220 0.197806i
\(503\) 12.4331 12.4331i 0.554367 0.554367i −0.373331 0.927698i \(-0.621785\pi\)
0.927698 + 0.373331i \(0.121785\pi\)
\(504\) 0 0
\(505\) −37.7414 1.89181i −1.67947 0.0841846i
\(506\) −4.44980 + 2.56910i −0.197818 + 0.114210i
\(507\) 0 0
\(508\) 6.54540 1.75383i 0.290405 0.0778138i
\(509\) 7.40690 + 12.8291i 0.328305 + 0.568641i 0.982176 0.187965i \(-0.0601893\pi\)
−0.653871 + 0.756606i \(0.726856\pi\)
\(510\) 0 0
\(511\) 8.47494 + 5.38354i 0.374909 + 0.238154i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −18.4173 10.6332i −0.812354 0.469013i
\(515\) 2.41434 + 11.2328i 0.106389 + 0.494977i
\(516\) 0 0
\(517\) −0.683375 + 0.683375i −0.0300548 + 0.0300548i
\(518\) −18.2595 + 4.07313i −0.802277 + 0.178963i
\(519\) 0 0
\(520\) −2.81433 + 1.44205i −0.123417 + 0.0632382i
\(521\) 14.6355 + 8.44984i 0.641195 + 0.370194i 0.785075 0.619401i \(-0.212625\pi\)
−0.143880 + 0.989595i \(0.545958\pi\)
\(522\) 0 0
\(523\) −4.14217 + 15.4588i −0.181125 + 0.675966i 0.814302 + 0.580441i \(0.197120\pi\)
−0.995427 + 0.0955252i \(0.969547\pi\)
\(524\) −12.5040 −0.546241
\(525\) 0 0
\(526\) 5.58312 0.243436
\(527\) 3.35167 12.5086i 0.146001 0.544884i
\(528\) 0 0
\(529\) −17.4645 10.0831i −0.759325 0.438397i
\(530\) 3.25022 1.66540i 0.141181 0.0723404i
\(531\) 0 0
\(532\) 11.3067 + 12.3067i 0.490209 + 0.533565i
\(533\) 2.82843 2.82843i 0.122513 0.122513i
\(534\) 0 0
\(535\) 6.40602 + 29.8042i 0.276956 + 1.28855i
\(536\) −13.0230 7.51884i −0.562509 0.324765i
\(537\) 0 0
\(538\) −9.52506 9.52506i −0.410655 0.410655i
\(539\) −12.2093 + 17.5342i −0.525890 + 0.755252i
\(540\) 0 0
\(541\) 14.7916 + 25.6197i 0.635939 + 1.10148i 0.986315 + 0.164870i \(0.0527203\pi\)
−0.350376 + 0.936609i \(0.613946\pi\)
\(542\) −16.7266 + 4.48187i −0.718468 + 0.192513i
\(543\) 0 0
\(544\) 3.73831 2.15831i 0.160279 0.0925369i
\(545\) 38.5607 + 1.93288i 1.65176 + 0.0827954i
\(546\) 0 0
\(547\) −3.31662 + 3.31662i −0.141809 + 0.141809i −0.774447 0.632639i \(-0.781972\pi\)
0.632639 + 0.774447i \(0.281972\pi\)
\(548\) 17.3867 + 4.65874i 0.742722 + 0.199012i
\(549\) 0 0
\(550\) −2.45603 15.0627i −0.104726 0.642274i
\(551\) −32.1698 + 18.5732i −1.37048 + 0.791246i
\(552\) 0 0
\(553\) −9.17155 2.87858i −0.390014 0.122410i
\(554\) −18.7617 −0.797107
\(555\) 0 0
\(556\) 6.63325 11.4891i 0.281312 0.487247i
\(557\) −35.0307 + 9.38646i −1.48430 + 0.397717i −0.907808 0.419386i \(-0.862246\pi\)
−0.576492 + 0.817103i \(0.695579\pi\)
\(558\) 0 0
\(559\) 15.2665i 0.645704i
\(560\) 0.997353 + 5.83141i 0.0421458 + 0.246422i
\(561\) 0 0
\(562\) 19.1244 + 5.12436i 0.806712 + 0.216158i
\(563\) −1.53994 5.74714i −0.0649008 0.242213i 0.925853 0.377883i \(-0.123348\pi\)
−0.990754 + 0.135670i \(0.956681\pi\)
\(564\) 0 0
\(565\) −1.37228 + 4.25639i −0.0577323 + 0.179068i
\(566\) 1.86199i 0.0782652i
\(567\) 0 0
\(568\) 1.31662 + 1.31662i 0.0552443 + 0.0552443i
\(569\) −8.44984 14.6355i −0.354236 0.613554i 0.632751 0.774355i \(-0.281926\pi\)
−0.986987 + 0.160801i \(0.948592\pi\)
\(570\) 0 0
\(571\) −20.4248 + 35.3768i −0.854752 + 1.48047i 0.0221234 + 0.999755i \(0.492957\pi\)
−0.876875 + 0.480718i \(0.840376\pi\)
\(572\) 1.11722 4.16954i 0.0467135 0.174337i
\(573\) 0 0
\(574\) −3.46410 6.63325i −0.144589 0.276866i
\(575\) −6.51696 + 5.32663i −0.271776 + 0.222136i
\(576\) 0 0
\(577\) 0.558212 + 2.08327i 0.0232387 + 0.0867279i 0.976571 0.215194i \(-0.0690384\pi\)
−0.953333 + 0.301922i \(0.902372\pi\)
\(578\) −0.422716 1.57760i −0.0175827 0.0656194i
\(579\) 0 0
\(580\) −13.1332 0.658312i −0.545329 0.0273349i
\(581\) −32.4250 1.37316i −1.34522 0.0569682i
\(582\) 0 0
\(583\) −1.29026 + 4.81533i −0.0534372 + 0.199430i
\(584\) −1.89743 + 3.28645i −0.0785163 + 0.135994i
\(585\) 0 0
\(586\) −0.500000 0.866025i −0.0206548 0.0357752i
\(587\) −1.15488 1.15488i −0.0476671 0.0476671i 0.682871 0.730539i \(-0.260731\pi\)
−0.730539 + 0.682871i \(0.760731\pi\)
\(588\) 0 0
\(589\) 18.9499i 0.780816i
\(590\) −25.5072 8.22365i −1.05011 0.338562i
\(591\) 0 0
\(592\) −1.83013 6.83013i −0.0752178 0.280716i
\(593\) 27.3518 + 7.32888i 1.12320 + 0.300961i 0.772179 0.635406i \(-0.219167\pi\)
0.351024 + 0.936367i \(0.385834\pi\)
\(594\) 0 0
\(595\) 25.4285 + 2.35649i 1.04247 + 0.0966066i
\(596\) 7.07107i 0.289642i
\(597\) 0 0
\(598\) −2.29953 + 0.616158i −0.0940349 + 0.0251966i
\(599\) 11.7615 20.3715i 0.480561 0.832356i −0.519190 0.854659i \(-0.673766\pi\)
0.999751 + 0.0223024i \(0.00709966\pi\)
\(600\) 0 0
\(601\) 18.3668 0.749195 0.374598 0.927187i \(-0.377781\pi\)
0.374598 + 0.927187i \(0.377781\pi\)
\(602\) −27.2503 8.55277i −1.11064 0.348585i
\(603\) 0 0
\(604\) 14.4482 8.34169i 0.587890 0.339418i
\(605\) −3.16153 2.04291i −0.128535 0.0830560i
\(606\) 0 0
\(607\) 14.8100 + 3.96833i 0.601120 + 0.161070i 0.546530 0.837439i \(-0.315948\pi\)
0.0545897 + 0.998509i \(0.482615\pi\)
\(608\) −4.46653 + 4.46653i −0.181142 + 0.181142i
\(609\) 0 0
\(610\) −10.4749 + 9.47494i −0.424118 + 0.383629i
\(611\) −0.387785 + 0.223888i −0.0156881 + 0.00905752i
\(612\) 0 0
\(613\) 22.3574 5.99065i 0.903007 0.241960i 0.222700 0.974887i \(-0.428513\pi\)
0.680307 + 0.732927i \(0.261846\pi\)
\(614\) 6.36396 + 11.0227i 0.256829 + 0.444840i
\(615\) 0 0
\(616\) −6.81662 4.33013i −0.274650 0.174466i
\(617\) −10.6420 10.6420i −0.428433 0.428433i 0.459662 0.888094i \(-0.347971\pi\)
−0.888094 + 0.459662i \(0.847971\pi\)
\(618\) 0 0
\(619\) −4.83513 2.79156i −0.194340 0.112202i 0.399673 0.916658i \(-0.369124\pi\)
−0.594013 + 0.804456i \(0.702457\pi\)
\(620\) −3.64073 + 5.63427i −0.146215 + 0.226278i
\(621\) 0 0
\(622\) 10.3166 10.3166i 0.413659 0.413659i
\(623\) 10.0280 31.9506i 0.401763 1.28007i
\(624\) 0 0
\(625\) −7.94158 23.7051i −0.317663 0.948204i
\(626\) −5.48066 3.16426i −0.219051 0.126469i
\(627\) 0 0
\(628\) −1.34821 + 5.03158i −0.0537994 + 0.200782i
\(629\) −30.5231 −1.21704
\(630\) 0 0
\(631\) −31.5330 −1.25531 −0.627654 0.778492i \(-0.715985\pi\)
−0.627654 + 0.778492i \(0.715985\pi\)
\(632\) 0.940354 3.50945i 0.0374053 0.139598i
\(633\) 0 0
\(634\) −3.42069 1.97494i −0.135853 0.0784348i
\(635\) −4.64949 + 14.4213i −0.184509 + 0.572290i
\(636\) 0 0
\(637\) −7.56676 + 6.38312i −0.299806 + 0.252908i
\(638\) 12.6925 12.6925i 0.502500 0.502500i
\(639\) 0 0
\(640\) −2.18614 + 0.469882i −0.0864148 + 0.0185737i
\(641\) 26.8830 + 15.5209i 1.06181 + 0.613039i 0.925934 0.377686i \(-0.123280\pi\)
0.135881 + 0.990725i \(0.456614\pi\)
\(642\) 0 0
\(643\) 7.89975 + 7.89975i 0.311536 + 0.311536i 0.845504 0.533969i \(-0.179300\pi\)
−0.533969 + 0.845504i \(0.679300\pi\)
\(644\) −0.188443 + 4.44980i −0.00742571 + 0.175347i
\(645\) 0 0
\(646\) 13.6332 + 23.6135i 0.536393 + 0.929060i
\(647\) −31.1186 + 8.33821i −1.22340 + 0.327809i −0.812006 0.583649i \(-0.801624\pi\)
−0.411393 + 0.911458i \(0.634958\pi\)
\(648\) 0 0
\(649\) 31.6819 18.2916i 1.24362 0.718007i
\(650\) 0.707107 7.03562i 0.0277350 0.275960i
\(651\) 0 0
\(652\) 7.94987 7.94987i 0.311341 0.311341i
\(653\) 21.8136 + 5.84494i 0.853633 + 0.228730i 0.658997 0.752145i \(-0.270981\pi\)
0.194636 + 0.980876i \(0.437648\pi\)
\(654\) 0 0
\(655\) 15.1746 23.4837i 0.592922 0.917585i
\(656\) 2.44949 1.41421i 0.0956365 0.0552158i
\(657\) 0 0
\(658\) 0.182385 + 0.817615i 0.00711010 + 0.0318740i
\(659\) 47.5646 1.85285 0.926427 0.376475i \(-0.122864\pi\)
0.926427 + 0.376475i \(0.122864\pi\)
\(660\) 0 0
\(661\) −24.1082 + 41.7566i −0.937700 + 1.62414i −0.167952 + 0.985795i \(0.553715\pi\)
−0.769747 + 0.638349i \(0.779618\pi\)
\(662\) 3.25203 0.871379i 0.126394 0.0338671i
\(663\) 0 0
\(664\) 12.2665i 0.476032i
\(665\) −36.8348 + 6.29990i −1.42839 + 0.244300i
\(666\) 0 0
\(667\) −9.56218 2.56218i −0.370249 0.0992079i
\(668\) 2.07055 + 7.72741i 0.0801121 + 0.298982i
\(669\) 0 0
\(670\) 29.9255 15.3337i 1.15612 0.592393i
\(671\) 19.2803i 0.744309i
\(672\) 0 0
\(673\) 10.7414 + 10.7414i 0.414052 + 0.414052i 0.883147 0.469096i \(-0.155420\pi\)
−0.469096 + 0.883147i \(0.655420\pi\)
\(674\) −12.0973 20.9532i −0.465971 0.807086i
\(675\) 0 0
\(676\) −5.50000 + 9.52628i −0.211538 + 0.366395i
\(677\) −1.72978 + 6.45564i −0.0664810 + 0.248111i −0.991167 0.132620i \(-0.957661\pi\)
0.924686 + 0.380731i \(0.124328\pi\)
\(678\) 0 0
\(679\) −21.8380 0.924812i −0.838066 0.0354910i
\(680\) −0.483219 + 9.64016i −0.0185306 + 0.369683i
\(681\) 0 0
\(682\) −2.36999 8.84493i −0.0907517 0.338690i
\(683\) −8.48913 31.6819i −0.324828 1.21227i −0.914485 0.404620i \(-0.867404\pi\)
0.589657 0.807654i \(-0.299263\pi\)
\(684\) 0 0
\(685\) −29.8496 + 27.0000i −1.14050 + 1.03162i
\(686\) 7.15458 + 17.0825i 0.273163 + 0.652213i
\(687\) 0 0
\(688\) 2.79396 10.4272i 0.106519 0.397534i
\(689\) −1.15488 + 2.00031i −0.0439975 + 0.0762059i
\(690\) 0 0
\(691\) −24.0000 41.5692i −0.913003 1.58137i −0.809799 0.586707i \(-0.800424\pi\)
−0.103204 0.994660i \(-0.532909\pi\)
\(692\) 14.0712 + 14.0712i 0.534909 + 0.534909i
\(693\) 0 0
\(694\) 0 0
\(695\) 13.5277 + 26.4008i 0.513133 + 1.00144i
\(696\) 0 0
\(697\) −3.15999 11.7932i −0.119693 0.446701i
\(698\) −3.86370 1.03528i −0.146243 0.0391858i
\(699\) 0 0
\(700\) −12.1623 5.20375i −0.459691 0.196683i
\(701\) 29.3328i 1.10789i 0.832555 + 0.553943i \(0.186877\pi\)
−0.832555 + 0.553943i \(0.813123\pi\)
\(702\) 0 0
\(703\) 43.1433 11.5602i 1.62718 0.436002i
\(704\) 1.52616 2.64338i 0.0575192 0.0996262i
\(705\) 0 0
\(706\) −15.8997 −0.598395
\(707\) −9.73469 43.6398i −0.366111 1.64124i
\(708\) 0 0
\(709\) −13.2212 + 7.63325i −0.496532 + 0.286673i −0.727280 0.686341i \(-0.759216\pi\)
0.230748 + 0.973013i \(0.425883\pi\)
\(710\) −4.07057 + 0.874915i −0.152766 + 0.0328350i
\(711\) 0 0
\(712\) 12.2258 + 3.27588i 0.458180 + 0.122769i
\(713\) −3.57098 + 3.57098i −0.133734 + 0.133734i
\(714\) 0 0
\(715\) 6.47494 + 7.15831i 0.242149 + 0.267706i
\(716\) 1.22474 0.707107i 0.0457709 0.0264258i
\(717\) 0 0
\(718\) −6.32914 + 1.69589i −0.236201 + 0.0632899i
\(719\) 6.62329 + 11.4719i 0.247007 + 0.427829i 0.962694 0.270592i \(-0.0872196\pi\)
−0.715687 + 0.698421i \(0.753886\pi\)
\(720\) 0 0
\(721\) −12.0501 + 6.29297i −0.448770 + 0.234363i
\(722\) −14.7784 14.7784i −0.549993 0.549993i
\(723\) 0 0
\(724\) −21.3330 12.3166i −0.792835 0.457744i
\(725\) 17.1746 23.8665i 0.637848 0.886381i
\(726\) 0 0
\(727\) −31.1082 + 31.1082i −1.15374 + 1.15374i −0.167942 + 0.985797i \(0.553712\pi\)
−0.985797 + 0.167942i \(0.946288\pi\)
\(728\) −2.53144 2.75533i −0.0938213 0.102119i
\(729\) 0 0
\(730\) −3.86957 7.55192i −0.143219 0.279509i
\(731\) −40.3552 23.2991i −1.49259 0.861748i
\(732\) 0 0
\(733\) −2.09861 + 7.83211i −0.0775138 + 0.289286i −0.993792 0.111258i \(-0.964512\pi\)
0.916278 + 0.400544i \(0.131179\pi\)
\(734\) −9.15694 −0.337989
\(735\) 0 0
\(736\) −1.68338 −0.0620500
\(737\) −11.8797 + 44.3358i −0.437595 + 1.63313i
\(738\) 0 0
\(739\) −12.0375 6.94987i −0.442808 0.255655i 0.261980 0.965073i \(-0.415625\pi\)
−0.704788 + 0.709418i \(0.748958\pi\)
\(740\) 15.0486 + 4.85175i 0.553198 + 0.178354i
\(741\) 0 0
\(742\) 2.92351 + 3.18208i 0.107326 + 0.116818i
\(743\) −21.1423 + 21.1423i −0.775636 + 0.775636i −0.979086 0.203449i \(-0.934785\pi\)
0.203449 + 0.979086i \(0.434785\pi\)
\(744\) 0 0
\(745\) 13.2801 + 8.58129i 0.486546 + 0.314394i
\(746\) 19.9837 + 11.5376i 0.731655 + 0.422421i
\(747\) 0 0
\(748\) −9.31662 9.31662i −0.340650 0.340650i
\(749\) −31.9728 + 16.6973i −1.16826 + 0.610104i
\(750\) 0 0
\(751\) −0.500000 0.866025i −0.0182453 0.0316017i 0.856759 0.515718i \(-0.172475\pi\)
−0.875004 + 0.484116i \(0.839141\pi\)
\(752\) −0.305836 + 0.0819485i −0.0111527 + 0.00298836i
\(753\) 0 0
\(754\) 7.20241 4.15831i 0.262296 0.151437i
\(755\) −1.86760 + 37.2584i −0.0679689 + 1.35597i
\(756\) 0 0
\(757\) −12.2665 + 12.2665i −0.445833 + 0.445833i −0.893967 0.448133i \(-0.852089\pi\)
0.448133 + 0.893967i \(0.352089\pi\)
\(758\) −29.5894 7.92847i −1.07474 0.287975i
\(759\) 0 0
\(760\) −2.96807 13.8090i −0.107663 0.500906i
\(761\) −2.12310 + 1.22577i −0.0769622 + 0.0444341i −0.537987 0.842953i \(-0.680815\pi\)
0.461025 + 0.887387i \(0.347482\pi\)
\(762\) 0 0
\(763\) 9.94599 + 44.5870i 0.360069 + 1.61416i
\(764\) −20.6945 −0.748702
\(765\) 0 0
\(766\) 1.00000 1.73205i 0.0361315 0.0625815i
\(767\) 16.3723 4.38695i 0.591170 0.158404i
\(768\) 0 0
\(769\) 35.6332i 1.28497i −0.766299 0.642484i \(-0.777904\pi\)
0.766299 0.642484i \(-0.222096\pi\)
\(770\) 16.4049 7.54730i 0.591191 0.271986i
\(771\) 0 0
\(772\) −10.2110 2.73602i −0.367500 0.0984714i
\(773\) 6.53945 + 24.4056i 0.235208 + 0.877807i 0.978055 + 0.208346i \(0.0668081\pi\)
−0.742847 + 0.669461i \(0.766525\pi\)
\(774\) 0 0
\(775\) −6.16337 13.6753i −0.221395 0.491230i
\(776\) 8.26139i 0.296567i
\(777\) 0 0
\(778\) 18.5831 + 18.5831i 0.666237 + 0.666237i
\(779\) 8.93306 + 15.4725i 0.320060 + 0.554360i
\(780\) 0 0
\(781\) 2.84169 4.92195i 0.101684 0.176121i
\(782\) −1.88071 + 7.01890i −0.0672540 + 0.250995i
\(783\) 0 0
\(784\) −6.33638 + 2.97494i −0.226299 + 0.106248i
\(785\) −7.81362 8.63828i −0.278880 0.308313i
\(786\) 0 0
\(787\) −8.03421 29.9841i −0.286389 1.06882i −0.947819 0.318810i \(-0.896717\pi\)
0.661430 0.750007i \(-0.269950\pi\)
\(788\) −6.70335 25.0172i −0.238797 0.891202i
\(789\) 0 0
\(790\) 5.44987 + 6.02506i 0.193898 + 0.214362i
\(791\) −5.28676 0.223888i −0.187976 0.00796052i
\(792\) 0 0
\(793\) 2.31205 8.62867i 0.0821031 0.306413i
\(794\) −3.72398 + 6.45012i −0.132159 + 0.228906i
\(795\) 0 0
\(796\) 2.31662 + 4.01251i 0.0821106 + 0.142220i
\(797\) 27.2824 + 27.2824i 0.966392 + 0.966392i 0.999453 0.0330615i \(-0.0105257\pi\)
−0.0330615 + 0.999453i \(0.510526\pi\)
\(798\) 0 0
\(799\) 1.36675i 0.0483522i
\(800\) 1.77057 4.67601i 0.0625992 0.165322i
\(801\) 0 0
\(802\) −5.47203 20.4219i −0.193224 0.721123i
\(803\) 11.1884 + 2.99793i 0.394831 + 0.105795i
\(804\) 0 0
\(805\) −8.12845 5.75410i −0.286490 0.202805i
\(806\) 4.24264i 0.149441i
\(807\) 0 0
\(808\) 16.3238 4.37396i 0.574270 0.153875i
\(809\) 27.3178 47.3159i 0.960444 1.66354i 0.239057 0.971006i \(-0.423162\pi\)
0.721387 0.692532i \(-0.243505\pi\)
\(810\) 0 0
\(811\) 49.8997 1.75222 0.876109 0.482114i \(-0.160131\pi\)
0.876109 + 0.482114i \(0.160131\pi\)
\(812\) −3.38747 15.1857i −0.118877 0.532915i
\(813\) 0 0
\(814\) −18.6915 + 10.7916i −0.655138 + 0.378244i
\(815\) 5.28280 + 24.5784i 0.185048 + 0.860943i
\(816\) 0 0
\(817\) 65.8648 + 17.6484i 2.30432 + 0.617440i
\(818\) 23.9353 23.9353i 0.836878 0.836878i
\(819\) 0 0
\(820\) −0.316625 + 6.31662i −0.0110570 + 0.220586i
\(821\) −2.19421 + 1.26683i −0.0765783 + 0.0442125i −0.537800 0.843072i \(-0.680745\pi\)
0.461222 + 0.887285i \(0.347411\pi\)
\(822\) 0 0
\(823\) 28.5496 7.64984i 0.995176 0.266657i 0.275753 0.961229i \(-0.411073\pi\)
0.719423 + 0.694572i \(0.244406\pi\)
\(824\) −2.56910 4.44980i −0.0894987 0.155016i
\(825\) 0 0
\(826\) 1.34169 31.6819i 0.0466833 1.10235i
\(827\) −27.8011 27.8011i −0.966737 0.966737i 0.0327270 0.999464i \(-0.489581\pi\)
−0.999464 + 0.0327270i \(0.989581\pi\)
\(828\) 0 0
\(829\) −14.5922 8.42481i −0.506808 0.292606i 0.224713 0.974425i \(-0.427856\pi\)
−0.731521 + 0.681819i \(0.761189\pi\)
\(830\) 23.0376 + 14.8864i 0.799647 + 0.516713i
\(831\) 0 0
\(832\) 1.00000 1.00000i 0.0346688 0.0346688i
\(833\) 5.32495 + 29.7435i 0.184499 + 1.03055i
\(834\) 0 0
\(835\) −17.0256 5.48913i −0.589194 0.189959i
\(836\) 16.6973 + 9.64016i 0.577487 + 0.333412i
\(837\) 0 0
\(838\) −1.59834 + 5.96509i −0.0552138 + 0.206061i
\(839\) 24.3476 0.840573 0.420287 0.907391i \(-0.361929\pi\)
0.420287 + 0.907391i \(0.361929\pi\)
\(840\) 0 0
\(841\) 5.58312 0.192522
\(842\) −8.17431 + 30.5070i −0.281705 + 1.05134i
\(843\) 0 0
\(844\) 4.28672 + 2.47494i 0.147555 + 0.0851909i
\(845\) −11.2165 21.8904i −0.385861 0.753052i
\(846\) 0 0
\(847\) 1.33372 4.24941i 0.0458270 0.146011i
\(848\) −1.15488 + 1.15488i −0.0396588 + 0.0396588i
\(849\) 0 0
\(850\) −17.5187 12.6066i −0.600886 0.432404i
\(851\) 10.3085 + 5.95163i 0.353372 + 0.204019i
\(852\) 0 0
\(853\) 15.6834 + 15.6834i 0.536989 + 0.536989i 0.922643 0.385655i \(-0.126024\pi\)
−0.385655 + 0.922643i \(0.626024\pi\)
\(854\) −14.1067 8.96100i −0.482721 0.306639i
\(855\) 0 0
\(856\) −6.81662 11.8067i −0.232987 0.403546i
\(857\) 42.1949 11.3061i 1.44135 0.386209i 0.548344 0.836253i \(-0.315258\pi\)
0.893006 + 0.450044i \(0.148592\pi\)
\(858\) 0 0
\(859\) 11.1281 6.42481i 0.379686 0.219212i −0.297996 0.954567i \(-0.596318\pi\)
0.677682 + 0.735355i \(0.262985\pi\)
\(860\) 16.1926 + 17.9016i 0.552162 + 0.610438i
\(861\) 0 0
\(862\) 9.05013 9.05013i 0.308249 0.308249i
\(863\) 24.9204 + 6.67740i 0.848300 + 0.227301i 0.656681 0.754168i \(-0.271960\pi\)
0.191619 + 0.981469i \(0.438626\pi\)
\(864\) 0 0
\(865\) −43.5036 + 9.35053i −1.47917 + 0.317928i
\(866\) −7.40986 + 4.27808i −0.251797 + 0.145375i
\(867\) 0 0
\(868\) −7.57301 2.37686i −0.257045 0.0806759i
\(869\) −11.0898 −0.376196
\(870\) 0 0
\(871\) −10.6332 + 18.4173i −0.360294 + 0.624047i
\(872\) −16.6782 + 4.46890i −0.564794 + 0.151336i
\(873\) 0 0
\(874\) 10.6332i 0.359675i
\(875\) 24.5330 16.5267i 0.829366 0.558705i
\(876\) 0 0
\(877\) −16.2554 4.35561i −0.548904 0.147079i −0.0263005 0.999654i \(-0.508373\pi\)
−0.522604 + 0.852576i \(0.675039\pi\)
\(878\) 1.18620 + 4.42696i 0.0400323 + 0.149403i
\(879\) 0 0
\(880\) 3.11240 + 6.07421i 0.104919 + 0.204762i
\(881\) 20.6945i 0.697217i −0.937268 0.348608i \(-0.886654\pi\)
0.937268 0.348608i \(-0.113346\pi\)
\(882\) 0 0
\(883\) 3.68338 + 3.68338i 0.123955 + 0.123955i 0.766363 0.642408i \(-0.222064\pi\)
−0.642408 + 0.766363i \(0.722064\pi\)
\(884\) −3.05231 5.28676i −0.102660 0.177813i
\(885\) 0 0
\(886\) −10.9749 + 19.0091i −0.368710 + 0.638625i
\(887\) 0.245846 0.917508i 0.00825469 0.0308069i −0.961676 0.274190i \(-0.911590\pi\)
0.969930 + 0.243383i \(0.0782571\pi\)
\(888\) 0 0
\(889\) −17.9123 0.758564i −0.600760 0.0254414i
\(890\) −20.9893 + 18.9856i −0.703563 + 0.636397i
\(891\) 0 0
\(892\) 5.91435 + 22.0727i 0.198027 + 0.739047i
\(893\) −0.517638 1.93185i −0.0173221 0.0646470i
\(894\) 0 0
\(895\) −0.158312 + 3.15831i −0.00529180 + 0.105571i
\(896\) −1.22474 2.34521i −0.0409159 0.0783479i
\(897\) 0 0
\(898\) −6.06984 + 22.6530i −0.202553 + 0.755939i
\(899\) 8.82111 15.2786i 0.294201 0.509570i
\(900\) 0 0
\(901\) 3.52506 + 6.10559i 0.117437 + 0.203407i
\(902\) −6.10463 6.10463i −0.203262 0.203262i
\(903\) 0 0
\(904\) 2.00000i 0.0665190i
\(905\) 49.0210 25.1182i 1.62951 0.834956i
\(906\) 0 0
\(907\) −5.02681 18.7603i −0.166912 0.622926i −0.997789 0.0664684i \(-0.978827\pi\)
0.830876 0.556458i \(-0.187840\pi\)
\(908\) −16.1149 4.31798i −0.534792 0.143297i
\(909\) 0 0
\(910\) 8.24685 1.41047i 0.273380 0.0467566i
\(911\) 6.48152i 0.214742i 0.994219 + 0.107371i \(0.0342433\pi\)
−0.994219 + 0.107371i \(0.965757\pi\)
\(912\) 0 0
\(913\) −36.1654 + 9.69050i −1.19690 + 0.320709i
\(914\) 16.7877 29.0772i 0.555289 0.961788i
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) 31.5644 + 9.90678i 1.04235 + 0.327151i
\(918\) 0 0
\(919\) 16.6853 9.63325i 0.550397 0.317772i −0.198885 0.980023i \(-0.563732\pi\)
0.749282 + 0.662251i \(0.230399\pi\)
\(920\) 2.04291 3.16153i 0.0673527 0.104233i
\(921\) 0 0
\(922\) −0.0684729 0.0183473i −0.00225503 0.000604235i
\(923\) 1.86199 1.86199i 0.0612881 0.0612881i
\(924\) 0 0
\(925\) −27.3747 + 22.3747i −0.900074 + 0.735675i
\(926\) 33.8437 19.5397i 1.11217 0.642113i
\(927\) 0 0
\(928\) 5.68036 1.52205i 0.186467 0.0499637i
\(929\) −14.1776 24.5563i −0.465151 0.805666i 0.534057 0.845448i \(-0.320667\pi\)
−0.999208 + 0.0397827i \(0.987333\pi\)
\(930\) 0 0
\(931\) −18.7916 40.0246i −0.615869 1.31175i
\(932\) 14.8138 + 14.8138i 0.485242 + 0.485242i
\(933\) 0 0
\(934\) 33.3706 + 19.2665i 1.09192 + 0.630419i
\(935\) 28.8039 6.19102i 0.941989 0.202468i
\(936\) 0 0
\(937\) 33.3747 33.3747i 1.09030 1.09030i 0.0948079 0.995496i \(-0.469776\pi\)
0.995496 0.0948079i \(-0.0302237\pi\)
\(938\) 26.9174 + 29.2981i 0.878885 + 0.956616i
\(939\) 0 0
\(940\) 0.217249 0.673839i 0.00708589 0.0219782i
\(941\) 4.19452 + 2.42171i 0.136737 + 0.0789454i 0.566808 0.823850i \(-0.308178\pi\)
−0.430071 + 0.902795i \(0.641511\pi\)
\(942\) 0 0
\(943\) −1.23232 + 4.59907i −0.0401297 + 0.149766i
\(944\) 11.9854 0.390091
\(945\) 0 0
\(946\) −32.9499 −1.07129
\(947\) 6.37555 23.7939i 0.207178 0.773198i −0.781597 0.623784i \(-0.785595\pi\)
0.988775 0.149414i \(-0.0477387\pi\)
\(948\) 0 0
\(949\) 4.64774 + 2.68338i 0.150872 + 0.0871060i
\(950\) 29.5366 + 11.1840i 0.958294 + 0.362858i
\(951\) 0 0
\(952\) −11.1468 + 2.48650i −0.361268 + 0.0805879i
\(953\) 24.1237 24.1237i 0.781445 0.781445i −0.198630 0.980075i \(-0.563649\pi\)
0.980075 + 0.198630i \(0.0636492\pi\)
\(954\) 0 0
\(955\) 25.1144 38.8662i 0.812684 1.25768i
\(956\) 0.836960 + 0.483219i 0.0270692 + 0.0156284i
\(957\) 0 0
\(958\) −7.31662 7.31662i −0.236389 0.236389i
\(959\) −40.1988 25.5355i −1.29809 0.824583i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) −9.65926 + 2.58819i −0.311427 + 0.0834466i
\(963\) 0 0
\(964\) −5.70115 + 3.29156i −0.183622 + 0.106014i
\(965\) 17.5303 15.8567i 0.564320 0.510446i
\(966\) 0 0
\(967\) 27.6913 27.6913i 0.890493 0.890493i −0.104077 0.994569i \(-0.533189\pi\)
0.994569 + 0.104077i \(0.0331888\pi\)
\(968\) 1.62602 + 0.435690i 0.0522621 + 0.0140036i
\(969\) 0 0
\(970\) 15.5157 + 10.0258i 0.498178 + 0.321911i
\(971\) 24.9538 14.4071i 0.800805 0.462345i −0.0429474 0.999077i \(-0.513675\pi\)
0.843753 + 0.536732i \(0.180341\pi\)
\(972\) 0 0
\(973\) −25.8472 + 23.7470i −0.828625 + 0.761294i
\(974\) 16.2280 0.519979
\(975\) 0 0
\(976\) 3.15831 5.47036i 0.101095 0.175102i
\(977\) 11.2853 3.02388i 0.361048 0.0967425i −0.0737348 0.997278i \(-0.523492\pi\)
0.434783 + 0.900535i \(0.356825\pi\)
\(978\) 0 0
\(979\) 38.6332i 1.23472i
\(980\) 2.10249 15.5106i 0.0671616 0.495469i
\(981\) 0 0
\(982\) −13.3755 3.58396i −0.426830 0.114369i
\(983\) −2.26040 8.43591i −0.0720954 0.269064i 0.920464 0.390828i \(-0.127811\pi\)
−0.992559 + 0.121764i \(0.961145\pi\)
\(984\) 0 0
\(985\) 55.1197 + 17.7709i 1.75626 + 0.566227i
\(986\) 25.3850i 0.808422i
\(987\) 0 0
\(988\) 6.31662 + 6.31662i 0.200959 + 0.200959i
\(989\) 9.08606 + 15.7375i 0.288920 + 0.500424i
\(990\) 0 0
\(991\) −8.65831 + 14.9966i −0.275040 + 0.476384i −0.970145 0.242524i \(-0.922025\pi\)
0.695105 + 0.718908i \(0.255358\pi\)
\(992\) 0.776457 2.89778i 0.0246525 0.0920045i
\(993\) 0 0
\(994\) −2.28046 4.36675i −0.0723318 0.138505i
\(995\) −10.3473 0.518663i −0.328031 0.0164427i
\(996\) 0 0
\(997\) −3.04410 11.3607i −0.0964075 0.359798i 0.900822 0.434189i \(-0.142965\pi\)
−0.997229 + 0.0743918i \(0.976298\pi\)
\(998\) −5.69402 21.2504i −0.180241 0.672669i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.ce.b.53.4 yes 16
3.2 odd 2 inner 630.2.ce.b.53.1 16
5.2 odd 4 inner 630.2.ce.b.557.4 yes 16
7.2 even 3 inner 630.2.ce.b.233.1 yes 16
15.2 even 4 inner 630.2.ce.b.557.1 yes 16
21.2 odd 6 inner 630.2.ce.b.233.4 yes 16
35.2 odd 12 inner 630.2.ce.b.107.1 yes 16
105.2 even 12 inner 630.2.ce.b.107.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.ce.b.53.1 16 3.2 odd 2 inner
630.2.ce.b.53.4 yes 16 1.1 even 1 trivial
630.2.ce.b.107.1 yes 16 35.2 odd 12 inner
630.2.ce.b.107.4 yes 16 105.2 even 12 inner
630.2.ce.b.233.1 yes 16 7.2 even 3 inner
630.2.ce.b.233.4 yes 16 21.2 odd 6 inner
630.2.ce.b.557.1 yes 16 15.2 even 4 inner
630.2.ce.b.557.4 yes 16 5.2 odd 4 inner