Properties

Label 630.2.bv.d.73.1
Level $630$
Weight $2$
Character 630.73
Analytic conductor $5.031$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 630.73
Dual form 630.2.bv.d.397.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-2.10096 - 0.765474i) q^{5} +(-2.01472 + 1.71490i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(1.83126 + 1.28316i) q^{10} +(2.58598 - 4.47905i) q^{11} +(0.265680 - 0.265680i) q^{13} +(2.38992 - 1.13502i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.26908 + 0.340048i) q^{17} +(3.75044 + 6.49596i) q^{19} +(-1.43675 - 1.71340i) q^{20} +(-3.65713 + 3.65713i) q^{22} +(-2.01403 + 7.51645i) q^{23} +(3.82810 + 3.21647i) q^{25} +(-0.325390 + 0.187864i) q^{26} +(-2.60225 + 0.477786i) q^{28} +8.10291i q^{29} +(-6.65309 - 3.84116i) q^{31} +(-0.258819 - 0.965926i) q^{32} +1.31385 q^{34} +(5.54557 - 2.06073i) q^{35} +(1.90539 + 0.510547i) q^{37} +(-1.94137 - 7.24530i) q^{38} +(0.944334 + 2.02688i) q^{40} +3.37852i q^{41} +(8.71627 + 8.71627i) q^{43} +(4.47905 - 2.58598i) q^{44} +(3.89080 - 6.73906i) q^{46} +(-0.907271 + 3.38598i) q^{47} +(1.11822 - 6.91011i) q^{49} +(-2.86518 - 4.09765i) q^{50} +(0.362926 - 0.0972457i) q^{52} +(-6.37920 + 1.70930i) q^{53} +(-8.86165 + 7.43083i) q^{55} +(2.63724 + 0.212006i) q^{56} +(2.09719 - 7.82681i) q^{58} +(3.36216 - 5.82343i) q^{59} +(-5.17644 + 2.98862i) q^{61} +(5.43223 + 5.43223i) q^{62} +1.00000i q^{64} +(-0.761556 + 0.354813i) q^{65} +(-0.614064 - 2.29172i) q^{67} +(-1.26908 - 0.340048i) q^{68} +(-5.88997 + 0.555210i) q^{70} +4.54008 q^{71} +(1.81526 + 6.77465i) q^{73} +(-1.70832 - 0.986302i) q^{74} +7.50089i q^{76} +(2.47109 + 13.4588i) q^{77} +(10.3622 - 5.98260i) q^{79} +(-0.387562 - 2.20223i) q^{80} +(0.874425 - 3.26340i) q^{82} +(-5.48051 + 5.48051i) q^{83} +(2.92659 + 0.257017i) q^{85} +(-6.16333 - 10.6752i) q^{86} +(-4.99573 + 1.33860i) q^{88} +(6.80532 + 11.7872i) q^{89} +(-0.0796568 + 0.990888i) q^{91} +(-5.50242 + 5.50242i) q^{92} +(1.75271 - 3.03579i) q^{94} +(-2.90706 - 16.5186i) q^{95} +(-8.75027 - 8.75027i) q^{97} +(-2.86859 + 6.38523i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{10} + 16 q^{16} + 8 q^{22} + 20 q^{28} + 48 q^{31} + 32 q^{37} + 80 q^{43} + 8 q^{46} - 28 q^{58} + 48 q^{61} + 16 q^{67} - 60 q^{70} - 24 q^{73} + 48 q^{82} - 144 q^{85} + 4 q^{88}+ \cdots - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 0.258819i −0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) −2.10096 0.765474i −0.939580 0.342330i
\(6\) 0 0
\(7\) −2.01472 + 1.71490i −0.761494 + 0.648172i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 1.83126 + 1.28316i 0.579094 + 0.405771i
\(11\) 2.58598 4.47905i 0.779703 1.35049i −0.152410 0.988317i \(-0.548703\pi\)
0.932113 0.362168i \(-0.117963\pi\)
\(12\) 0 0
\(13\) 0.265680 0.265680i 0.0736864 0.0736864i −0.669303 0.742989i \(-0.733407\pi\)
0.742989 + 0.669303i \(0.233407\pi\)
\(14\) 2.38992 1.13502i 0.638734 0.303347i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.26908 + 0.340048i −0.307797 + 0.0824739i −0.409411 0.912350i \(-0.634266\pi\)
0.101615 + 0.994824i \(0.467599\pi\)
\(18\) 0 0
\(19\) 3.75044 + 6.49596i 0.860411 + 1.49028i 0.871533 + 0.490337i \(0.163126\pi\)
−0.0111223 + 0.999938i \(0.503540\pi\)
\(20\) −1.43675 1.71340i −0.321267 0.383128i
\(21\) 0 0
\(22\) −3.65713 + 3.65713i −0.779703 + 0.779703i
\(23\) −2.01403 + 7.51645i −0.419953 + 1.56729i 0.354749 + 0.934962i \(0.384566\pi\)
−0.774702 + 0.632326i \(0.782100\pi\)
\(24\) 0 0
\(25\) 3.82810 + 3.21647i 0.765620 + 0.643293i
\(26\) −0.325390 + 0.187864i −0.0638143 + 0.0368432i
\(27\) 0 0
\(28\) −2.60225 + 0.477786i −0.491780 + 0.0902931i
\(29\) 8.10291i 1.50467i 0.658779 + 0.752337i \(0.271073\pi\)
−0.658779 + 0.752337i \(0.728927\pi\)
\(30\) 0 0
\(31\) −6.65309 3.84116i −1.19493 0.689893i −0.235510 0.971872i \(-0.575676\pi\)
−0.959421 + 0.281979i \(0.909009\pi\)
\(32\) −0.258819 0.965926i −0.0457532 0.170753i
\(33\) 0 0
\(34\) 1.31385 0.225323
\(35\) 5.54557 2.06073i 0.937373 0.348327i
\(36\) 0 0
\(37\) 1.90539 + 0.510547i 0.313244 + 0.0839334i 0.412016 0.911177i \(-0.364825\pi\)
−0.0987721 + 0.995110i \(0.531491\pi\)
\(38\) −1.94137 7.24530i −0.314932 1.17534i
\(39\) 0 0
\(40\) 0.944334 + 2.02688i 0.149312 + 0.320477i
\(41\) 3.37852i 0.527636i 0.964572 + 0.263818i \(0.0849818\pi\)
−0.964572 + 0.263818i \(0.915018\pi\)
\(42\) 0 0
\(43\) 8.71627 + 8.71627i 1.32922 + 1.32922i 0.906052 + 0.423166i \(0.139081\pi\)
0.423166 + 0.906052i \(0.360919\pi\)
\(44\) 4.47905 2.58598i 0.675243 0.389852i
\(45\) 0 0
\(46\) 3.89080 6.73906i 0.573667 0.993620i
\(47\) −0.907271 + 3.38598i −0.132339 + 0.493896i −0.999995 0.00326972i \(-0.998959\pi\)
0.867656 + 0.497166i \(0.165626\pi\)
\(48\) 0 0
\(49\) 1.11822 6.91011i 0.159746 0.987158i
\(50\) −2.86518 4.09765i −0.405197 0.579496i
\(51\) 0 0
\(52\) 0.362926 0.0972457i 0.0503288 0.0134856i
\(53\) −6.37920 + 1.70930i −0.876251 + 0.234791i −0.668789 0.743452i \(-0.733187\pi\)
−0.207462 + 0.978243i \(0.566520\pi\)
\(54\) 0 0
\(55\) −8.86165 + 7.43083i −1.19491 + 1.00197i
\(56\) 2.63724 + 0.212006i 0.352416 + 0.0283305i
\(57\) 0 0
\(58\) 2.09719 7.82681i 0.275374 1.02771i
\(59\) 3.36216 5.82343i 0.437716 0.758146i −0.559797 0.828630i \(-0.689121\pi\)
0.997513 + 0.0704836i \(0.0224542\pi\)
\(60\) 0 0
\(61\) −5.17644 + 2.98862i −0.662775 + 0.382653i −0.793334 0.608787i \(-0.791656\pi\)
0.130558 + 0.991441i \(0.458323\pi\)
\(62\) 5.43223 + 5.43223i 0.689893 + 0.689893i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.761556 + 0.354813i −0.0944594 + 0.0440092i
\(66\) 0 0
\(67\) −0.614064 2.29172i −0.0750198 0.279978i 0.918218 0.396075i \(-0.129628\pi\)
−0.993238 + 0.116098i \(0.962961\pi\)
\(68\) −1.26908 0.340048i −0.153898 0.0412369i
\(69\) 0 0
\(70\) −5.88997 + 0.555210i −0.703986 + 0.0663603i
\(71\) 4.54008 0.538808 0.269404 0.963027i \(-0.413173\pi\)
0.269404 + 0.963027i \(0.413173\pi\)
\(72\) 0 0
\(73\) 1.81526 + 6.77465i 0.212460 + 0.792913i 0.987045 + 0.160443i \(0.0512922\pi\)
−0.774585 + 0.632470i \(0.782041\pi\)
\(74\) −1.70832 0.986302i −0.198589 0.114655i
\(75\) 0 0
\(76\) 7.50089i 0.860411i
\(77\) 2.47109 + 13.4588i 0.281607 + 1.53377i
\(78\) 0 0
\(79\) 10.3622 5.98260i 1.16583 0.673095i 0.213140 0.977022i \(-0.431631\pi\)
0.952695 + 0.303927i \(0.0982978\pi\)
\(80\) −0.387562 2.20223i −0.0433308 0.246216i
\(81\) 0 0
\(82\) 0.874425 3.26340i 0.0965641 0.360382i
\(83\) −5.48051 + 5.48051i −0.601564 + 0.601564i −0.940727 0.339163i \(-0.889856\pi\)
0.339163 + 0.940727i \(0.389856\pi\)
\(84\) 0 0
\(85\) 2.92659 + 0.257017i 0.317433 + 0.0278774i
\(86\) −6.16333 10.6752i −0.664609 1.15114i
\(87\) 0 0
\(88\) −4.99573 + 1.33860i −0.532547 + 0.142696i
\(89\) 6.80532 + 11.7872i 0.721363 + 1.24944i 0.960454 + 0.278440i \(0.0898173\pi\)
−0.239091 + 0.970997i \(0.576849\pi\)
\(90\) 0 0
\(91\) −0.0796568 + 0.990888i −0.00835031 + 0.103873i
\(92\) −5.50242 + 5.50242i −0.573667 + 0.573667i
\(93\) 0 0
\(94\) 1.75271 3.03579i 0.180778 0.313117i
\(95\) −2.90706 16.5186i −0.298258 1.69478i
\(96\) 0 0
\(97\) −8.75027 8.75027i −0.888456 0.888456i 0.105919 0.994375i \(-0.466222\pi\)
−0.994375 + 0.105919i \(0.966222\pi\)
\(98\) −2.86859 + 6.38523i −0.289771 + 0.645006i
\(99\) 0 0
\(100\) 1.70700 + 4.69959i 0.170700 + 0.469959i
\(101\) 8.00611 + 4.62233i 0.796638 + 0.459939i 0.842294 0.539018i \(-0.181205\pi\)
−0.0456565 + 0.998957i \(0.514538\pi\)
\(102\) 0 0
\(103\) −3.37847 0.905259i −0.332891 0.0891978i 0.0885021 0.996076i \(-0.471792\pi\)
−0.421393 + 0.906878i \(0.638459\pi\)
\(104\) −0.375729 −0.0368432
\(105\) 0 0
\(106\) 6.60424 0.641460
\(107\) 5.66154 + 1.51700i 0.547322 + 0.146654i 0.521875 0.853022i \(-0.325233\pi\)
0.0254463 + 0.999676i \(0.491899\pi\)
\(108\) 0 0
\(109\) −0.113156 0.0653306i −0.0108384 0.00625754i 0.494571 0.869137i \(-0.335325\pi\)
−0.505409 + 0.862880i \(0.668659\pi\)
\(110\) 10.4829 4.88406i 0.999509 0.465677i
\(111\) 0 0
\(112\) −2.49251 0.887351i −0.235520 0.0838468i
\(113\) −3.87916 3.87916i −0.364921 0.364921i 0.500700 0.865621i \(-0.333076\pi\)
−0.865621 + 0.500700i \(0.833076\pi\)
\(114\) 0 0
\(115\) 9.98504 14.2501i 0.931110 1.32883i
\(116\) −4.05146 + 7.01733i −0.376168 + 0.651543i
\(117\) 0 0
\(118\) −4.75481 + 4.75481i −0.437716 + 0.437716i
\(119\) 1.97369 2.86145i 0.180928 0.262309i
\(120\) 0 0
\(121\) −7.87461 13.6392i −0.715874 1.23993i
\(122\) 5.77357 1.54702i 0.522714 0.140061i
\(123\) 0 0
\(124\) −3.84116 6.65309i −0.344947 0.597465i
\(125\) −5.58058 9.68799i −0.499142 0.866520i
\(126\) 0 0
\(127\) 9.07777 9.07777i 0.805522 0.805522i −0.178431 0.983952i \(-0.557102\pi\)
0.983952 + 0.178431i \(0.0571021\pi\)
\(128\) 0.258819 0.965926i 0.0228766 0.0853766i
\(129\) 0 0
\(130\) 0.827439 0.145618i 0.0725712 0.0127716i
\(131\) −0.982572 + 0.567288i −0.0858477 + 0.0495642i −0.542309 0.840179i \(-0.682450\pi\)
0.456462 + 0.889743i \(0.349117\pi\)
\(132\) 0 0
\(133\) −18.6960 6.65592i −1.62115 0.577142i
\(134\) 2.37256i 0.204958i
\(135\) 0 0
\(136\) 1.13782 + 0.656923i 0.0975676 + 0.0563307i
\(137\) 1.38235 + 5.15899i 0.118102 + 0.440762i 0.999500 0.0316115i \(-0.0100639\pi\)
−0.881398 + 0.472374i \(0.843397\pi\)
\(138\) 0 0
\(139\) −18.5198 −1.57083 −0.785414 0.618970i \(-0.787550\pi\)
−0.785414 + 0.618970i \(0.787550\pi\)
\(140\) 5.83297 + 0.988145i 0.492976 + 0.0835135i
\(141\) 0 0
\(142\) −4.38538 1.17506i −0.368013 0.0986087i
\(143\) −0.502951 1.87704i −0.0420589 0.156966i
\(144\) 0 0
\(145\) 6.20257 17.0239i 0.515095 1.41376i
\(146\) 7.01363i 0.580452i
\(147\) 0 0
\(148\) 1.39484 + 1.39484i 0.114655 + 0.114655i
\(149\) −8.57321 + 4.94975i −0.702345 + 0.405499i −0.808220 0.588880i \(-0.799569\pi\)
0.105875 + 0.994379i \(0.466236\pi\)
\(150\) 0 0
\(151\) 5.06845 8.77882i 0.412465 0.714410i −0.582694 0.812692i \(-0.698001\pi\)
0.995159 + 0.0982818i \(0.0313347\pi\)
\(152\) 1.94137 7.24530i 0.157466 0.587671i
\(153\) 0 0
\(154\) 1.09649 13.6397i 0.0883577 1.09912i
\(155\) 11.0376 + 13.1629i 0.886561 + 1.05727i
\(156\) 0 0
\(157\) −2.48110 + 0.664809i −0.198013 + 0.0530575i −0.356463 0.934310i \(-0.616017\pi\)
0.158449 + 0.987367i \(0.449351\pi\)
\(158\) −11.5575 + 3.09682i −0.919465 + 0.246370i
\(159\) 0 0
\(160\) −0.195622 + 2.22749i −0.0154652 + 0.176099i
\(161\) −8.83226 18.5974i −0.696080 1.46568i
\(162\) 0 0
\(163\) 2.91842 10.8917i 0.228589 0.853104i −0.752346 0.658768i \(-0.771078\pi\)
0.980935 0.194337i \(-0.0622554\pi\)
\(164\) −1.68926 + 2.92588i −0.131909 + 0.228473i
\(165\) 0 0
\(166\) 6.71223 3.87531i 0.520970 0.300782i
\(167\) −10.5786 10.5786i −0.818599 0.818599i 0.167306 0.985905i \(-0.446493\pi\)
−0.985905 + 0.167306i \(0.946493\pi\)
\(168\) 0 0
\(169\) 12.8588i 0.989141i
\(170\) −2.76034 1.00572i −0.211709 0.0771348i
\(171\) 0 0
\(172\) 3.19038 + 11.9066i 0.243264 + 0.907873i
\(173\) −16.9580 4.54389i −1.28929 0.345465i −0.451902 0.892068i \(-0.649254\pi\)
−0.837392 + 0.546602i \(0.815921\pi\)
\(174\) 0 0
\(175\) −13.2285 + 0.0845226i −0.999980 + 0.00638931i
\(176\) 5.17197 0.389852
\(177\) 0 0
\(178\) −3.52269 13.1469i −0.264037 0.985400i
\(179\) 1.69842 + 0.980586i 0.126946 + 0.0732924i 0.562128 0.827050i \(-0.309983\pi\)
−0.435182 + 0.900342i \(0.643316\pi\)
\(180\) 0 0
\(181\) 25.3622i 1.88515i 0.333988 + 0.942577i \(0.391606\pi\)
−0.333988 + 0.942577i \(0.608394\pi\)
\(182\) 0.333403 0.936507i 0.0247135 0.0694185i
\(183\) 0 0
\(184\) 6.73906 3.89080i 0.496810 0.286834i
\(185\) −3.61234 2.53117i −0.265585 0.186095i
\(186\) 0 0
\(187\) −1.75872 + 6.56363i −0.128610 + 0.479980i
\(188\) −2.47871 + 2.47871i −0.180778 + 0.180778i
\(189\) 0 0
\(190\) −1.46733 + 16.7082i −0.106452 + 1.21214i
\(191\) −0.907736 1.57224i −0.0656815 0.113764i 0.831315 0.555802i \(-0.187589\pi\)
−0.896996 + 0.442039i \(0.854255\pi\)
\(192\) 0 0
\(193\) 6.71159 1.79837i 0.483111 0.129449i −0.00903978 0.999959i \(-0.502877\pi\)
0.492151 + 0.870510i \(0.336211\pi\)
\(194\) 6.18738 + 10.7169i 0.444228 + 0.769425i
\(195\) 0 0
\(196\) 4.42346 5.42522i 0.315962 0.387515i
\(197\) 0.403956 0.403956i 0.0287807 0.0287807i −0.692570 0.721351i \(-0.743522\pi\)
0.721351 + 0.692570i \(0.243522\pi\)
\(198\) 0 0
\(199\) −1.43941 + 2.49313i −0.102037 + 0.176733i −0.912524 0.409024i \(-0.865869\pi\)
0.810487 + 0.585757i \(0.199203\pi\)
\(200\) −0.432490 4.98126i −0.0305817 0.352228i
\(201\) 0 0
\(202\) −6.53696 6.53696i −0.459939 0.459939i
\(203\) −13.8957 16.3251i −0.975287 1.14580i
\(204\) 0 0
\(205\) 2.58617 7.09815i 0.180626 0.495756i
\(206\) 3.02906 + 1.74883i 0.211044 + 0.121847i
\(207\) 0 0
\(208\) 0.362926 + 0.0972457i 0.0251644 + 0.00674278i
\(209\) 38.7943 2.68346
\(210\) 0 0
\(211\) −10.7019 −0.736752 −0.368376 0.929677i \(-0.620086\pi\)
−0.368376 + 0.929677i \(0.620086\pi\)
\(212\) −6.37920 1.70930i −0.438126 0.117395i
\(213\) 0 0
\(214\) −5.07600 2.93063i −0.346988 0.200334i
\(215\) −11.6405 24.9846i −0.793875 1.70394i
\(216\) 0 0
\(217\) 19.9914 3.67051i 1.35710 0.249171i
\(218\) 0.0923914 + 0.0923914i 0.00625754 + 0.00625754i
\(219\) 0 0
\(220\) −11.3898 + 2.00446i −0.767902 + 0.135141i
\(221\) −0.246825 + 0.427513i −0.0166032 + 0.0287576i
\(222\) 0 0
\(223\) −8.44168 + 8.44168i −0.565296 + 0.565296i −0.930807 0.365511i \(-0.880894\pi\)
0.365511 + 0.930807i \(0.380894\pi\)
\(224\) 2.17792 + 1.50222i 0.145518 + 0.100372i
\(225\) 0 0
\(226\) 2.74298 + 4.75099i 0.182461 + 0.316031i
\(227\) 17.2960 4.63445i 1.14798 0.307599i 0.365823 0.930685i \(-0.380788\pi\)
0.782154 + 0.623085i \(0.214121\pi\)
\(228\) 0 0
\(229\) 4.32943 + 7.49879i 0.286097 + 0.495534i 0.972875 0.231334i \(-0.0743089\pi\)
−0.686778 + 0.726867i \(0.740976\pi\)
\(230\) −13.3330 + 11.1802i −0.879152 + 0.737202i
\(231\) 0 0
\(232\) 5.72963 5.72963i 0.376168 0.376168i
\(233\) −4.95817 + 18.5041i −0.324820 + 1.21225i 0.589672 + 0.807643i \(0.299257\pi\)
−0.914492 + 0.404603i \(0.867410\pi\)
\(234\) 0 0
\(235\) 4.49802 6.41933i 0.293419 0.418751i
\(236\) 5.82343 3.36216i 0.379073 0.218858i
\(237\) 0 0
\(238\) −2.64704 + 2.25312i −0.171582 + 0.146048i
\(239\) 6.70759i 0.433878i −0.976185 0.216939i \(-0.930393\pi\)
0.976185 0.216939i \(-0.0696073\pi\)
\(240\) 0 0
\(241\) −0.374613 0.216283i −0.0241309 0.0139320i 0.487886 0.872907i \(-0.337768\pi\)
−0.512017 + 0.858975i \(0.671102\pi\)
\(242\) 4.07620 + 15.2126i 0.262028 + 0.977902i
\(243\) 0 0
\(244\) −5.97724 −0.382653
\(245\) −7.63886 + 13.6619i −0.488029 + 0.872828i
\(246\) 0 0
\(247\) 2.72227 + 0.729429i 0.173214 + 0.0464125i
\(248\) 1.98833 + 7.42056i 0.126259 + 0.471206i
\(249\) 0 0
\(250\) 2.88299 + 10.8022i 0.182336 + 0.683194i
\(251\) 19.4059i 1.22489i −0.790513 0.612446i \(-0.790186\pi\)
0.790513 0.612446i \(-0.209814\pi\)
\(252\) 0 0
\(253\) 28.4583 + 28.4583i 1.78916 + 1.78916i
\(254\) −11.1179 + 6.41895i −0.697602 + 0.402761i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.82963 + 18.0244i −0.301264 + 1.12433i 0.634849 + 0.772636i \(0.281062\pi\)
−0.936114 + 0.351698i \(0.885604\pi\)
\(258\) 0 0
\(259\) −4.71437 + 2.23894i −0.292937 + 0.139121i
\(260\) −0.836933 0.0735006i −0.0519044 0.00455831i
\(261\) 0 0
\(262\) 1.09592 0.293650i 0.0677060 0.0181418i
\(263\) 6.57217 1.76101i 0.405257 0.108588i −0.0504316 0.998728i \(-0.516060\pi\)
0.455689 + 0.890139i \(0.349393\pi\)
\(264\) 0 0
\(265\) 14.7109 + 1.29193i 0.903684 + 0.0793627i
\(266\) 16.3363 + 11.2680i 1.00164 + 0.690886i
\(267\) 0 0
\(268\) 0.614064 2.29172i 0.0375099 0.139989i
\(269\) −3.23386 + 5.60121i −0.197172 + 0.341512i −0.947610 0.319428i \(-0.896509\pi\)
0.750438 + 0.660940i \(0.229842\pi\)
\(270\) 0 0
\(271\) 11.5028 6.64116i 0.698747 0.403422i −0.108134 0.994136i \(-0.534487\pi\)
0.806881 + 0.590715i \(0.201154\pi\)
\(272\) −0.929030 0.929030i −0.0563307 0.0563307i
\(273\) 0 0
\(274\) 5.34098i 0.322660i
\(275\) 24.3061 8.82854i 1.46571 0.532381i
\(276\) 0 0
\(277\) 0.832945 + 3.10859i 0.0500468 + 0.186777i 0.986424 0.164218i \(-0.0525100\pi\)
−0.936377 + 0.350995i \(0.885843\pi\)
\(278\) 17.8888 + 4.79328i 1.07290 + 0.287482i
\(279\) 0 0
\(280\) −5.37847 2.46416i −0.321425 0.147262i
\(281\) −4.88199 −0.291235 −0.145618 0.989341i \(-0.546517\pi\)
−0.145618 + 0.989341i \(0.546517\pi\)
\(282\) 0 0
\(283\) −3.14962 11.7546i −0.187226 0.698736i −0.994143 0.108071i \(-0.965532\pi\)
0.806917 0.590664i \(-0.201134\pi\)
\(284\) 3.93182 + 2.27004i 0.233311 + 0.134702i
\(285\) 0 0
\(286\) 1.94325i 0.114907i
\(287\) −5.79383 6.80678i −0.341999 0.401792i
\(288\) 0 0
\(289\) −13.2275 + 7.63690i −0.778089 + 0.449230i
\(290\) −10.3973 + 14.8385i −0.610553 + 0.871347i
\(291\) 0 0
\(292\) −1.81526 + 6.77465i −0.106230 + 0.396456i
\(293\) −3.88255 + 3.88255i −0.226821 + 0.226821i −0.811363 0.584542i \(-0.801274\pi\)
0.584542 + 0.811363i \(0.301274\pi\)
\(294\) 0 0
\(295\) −11.5215 + 9.66117i −0.670805 + 0.562495i
\(296\) −0.986302 1.70832i −0.0573276 0.0992943i
\(297\) 0 0
\(298\) 9.56218 2.56218i 0.553922 0.148423i
\(299\) 1.46188 + 2.53206i 0.0845429 + 0.146433i
\(300\) 0 0
\(301\) −32.5084 2.61333i −1.87375 0.150630i
\(302\) −7.16787 + 7.16787i −0.412465 + 0.412465i
\(303\) 0 0
\(304\) −3.75044 + 6.49596i −0.215103 + 0.372569i
\(305\) 13.1632 2.31655i 0.753724 0.132645i
\(306\) 0 0
\(307\) 8.99757 + 8.99757i 0.513519 + 0.513519i 0.915603 0.402084i \(-0.131714\pi\)
−0.402084 + 0.915603i \(0.631714\pi\)
\(308\) −4.58935 + 12.8912i −0.261502 + 0.734543i
\(309\) 0 0
\(310\) −7.25468 15.5711i −0.412038 0.884381i
\(311\) 18.6303 + 10.7562i 1.05643 + 0.609929i 0.924442 0.381323i \(-0.124531\pi\)
0.131985 + 0.991252i \(0.457865\pi\)
\(312\) 0 0
\(313\) 13.8043 + 3.69885i 0.780265 + 0.209071i 0.626901 0.779099i \(-0.284323\pi\)
0.153363 + 0.988170i \(0.450990\pi\)
\(314\) 2.56862 0.144956
\(315\) 0 0
\(316\) 11.9652 0.673095
\(317\) 19.5770 + 5.24563i 1.09955 + 0.294624i 0.762582 0.646891i \(-0.223931\pi\)
0.336970 + 0.941515i \(0.390598\pi\)
\(318\) 0 0
\(319\) 36.2934 + 20.9540i 2.03204 + 1.17320i
\(320\) 0.765474 2.10096i 0.0427913 0.117447i
\(321\) 0 0
\(322\) 3.71794 + 20.2497i 0.207193 + 1.12847i
\(323\) −6.96855 6.96855i −0.387740 0.387740i
\(324\) 0 0
\(325\) 1.87160 0.162499i 0.103818 0.00901381i
\(326\) −5.63796 + 9.76524i −0.312258 + 0.540847i
\(327\) 0 0
\(328\) 2.38897 2.38897i 0.131909 0.131909i
\(329\) −3.97872 8.37769i −0.219354 0.461877i
\(330\) 0 0
\(331\) −1.02862 1.78163i −0.0565383 0.0979271i 0.836371 0.548164i \(-0.184673\pi\)
−0.892909 + 0.450237i \(0.851340\pi\)
\(332\) −7.48652 + 2.00601i −0.410876 + 0.110094i
\(333\) 0 0
\(334\) 7.48023 + 12.9561i 0.409300 + 0.708928i
\(335\) −0.464124 + 5.28486i −0.0253578 + 0.288743i
\(336\) 0 0
\(337\) −13.1092 + 13.1092i −0.714105 + 0.714105i −0.967391 0.253287i \(-0.918488\pi\)
0.253287 + 0.967391i \(0.418488\pi\)
\(338\) 3.32811 12.4207i 0.181025 0.675596i
\(339\) 0 0
\(340\) 2.40599 + 1.68588i 0.130483 + 0.0914295i
\(341\) −34.4096 + 19.8664i −1.86338 + 1.07582i
\(342\) 0 0
\(343\) 9.59724 + 15.8396i 0.518202 + 0.855258i
\(344\) 12.3267i 0.664609i
\(345\) 0 0
\(346\) 15.2041 + 8.77812i 0.817380 + 0.471914i
\(347\) 0.983922 + 3.67205i 0.0528197 + 0.197126i 0.987294 0.158905i \(-0.0507964\pi\)
−0.934474 + 0.356031i \(0.884130\pi\)
\(348\) 0 0
\(349\) −25.5306 −1.36662 −0.683312 0.730126i \(-0.739461\pi\)
−0.683312 + 0.730126i \(0.739461\pi\)
\(350\) 12.7996 + 3.34214i 0.684168 + 0.178645i
\(351\) 0 0
\(352\) −4.99573 1.33860i −0.266274 0.0713478i
\(353\) −7.63550 28.4961i −0.406396 1.51669i −0.801466 0.598041i \(-0.795946\pi\)
0.395069 0.918651i \(-0.370721\pi\)
\(354\) 0 0
\(355\) −9.53853 3.47531i −0.506253 0.184450i
\(356\) 13.6106i 0.721363i
\(357\) 0 0
\(358\) −1.38676 1.38676i −0.0732924 0.0732924i
\(359\) 4.59185 2.65110i 0.242348 0.139920i −0.373907 0.927466i \(-0.621982\pi\)
0.616256 + 0.787546i \(0.288649\pi\)
\(360\) 0 0
\(361\) −18.6316 + 32.2710i −0.980613 + 1.69847i
\(362\) 6.56421 24.4980i 0.345007 1.28758i
\(363\) 0 0
\(364\) −0.564429 + 0.818305i −0.0295841 + 0.0428909i
\(365\) 1.37202 15.6228i 0.0718147 0.817736i
\(366\) 0 0
\(367\) −10.1998 + 2.73302i −0.532423 + 0.142662i −0.515007 0.857186i \(-0.672211\pi\)
−0.0174162 + 0.999848i \(0.505544\pi\)
\(368\) −7.51645 + 2.01403i −0.391822 + 0.104988i
\(369\) 0 0
\(370\) 2.83414 + 3.37986i 0.147340 + 0.175711i
\(371\) 9.92105 14.3835i 0.515075 0.746753i
\(372\) 0 0
\(373\) 5.69653 21.2597i 0.294955 1.10079i −0.646298 0.763085i \(-0.723684\pi\)
0.941253 0.337702i \(-0.109650\pi\)
\(374\) 3.39758 5.88479i 0.175685 0.304295i
\(375\) 0 0
\(376\) 3.03579 1.75271i 0.156559 0.0903892i
\(377\) 2.15278 + 2.15278i 0.110874 + 0.110874i
\(378\) 0 0
\(379\) 14.8451i 0.762541i 0.924464 + 0.381270i \(0.124513\pi\)
−0.924464 + 0.381270i \(0.875487\pi\)
\(380\) 5.74173 15.7591i 0.294545 0.808424i
\(381\) 0 0
\(382\) 0.469879 + 1.75361i 0.0240411 + 0.0897225i
\(383\) 24.7873 + 6.64174i 1.26657 + 0.339377i 0.828717 0.559668i \(-0.189071\pi\)
0.437856 + 0.899045i \(0.355738\pi\)
\(384\) 0 0
\(385\) 5.11065 30.1679i 0.260463 1.53750i
\(386\) −6.94835 −0.353662
\(387\) 0 0
\(388\) −3.20282 11.9531i −0.162599 0.606827i
\(389\) −12.7527 7.36279i −0.646589 0.373308i 0.140559 0.990072i \(-0.455110\pi\)
−0.787148 + 0.616764i \(0.788443\pi\)
\(390\) 0 0
\(391\) 10.2238i 0.517041i
\(392\) −5.67689 + 4.09548i −0.286726 + 0.206853i
\(393\) 0 0
\(394\) −0.494743 + 0.285640i −0.0249248 + 0.0143903i
\(395\) −26.3501 + 4.63726i −1.32582 + 0.233326i
\(396\) 0 0
\(397\) −0.348078 + 1.29904i −0.0174695 + 0.0651971i −0.974110 0.226073i \(-0.927411\pi\)
0.956641 + 0.291270i \(0.0940779\pi\)
\(398\) 2.03563 2.03563i 0.102037 0.102037i
\(399\) 0 0
\(400\) −0.871492 + 4.92346i −0.0435746 + 0.246173i
\(401\) −10.4528 18.1048i −0.521989 0.904111i −0.999673 0.0255795i \(-0.991857\pi\)
0.477684 0.878532i \(-0.341476\pi\)
\(402\) 0 0
\(403\) −2.78812 + 0.747073i −0.138886 + 0.0372144i
\(404\) 4.62233 + 8.00611i 0.229969 + 0.398319i
\(405\) 0 0
\(406\) 9.19696 + 19.3653i 0.456437 + 0.961086i
\(407\) 7.21407 7.21407i 0.357588 0.357588i
\(408\) 0 0
\(409\) −2.52732 + 4.37744i −0.124968 + 0.216451i −0.921720 0.387855i \(-0.873216\pi\)
0.796753 + 0.604306i \(0.206549\pi\)
\(410\) −4.33518 + 6.18693i −0.214099 + 0.305551i
\(411\) 0 0
\(412\) −2.47321 2.47321i −0.121847 0.121847i
\(413\) 3.21279 + 17.4984i 0.158091 + 0.861039i
\(414\) 0 0
\(415\) 15.7095 7.31917i 0.771151 0.359284i
\(416\) −0.325390 0.187864i −0.0159536 0.00921080i
\(417\) 0 0
\(418\) −37.4724 10.0407i −1.83284 0.491107i
\(419\) −27.3949 −1.33833 −0.669164 0.743115i \(-0.733348\pi\)
−0.669164 + 0.743115i \(0.733348\pi\)
\(420\) 0 0
\(421\) 9.41821 0.459015 0.229508 0.973307i \(-0.426288\pi\)
0.229508 + 0.973307i \(0.426288\pi\)
\(422\) 10.3373 + 2.76987i 0.503211 + 0.134835i
\(423\) 0 0
\(424\) 5.71944 + 3.30212i 0.277760 + 0.160365i
\(425\) −5.95191 2.78021i −0.288710 0.134860i
\(426\) 0 0
\(427\) 5.30391 14.8983i 0.256674 0.720980i
\(428\) 4.14453 + 4.14453i 0.200334 + 0.200334i
\(429\) 0 0
\(430\) 4.77735 + 27.1461i 0.230384 + 1.30910i
\(431\) 4.48816 7.77373i 0.216187 0.374447i −0.737452 0.675400i \(-0.763971\pi\)
0.953639 + 0.300952i \(0.0973045\pi\)
\(432\) 0 0
\(433\) 10.7835 10.7835i 0.518224 0.518224i −0.398810 0.917034i \(-0.630577\pi\)
0.917034 + 0.398810i \(0.130577\pi\)
\(434\) −20.2602 1.62870i −0.972519 0.0781802i
\(435\) 0 0
\(436\) −0.0653306 0.113156i −0.00312877 0.00541919i
\(437\) −56.3800 + 15.1070i −2.69702 + 0.722665i
\(438\) 0 0
\(439\) 2.89682 + 5.01745i 0.138258 + 0.239470i 0.926837 0.375463i \(-0.122516\pi\)
−0.788579 + 0.614933i \(0.789183\pi\)
\(440\) 11.5205 + 1.01175i 0.549219 + 0.0482332i
\(441\) 0 0
\(442\) 0.349063 0.349063i 0.0166032 0.0166032i
\(443\) −5.48110 + 20.4558i −0.260415 + 0.971882i 0.704582 + 0.709622i \(0.251134\pi\)
−0.964997 + 0.262260i \(0.915532\pi\)
\(444\) 0 0
\(445\) −5.27497 29.9737i −0.250058 1.42089i
\(446\) 10.3389 5.96917i 0.489561 0.282648i
\(447\) 0 0
\(448\) −1.71490 2.01472i −0.0810215 0.0951868i
\(449\) 14.3195i 0.675780i −0.941186 0.337890i \(-0.890287\pi\)
0.941186 0.337890i \(-0.109713\pi\)
\(450\) 0 0
\(451\) 15.1326 + 8.73679i 0.712565 + 0.411400i
\(452\) −1.41987 5.29904i −0.0667852 0.249246i
\(453\) 0 0
\(454\) −17.9062 −0.840377
\(455\) 0.925855 2.02084i 0.0434047 0.0947386i
\(456\) 0 0
\(457\) 31.6291 + 8.47498i 1.47954 + 0.396443i 0.906192 0.422866i \(-0.138976\pi\)
0.573353 + 0.819309i \(0.305643\pi\)
\(458\) −2.24108 8.36381i −0.104719 0.390815i
\(459\) 0 0
\(460\) 15.7723 7.34843i 0.735390 0.342622i
\(461\) 35.9488i 1.67430i 0.546972 + 0.837151i \(0.315781\pi\)
−0.546972 + 0.837151i \(0.684219\pi\)
\(462\) 0 0
\(463\) 7.46017 + 7.46017i 0.346704 + 0.346704i 0.858880 0.512177i \(-0.171161\pi\)
−0.512177 + 0.858880i \(0.671161\pi\)
\(464\) −7.01733 + 4.05146i −0.325771 + 0.188084i
\(465\) 0 0
\(466\) 9.57844 16.5904i 0.443713 0.768533i
\(467\) 5.33585 19.9137i 0.246914 0.921494i −0.725498 0.688224i \(-0.758391\pi\)
0.972412 0.233270i \(-0.0749426\pi\)
\(468\) 0 0
\(469\) 5.16724 + 3.56412i 0.238601 + 0.164576i
\(470\) −6.00620 + 5.03642i −0.277045 + 0.232313i
\(471\) 0 0
\(472\) −6.49519 + 1.74038i −0.298966 + 0.0801076i
\(473\) 61.5807 16.5005i 2.83149 0.758694i
\(474\) 0 0
\(475\) −6.53696 + 36.9303i −0.299936 + 1.69448i
\(476\) 3.13999 1.49124i 0.143921 0.0683509i
\(477\) 0 0
\(478\) −1.73605 + 6.47904i −0.0794052 + 0.296344i
\(479\) −2.18200 + 3.77934i −0.0996983 + 0.172682i −0.911560 0.411168i \(-0.865121\pi\)
0.811861 + 0.583850i \(0.198454\pi\)
\(480\) 0 0
\(481\) 0.641866 0.370582i 0.0292666 0.0168971i
\(482\) 0.305870 + 0.305870i 0.0139320 + 0.0139320i
\(483\) 0 0
\(484\) 15.7492i 0.715874i
\(485\) 11.6859 + 25.0821i 0.530630 + 1.13892i
\(486\) 0 0
\(487\) −6.09135 22.7332i −0.276026 1.03014i −0.955151 0.296119i \(-0.904307\pi\)
0.679125 0.734022i \(-0.262359\pi\)
\(488\) 5.77357 + 1.54702i 0.261357 + 0.0700304i
\(489\) 0 0
\(490\) 10.9145 11.2193i 0.493068 0.506837i
\(491\) 37.0535 1.67220 0.836100 0.548577i \(-0.184830\pi\)
0.836100 + 0.548577i \(0.184830\pi\)
\(492\) 0 0
\(493\) −2.75538 10.2832i −0.124096 0.463133i
\(494\) −2.44072 1.40915i −0.109813 0.0634006i
\(495\) 0 0
\(496\) 7.68233i 0.344947i
\(497\) −9.14700 + 7.78578i −0.410299 + 0.349240i
\(498\) 0 0
\(499\) −16.6242 + 9.59800i −0.744202 + 0.429665i −0.823595 0.567178i \(-0.808035\pi\)
0.0793930 + 0.996843i \(0.474702\pi\)
\(500\) 0.0110724 11.1803i 0.000495172 0.500000i
\(501\) 0 0
\(502\) −5.02263 + 18.7447i −0.224171 + 0.836617i
\(503\) 22.3585 22.3585i 0.996914 0.996914i −0.00308078 0.999995i \(-0.500981\pi\)
0.999995 + 0.00308078i \(0.000980643\pi\)
\(504\) 0 0
\(505\) −13.2823 15.8398i −0.591053 0.704862i
\(506\) −20.1231 34.8542i −0.894580 1.54946i
\(507\) 0 0
\(508\) 12.4005 3.32269i 0.550182 0.147421i
\(509\) −7.74622 13.4168i −0.343345 0.594691i 0.641706 0.766950i \(-0.278227\pi\)
−0.985052 + 0.172259i \(0.944893\pi\)
\(510\) 0 0
\(511\) −15.2751 10.5361i −0.675731 0.466088i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 9.33014 16.1603i 0.411535 0.712799i
\(515\) 6.40510 + 4.48805i 0.282242 + 0.197767i
\(516\) 0 0
\(517\) 12.8198 + 12.8198i 0.563814 + 0.563814i
\(518\) 5.13321 0.942483i 0.225540 0.0414103i
\(519\) 0 0
\(520\) 0.789392 + 0.287610i 0.0346171 + 0.0126125i
\(521\) 25.9155 + 14.9623i 1.13538 + 0.655511i 0.945282 0.326255i \(-0.105787\pi\)
0.190096 + 0.981766i \(0.439120\pi\)
\(522\) 0 0
\(523\) −23.0502 6.17629i −1.00792 0.270070i −0.283158 0.959073i \(-0.591382\pi\)
−0.724758 + 0.689003i \(0.758049\pi\)
\(524\) −1.13458 −0.0495642
\(525\) 0 0
\(526\) −6.80401 −0.296669
\(527\) 9.74947 + 2.61236i 0.424694 + 0.113796i
\(528\) 0 0
\(529\) −32.5221 18.7766i −1.41400 0.816375i
\(530\) −13.8753 5.05537i −0.602703 0.219591i
\(531\) 0 0
\(532\) −12.8633 15.1122i −0.557694 0.655198i
\(533\) 0.897606 + 0.897606i 0.0388796 + 0.0388796i
\(534\) 0 0
\(535\) −10.7335 7.52093i −0.464048 0.325158i
\(536\) −1.18628 + 2.05470i −0.0512395 + 0.0887494i
\(537\) 0 0
\(538\) 4.57337 4.57337i 0.197172 0.197172i
\(539\) −28.0590 22.8780i −1.20859 0.985425i
\(540\) 0 0
\(541\) 2.85409 + 4.94343i 0.122707 + 0.212535i 0.920834 0.389954i \(-0.127509\pi\)
−0.798127 + 0.602489i \(0.794176\pi\)
\(542\) −12.8297 + 3.43772i −0.551084 + 0.147663i
\(543\) 0 0
\(544\) 0.656923 + 1.13782i 0.0281653 + 0.0487838i
\(545\) 0.187728 + 0.223875i 0.00804137 + 0.00958976i
\(546\) 0 0
\(547\) 24.1755 24.1755i 1.03367 1.03367i 0.0342575 0.999413i \(-0.489093\pi\)
0.999413 0.0342575i \(-0.0109066\pi\)
\(548\) −1.38235 + 5.15899i −0.0590509 + 0.220381i
\(549\) 0 0
\(550\) −25.7629 + 2.23682i −1.09853 + 0.0953785i
\(551\) −52.6362 + 30.3895i −2.24238 + 1.29464i
\(552\) 0 0
\(553\) −10.6173 + 29.8234i −0.451495 + 1.26822i
\(554\) 3.21825i 0.136730i
\(555\) 0 0
\(556\) −16.0386 9.25990i −0.680189 0.392707i
\(557\) −8.24631 30.7756i −0.349407 1.30401i −0.887378 0.461042i \(-0.847476\pi\)
0.537971 0.842964i \(-0.319191\pi\)
\(558\) 0 0
\(559\) 4.63148 0.195891
\(560\) 4.55743 + 3.77224i 0.192587 + 0.159406i
\(561\) 0 0
\(562\) 4.71564 + 1.26355i 0.198917 + 0.0532997i
\(563\) 3.27600 + 12.2262i 0.138067 + 0.515272i 0.999966 + 0.00819336i \(0.00260806\pi\)
−0.861900 + 0.507079i \(0.830725\pi\)
\(564\) 0 0
\(565\) 5.18059 + 11.1194i 0.217949 + 0.467796i
\(566\) 12.1692i 0.511510i
\(567\) 0 0
\(568\) −3.21032 3.21032i −0.134702 0.134702i
\(569\) −12.2235 + 7.05724i −0.512436 + 0.295855i −0.733834 0.679328i \(-0.762271\pi\)
0.221399 + 0.975183i \(0.428938\pi\)
\(570\) 0 0
\(571\) −2.32235 + 4.02242i −0.0971872 + 0.168333i −0.910519 0.413466i \(-0.864318\pi\)
0.813332 + 0.581800i \(0.197651\pi\)
\(572\) 0.502951 1.87704i 0.0210295 0.0784830i
\(573\) 0 0
\(574\) 3.83468 + 8.07440i 0.160057 + 0.337019i
\(575\) −31.8863 + 22.2957i −1.32975 + 0.929793i
\(576\) 0 0
\(577\) 1.40289 0.375902i 0.0584029 0.0156490i −0.229499 0.973309i \(-0.573709\pi\)
0.287902 + 0.957660i \(0.407042\pi\)
\(578\) 14.7534 3.95315i 0.613659 0.164429i
\(579\) 0 0
\(580\) 13.8835 11.6419i 0.576483 0.483402i
\(581\) 1.64318 20.4402i 0.0681705 0.848004i
\(582\) 0 0
\(583\) −8.84045 + 32.9930i −0.366134 + 1.36643i
\(584\) 3.50682 6.07399i 0.145113 0.251343i
\(585\) 0 0
\(586\) 4.75513 2.74537i 0.196433 0.113410i
\(587\) −11.1465 11.1465i −0.460066 0.460066i 0.438611 0.898677i \(-0.355471\pi\)
−0.898677 + 0.438611i \(0.855471\pi\)
\(588\) 0 0
\(589\) 57.6243i 2.37437i
\(590\) 13.6294 6.35000i 0.561112 0.261426i
\(591\) 0 0
\(592\) 0.510547 + 1.90539i 0.0209834 + 0.0783110i
\(593\) 15.0066 + 4.02100i 0.616246 + 0.165123i 0.553420 0.832902i \(-0.313322\pi\)
0.0628252 + 0.998025i \(0.479989\pi\)
\(594\) 0 0
\(595\) −6.33702 + 4.50099i −0.259793 + 0.184523i
\(596\) −9.89949 −0.405499
\(597\) 0 0
\(598\) −0.756727 2.82414i −0.0309449 0.115488i
\(599\) 36.6022 + 21.1323i 1.49552 + 0.863441i 0.999987 0.00514553i \(-0.00163788\pi\)
0.495537 + 0.868587i \(0.334971\pi\)
\(600\) 0 0
\(601\) 36.4403i 1.48643i −0.669052 0.743216i \(-0.733300\pi\)
0.669052 0.743216i \(-0.266700\pi\)
\(602\) 30.7243 + 10.9381i 1.25223 + 0.445803i
\(603\) 0 0
\(604\) 8.77882 5.06845i 0.357205 0.206232i
\(605\) 6.10380 + 34.6833i 0.248155 + 1.41008i
\(606\) 0 0
\(607\) 5.28879 19.7380i 0.214665 0.801141i −0.771619 0.636085i \(-0.780553\pi\)
0.986284 0.165056i \(-0.0527806\pi\)
\(608\) 5.30393 5.30393i 0.215103 0.215103i
\(609\) 0 0
\(610\) −13.3143 1.16928i −0.539079 0.0473426i
\(611\) 0.658544 + 1.14063i 0.0266418 + 0.0461450i
\(612\) 0 0
\(613\) −10.9822 + 2.94267i −0.443567 + 0.118853i −0.473688 0.880693i \(-0.657078\pi\)
0.0301206 + 0.999546i \(0.490411\pi\)
\(614\) −6.36225 11.0197i −0.256759 0.444720i
\(615\) 0 0
\(616\) 7.76945 11.2641i 0.313040 0.453844i
\(617\) 19.5003 19.5003i 0.785051 0.785051i −0.195628 0.980678i \(-0.562674\pi\)
0.980678 + 0.195628i \(0.0626744\pi\)
\(618\) 0 0
\(619\) 8.77812 15.2041i 0.352822 0.611106i −0.633920 0.773398i \(-0.718555\pi\)
0.986743 + 0.162292i \(0.0518887\pi\)
\(620\) 2.97738 + 16.9182i 0.119574 + 0.679452i
\(621\) 0 0
\(622\) −15.2116 15.2116i −0.609929 0.609929i
\(623\) −33.9247 12.0774i −1.35916 0.483872i
\(624\) 0 0
\(625\) 4.30869 + 24.6259i 0.172348 + 0.985036i
\(626\) −12.3766 7.14563i −0.494668 0.285597i
\(627\) 0 0
\(628\) −2.48110 0.664809i −0.0990066 0.0265288i
\(629\) −2.59170 −0.103338
\(630\) 0 0
\(631\) −23.1755 −0.922603 −0.461301 0.887243i \(-0.652617\pi\)
−0.461301 + 0.887243i \(0.652617\pi\)
\(632\) −11.5575 3.09682i −0.459733 0.123185i
\(633\) 0 0
\(634\) −17.5522 10.1338i −0.697088 0.402464i
\(635\) −26.0209 + 12.1233i −1.03261 + 0.481097i
\(636\) 0 0
\(637\) −1.53879 2.13297i −0.0609690 0.0845113i
\(638\) −29.6334 29.6334i −1.17320 1.17320i
\(639\) 0 0
\(640\) −1.28316 + 1.83126i −0.0507214 + 0.0723868i
\(641\) −8.67383 + 15.0235i −0.342596 + 0.593393i −0.984914 0.173045i \(-0.944639\pi\)
0.642318 + 0.766438i \(0.277973\pi\)
\(642\) 0 0
\(643\) 26.2988 26.2988i 1.03712 1.03712i 0.0378384 0.999284i \(-0.487953\pi\)
0.999284 0.0378384i \(-0.0120472\pi\)
\(644\) 1.64975 20.5220i 0.0650092 0.808679i
\(645\) 0 0
\(646\) 4.92751 + 8.53469i 0.193870 + 0.335793i
\(647\) 24.1113 6.46061i 0.947914 0.253993i 0.248437 0.968648i \(-0.420083\pi\)
0.699477 + 0.714655i \(0.253416\pi\)
\(648\) 0 0
\(649\) −17.3890 30.1186i −0.682577 1.18226i
\(650\) −1.84989 0.327444i −0.0725585 0.0128434i
\(651\) 0 0
\(652\) 7.97328 7.97328i 0.312258 0.312258i
\(653\) −9.75652 + 36.4118i −0.381802 + 1.42490i 0.461345 + 0.887221i \(0.347367\pi\)
−0.843147 + 0.537683i \(0.819300\pi\)
\(654\) 0 0
\(655\) 2.49859 0.439719i 0.0976281 0.0171812i
\(656\) −2.92588 + 1.68926i −0.114237 + 0.0659545i
\(657\) 0 0
\(658\) 1.67484 + 9.12200i 0.0652922 + 0.355613i
\(659\) 22.3934i 0.872324i 0.899868 + 0.436162i \(0.143663\pi\)
−0.899868 + 0.436162i \(0.856337\pi\)
\(660\) 0 0
\(661\) 22.3529 + 12.9054i 0.869426 + 0.501963i 0.867158 0.498034i \(-0.165945\pi\)
0.00226869 + 0.999997i \(0.499278\pi\)
\(662\) 0.532455 + 1.98715i 0.0206944 + 0.0772327i
\(663\) 0 0
\(664\) 7.75061 0.300782
\(665\) 34.1848 + 28.2952i 1.32563 + 1.09724i
\(666\) 0 0
\(667\) −60.9051 16.3195i −2.35826 0.631893i
\(668\) −3.87205 14.4507i −0.149814 0.559114i
\(669\) 0 0
\(670\) 1.81613 4.98466i 0.0701633 0.192574i
\(671\) 30.9141i 1.19342i
\(672\) 0 0
\(673\) −20.6481 20.6481i −0.795927 0.795927i 0.186524 0.982450i \(-0.440278\pi\)
−0.982450 + 0.186524i \(0.940278\pi\)
\(674\) 16.0554 9.26962i 0.618433 0.357052i
\(675\) 0 0
\(676\) −6.42941 + 11.1361i −0.247285 + 0.428310i
\(677\) 12.2194 45.6033i 0.469628 1.75268i −0.171441 0.985194i \(-0.554842\pi\)
0.641070 0.767483i \(-0.278491\pi\)
\(678\) 0 0
\(679\) 32.6352 + 2.62353i 1.25243 + 0.100682i
\(680\) −1.88767 2.25115i −0.0723889 0.0863275i
\(681\) 0 0
\(682\) 38.3789 10.2836i 1.46960 0.393779i
\(683\) −5.24140 + 1.40443i −0.200556 + 0.0537389i −0.357699 0.933837i \(-0.616439\pi\)
0.157142 + 0.987576i \(0.449772\pi\)
\(684\) 0 0
\(685\) 1.04481 11.8970i 0.0399202 0.454561i
\(686\) −5.17063 17.7838i −0.197416 0.678990i
\(687\) 0 0
\(688\) −3.19038 + 11.9066i −0.121632 + 0.453937i
\(689\) −1.24070 + 2.14896i −0.0472669 + 0.0818687i
\(690\) 0 0
\(691\) −6.84020 + 3.94919i −0.260213 + 0.150234i −0.624432 0.781079i \(-0.714669\pi\)
0.364219 + 0.931314i \(0.381336\pi\)
\(692\) −12.4141 12.4141i −0.471914 0.471914i
\(693\) 0 0
\(694\) 3.80158i 0.144306i
\(695\) 38.9094 + 14.1764i 1.47592 + 0.537742i
\(696\) 0 0
\(697\) −1.14886 4.28761i −0.0435162 0.162405i
\(698\) 24.6607 + 6.60782i 0.933422 + 0.250110i
\(699\) 0 0
\(700\) −11.4985 6.54104i −0.434601 0.247228i
\(701\) 16.5213 0.624002 0.312001 0.950082i \(-0.399001\pi\)
0.312001 + 0.950082i \(0.399001\pi\)
\(702\) 0 0
\(703\) 3.82956 + 14.2921i 0.144434 + 0.539037i
\(704\) 4.47905 + 2.58598i 0.168811 + 0.0974629i
\(705\) 0 0
\(706\) 29.5013i 1.11030i
\(707\) −24.0569 + 4.41697i −0.904754 + 0.166117i
\(708\) 0 0
\(709\) 17.6039 10.1636i 0.661129 0.381703i −0.131578 0.991306i \(-0.542004\pi\)
0.792707 + 0.609603i \(0.208671\pi\)
\(710\) 8.31404 + 5.82565i 0.312020 + 0.218633i
\(711\) 0 0
\(712\) 3.52269 13.1469i 0.132019 0.492700i
\(713\) 42.2714 42.2714i 1.58308 1.58308i
\(714\) 0 0
\(715\) −0.380142 + 4.32859i −0.0142165 + 0.161880i
\(716\) 0.980586 + 1.69842i 0.0366462 + 0.0634731i
\(717\) 0 0
\(718\) −5.12154 + 1.37231i −0.191134 + 0.0512142i
\(719\) 13.0472 + 22.5984i 0.486578 + 0.842778i 0.999881 0.0154296i \(-0.00491158\pi\)
−0.513303 + 0.858208i \(0.671578\pi\)
\(720\) 0 0
\(721\) 8.35912 3.96990i 0.311310 0.147847i
\(722\) 26.3491 26.3491i 0.980613 0.980613i
\(723\) 0 0
\(724\) −12.6811 + 21.9643i −0.471289 + 0.816296i
\(725\) −26.0627 + 31.0188i −0.967946 + 1.15201i
\(726\) 0 0
\(727\) −11.3764 11.3764i −0.421926 0.421926i 0.463940 0.885867i \(-0.346435\pi\)
−0.885867 + 0.463940i \(0.846435\pi\)
\(728\) 0.756989 0.644337i 0.0280559 0.0238807i
\(729\) 0 0
\(730\) −5.36875 + 14.7354i −0.198706 + 0.545381i
\(731\) −14.0256 8.09767i −0.518755 0.299503i
\(732\) 0 0
\(733\) 14.9615 + 4.00892i 0.552616 + 0.148073i 0.524312 0.851526i \(-0.324323\pi\)
0.0283041 + 0.999599i \(0.490989\pi\)
\(734\) 10.5596 0.389761
\(735\) 0 0
\(736\) 7.78160 0.286834
\(737\) −11.8527 3.17592i −0.436599 0.116986i
\(738\) 0 0
\(739\) 32.3862 + 18.6982i 1.19135 + 0.687824i 0.958612 0.284716i \(-0.0918994\pi\)
0.232734 + 0.972540i \(0.425233\pi\)
\(740\) −1.86280 3.99822i −0.0684778 0.146978i
\(741\) 0 0
\(742\) −13.3057 + 11.3256i −0.488468 + 0.415777i
\(743\) 33.9689 + 33.9689i 1.24620 + 1.24620i 0.957386 + 0.288811i \(0.0932599\pi\)
0.288811 + 0.957386i \(0.406740\pi\)
\(744\) 0 0
\(745\) 21.8009 3.83667i 0.798724 0.140565i
\(746\) −11.0048 + 19.0609i −0.402916 + 0.697871i
\(747\) 0 0
\(748\) −4.80491 + 4.80491i −0.175685 + 0.175685i
\(749\) −14.0079 + 6.65264i −0.511839 + 0.243082i
\(750\) 0 0
\(751\) 5.15430 + 8.92752i 0.188083 + 0.325770i 0.944611 0.328192i \(-0.106439\pi\)
−0.756528 + 0.653961i \(0.773106\pi\)
\(752\) −3.38598 + 0.907271i −0.123474 + 0.0330848i
\(753\) 0 0
\(754\) −1.52225 2.63661i −0.0554370 0.0960197i
\(755\) −17.3686 + 14.5642i −0.632108 + 0.530046i
\(756\) 0 0
\(757\) −3.50029 + 3.50029i −0.127220 + 0.127220i −0.767850 0.640630i \(-0.778673\pi\)
0.640630 + 0.767850i \(0.278673\pi\)
\(758\) 3.84219 14.3393i 0.139555 0.520825i
\(759\) 0 0
\(760\) −9.62484 + 13.7360i −0.349130 + 0.498259i
\(761\) 3.24761 1.87501i 0.117726 0.0679689i −0.439981 0.898007i \(-0.645015\pi\)
0.557707 + 0.830038i \(0.311681\pi\)
\(762\) 0 0
\(763\) 0.340014 0.0624282i 0.0123093 0.00226005i
\(764\) 1.81547i 0.0656815i
\(765\) 0 0
\(766\) −22.2237 12.8309i −0.802975 0.463598i
\(767\) −0.653911 2.44043i −0.0236114 0.0881188i
\(768\) 0 0
\(769\) −1.95836 −0.0706204 −0.0353102 0.999376i \(-0.511242\pi\)
−0.0353102 + 0.999376i \(0.511242\pi\)
\(770\) −12.7445 + 27.8173i −0.459281 + 1.00246i
\(771\) 0 0
\(772\) 6.71159 + 1.79837i 0.241556 + 0.0647246i
\(773\) 1.99995 + 7.46390i 0.0719331 + 0.268458i 0.992520 0.122079i \(-0.0389561\pi\)
−0.920587 + 0.390537i \(0.872289\pi\)
\(774\) 0 0
\(775\) −13.1137 36.1038i −0.471059 1.29689i
\(776\) 12.3748i 0.444228i
\(777\) 0 0
\(778\) 10.4126 + 10.4126i 0.373308 + 0.373308i
\(779\) −21.9467 + 12.6709i −0.786323 + 0.453984i
\(780\) 0 0
\(781\) 11.7406 20.3352i 0.420110 0.727652i
\(782\) −2.64612 + 9.87546i −0.0946251 + 0.353146i
\(783\) 0 0
\(784\) 6.54344 2.48664i 0.233694 0.0888086i
\(785\) 5.72159 + 0.502478i 0.204212 + 0.0179342i
\(786\) 0 0
\(787\) −22.5478 + 6.04166i −0.803741 + 0.215362i −0.637226 0.770677i \(-0.719918\pi\)
−0.166515 + 0.986039i \(0.553251\pi\)
\(788\) 0.551814 0.147858i 0.0196576 0.00526723i
\(789\) 0 0
\(790\) 26.6524 + 2.34065i 0.948251 + 0.0832766i
\(791\) 14.4678 + 1.16306i 0.514417 + 0.0413537i
\(792\) 0 0
\(793\) −0.581261 + 2.16929i −0.0206412 + 0.0770339i
\(794\) 0.672435 1.16469i 0.0238638 0.0413333i
\(795\) 0 0
\(796\) −2.49313 + 1.43941i −0.0883666 + 0.0510185i
\(797\) 17.3884 + 17.3884i 0.615928 + 0.615928i 0.944484 0.328556i \(-0.106562\pi\)
−0.328556 + 0.944484i \(0.606562\pi\)
\(798\) 0 0
\(799\) 4.60559i 0.162934i
\(800\) 2.11608 4.53014i 0.0748148 0.160165i
\(801\) 0 0
\(802\) 5.41078 + 20.1933i 0.191061 + 0.713050i
\(803\) 35.0383 + 9.38847i 1.23647 + 0.331312i
\(804\) 0 0
\(805\) 4.32042 + 45.8334i 0.152275 + 1.61541i
\(806\) 2.88647 0.101672
\(807\) 0 0
\(808\) −2.39269 8.92965i −0.0841747 0.314144i
\(809\) −35.3260 20.3955i −1.24200 0.717067i −0.272497 0.962157i \(-0.587849\pi\)
−0.969500 + 0.245089i \(0.921183\pi\)
\(810\) 0 0
\(811\) 18.7583i 0.658694i −0.944209 0.329347i \(-0.893171\pi\)
0.944209 0.329347i \(-0.106829\pi\)
\(812\) −3.87146 21.0858i −0.135862 0.739968i
\(813\) 0 0
\(814\) −8.83539 + 5.10112i −0.309680 + 0.178794i
\(815\) −14.4688 + 20.6491i −0.506821 + 0.723307i
\(816\) 0 0
\(817\) −23.9306 + 89.3104i −0.837227 + 3.12457i
\(818\) 3.57417 3.57417i 0.124968 0.124968i
\(819\) 0 0
\(820\) 5.78876 4.85409i 0.202152 0.169512i
\(821\) −11.1282 19.2747i −0.388378 0.672691i 0.603853 0.797095i \(-0.293631\pi\)
−0.992232 + 0.124405i \(0.960298\pi\)
\(822\) 0 0
\(823\) −51.4628 + 13.7894i −1.79388 + 0.480669i −0.992996 0.118150i \(-0.962304\pi\)
−0.800885 + 0.598819i \(0.795637\pi\)
\(824\) 1.74883 + 3.02906i 0.0609233 + 0.105522i
\(825\) 0 0
\(826\) 1.42560 17.7337i 0.0496029 0.617033i
\(827\) −38.5557 + 38.5557i −1.34071 + 1.34071i −0.445362 + 0.895351i \(0.646925\pi\)
−0.895351 + 0.445362i \(0.853075\pi\)
\(828\) 0 0
\(829\) −15.5028 + 26.8517i −0.538435 + 0.932597i 0.460554 + 0.887632i \(0.347651\pi\)
−0.998989 + 0.0449649i \(0.985682\pi\)
\(830\) −17.0686 + 3.00384i −0.592459 + 0.104265i
\(831\) 0 0
\(832\) 0.265680 + 0.265680i 0.00921080 + 0.00921080i
\(833\) 0.930656 + 9.14972i 0.0322453 + 0.317019i
\(834\) 0 0
\(835\) 14.1277 + 30.3230i 0.488908 + 1.04937i
\(836\) 33.5969 + 19.3972i 1.16197 + 0.670865i
\(837\) 0 0
\(838\) 26.4614 + 7.09032i 0.914095 + 0.244931i
\(839\) −45.3891 −1.56701 −0.783503 0.621389i \(-0.786569\pi\)
−0.783503 + 0.621389i \(0.786569\pi\)
\(840\) 0 0
\(841\) −36.6572 −1.26404
\(842\) −9.09729 2.43761i −0.313513 0.0840057i
\(843\) 0 0
\(844\) −9.26815 5.35097i −0.319023 0.184188i
\(845\) 9.84310 27.0159i 0.338613 0.929376i
\(846\) 0 0
\(847\) 39.2551 + 13.9751i 1.34882 + 0.480190i
\(848\) −4.66990 4.66990i −0.160365 0.160365i
\(849\) 0 0
\(850\) 5.02953 + 4.22594i 0.172512 + 0.144949i
\(851\) −7.67500 + 13.2935i −0.263096 + 0.455695i
\(852\) 0 0
\(853\) 37.3879 37.3879i 1.28014 1.28014i 0.339550 0.940588i \(-0.389725\pi\)
0.940588 0.339550i \(-0.110275\pi\)
\(854\) −8.97915 + 13.0179i −0.307260 + 0.445464i
\(855\) 0 0
\(856\) −2.93063 5.07600i −0.100167 0.173494i
\(857\) 32.2444 8.63985i 1.10145 0.295132i 0.338093 0.941113i \(-0.390218\pi\)
0.763353 + 0.645981i \(0.223552\pi\)
\(858\) 0 0
\(859\) 24.5307 + 42.4884i 0.836977 + 1.44969i 0.892411 + 0.451224i \(0.149013\pi\)
−0.0554337 + 0.998462i \(0.517654\pi\)
\(860\) 2.41136 27.4576i 0.0822267 0.936296i
\(861\) 0 0
\(862\) −6.34722 + 6.34722i −0.216187 + 0.216187i
\(863\) 9.13954 34.1092i 0.311113 1.16109i −0.616440 0.787402i \(-0.711426\pi\)
0.927554 0.373690i \(-0.121907\pi\)
\(864\) 0 0
\(865\) 32.1500 + 22.5275i 1.09313 + 0.765957i
\(866\) −13.2071 + 7.62512i −0.448795 + 0.259112i
\(867\) 0 0
\(868\) 19.1483 + 6.81692i 0.649935 + 0.231381i
\(869\) 61.8836i 2.09926i
\(870\) 0 0
\(871\) −0.772008 0.445719i −0.0261585 0.0151026i
\(872\) 0.0338176 + 0.126209i 0.00114521 + 0.00427398i
\(873\) 0 0
\(874\) 58.3689 1.97436
\(875\) 27.8573 + 9.94848i 0.941748 + 0.336320i
\(876\) 0 0
\(877\) −9.64685 2.58487i −0.325751 0.0872847i 0.0922375 0.995737i \(-0.470598\pi\)
−0.417988 + 0.908452i \(0.637265\pi\)
\(878\) −1.49951 5.59624i −0.0506059 0.188864i
\(879\) 0 0
\(880\) −10.8661 3.95900i −0.366297 0.133458i
\(881\) 55.0348i 1.85417i −0.374852 0.927085i \(-0.622306\pi\)
0.374852 0.927085i \(-0.377694\pi\)
\(882\) 0 0
\(883\) −30.2776 30.2776i −1.01892 1.01892i −0.999817 0.0191057i \(-0.993918\pi\)
−0.0191057 0.999817i \(-0.506082\pi\)
\(884\) −0.427513 + 0.246825i −0.0143788 + 0.00830162i
\(885\) 0 0
\(886\) 10.5887 18.3401i 0.355734 0.616149i
\(887\) 1.13628 4.24066i 0.0381526 0.142387i −0.944222 0.329309i \(-0.893184\pi\)
0.982375 + 0.186921i \(0.0598510\pi\)
\(888\) 0 0
\(889\) −2.72172 + 33.8567i −0.0912835 + 1.13552i
\(890\) −2.66254 + 30.3176i −0.0892484 + 1.01625i
\(891\) 0 0
\(892\) −11.5315 + 3.08987i −0.386105 + 0.103456i
\(893\) −25.3979 + 6.80533i −0.849907 + 0.227732i
\(894\) 0 0
\(895\) −2.81771 3.36027i −0.0941858 0.112322i
\(896\) 1.13502 + 2.38992i 0.0379183 + 0.0798417i
\(897\) 0 0
\(898\) −3.70617 + 13.8316i −0.123676 + 0.461567i
\(899\) 31.1246 53.9094i 1.03806 1.79798i
\(900\) 0 0
\(901\) 7.51446 4.33848i 0.250343 0.144536i
\(902\) −12.3557 12.3557i −0.411400 0.411400i
\(903\) 0 0
\(904\) 5.48597i 0.182461i
\(905\) 19.4141 53.2850i 0.645346 1.77125i
\(906\) 0 0
\(907\) −8.01591 29.9158i −0.266164 0.993337i −0.961534 0.274685i \(-0.911426\pi\)
0.695370 0.718652i \(-0.255240\pi\)
\(908\) 17.2960 + 4.63445i 0.573988 + 0.153800i
\(909\) 0 0
\(910\) −1.41734 + 1.71236i −0.0469844 + 0.0567641i
\(911\) −40.8011 −1.35180 −0.675901 0.736993i \(-0.736245\pi\)
−0.675901 + 0.736993i \(0.736245\pi\)
\(912\) 0 0
\(913\) 10.3750 + 38.7200i 0.343362 + 1.28144i
\(914\) −28.3578 16.3724i −0.937994 0.541551i
\(915\) 0 0
\(916\) 8.65885i 0.286097i
\(917\) 1.00677 2.82794i 0.0332464 0.0933869i
\(918\) 0 0
\(919\) −10.8623 + 6.27134i −0.358314 + 0.206873i −0.668341 0.743855i \(-0.732995\pi\)
0.310027 + 0.950728i \(0.399662\pi\)
\(920\) −17.1368 + 3.01585i −0.564985 + 0.0994297i
\(921\) 0 0
\(922\) 9.30423 34.7239i 0.306419 1.14357i
\(923\) 1.20621 1.20621i 0.0397028 0.0397028i
\(924\) 0 0
\(925\) 5.65186 + 8.08304i 0.185832 + 0.265769i
\(926\) −5.27514 9.13681i −0.173352 0.300254i
\(927\) 0 0
\(928\) 7.82681 2.09719i 0.256928 0.0688436i
\(929\) 15.2979 + 26.4968i 0.501909 + 0.869331i 0.999998 + 0.00220528i \(0.000701963\pi\)
−0.498089 + 0.867126i \(0.665965\pi\)
\(930\) 0 0
\(931\) 49.0816 18.6520i 1.60858 0.611295i
\(932\) −13.5460 + 13.5460i −0.443713 + 0.443713i
\(933\) 0 0
\(934\) −10.3081 + 17.8541i −0.337290 + 0.584204i
\(935\) 8.71929 12.4437i 0.285151 0.406952i
\(936\) 0 0
\(937\) 2.47704 + 2.47704i 0.0809213 + 0.0809213i 0.746409 0.665488i \(-0.231776\pi\)
−0.665488 + 0.746409i \(0.731776\pi\)
\(938\) −4.06871 4.78005i −0.132848 0.156074i
\(939\) 0 0
\(940\) 7.10507 3.31029i 0.231742 0.107970i
\(941\) 35.9162 + 20.7362i 1.17083 + 0.675981i 0.953876 0.300200i \(-0.0970533\pi\)
0.216958 + 0.976181i \(0.430387\pi\)
\(942\) 0 0
\(943\) −25.3945 6.80443i −0.826957 0.221583i
\(944\) 6.72432 0.218858
\(945\) 0 0
\(946\) −63.7531 −2.07279
\(947\) 41.5961 + 11.1457i 1.35169 + 0.362185i 0.860759 0.509012i \(-0.169989\pi\)
0.490933 + 0.871197i \(0.336656\pi\)
\(948\) 0 0
\(949\) 2.28217 + 1.31761i 0.0740824 + 0.0427715i
\(950\) 15.8725 33.9801i 0.514972 1.10246i
\(951\) 0 0
\(952\) −3.41896 + 0.627738i −0.110809 + 0.0203451i
\(953\) −10.9239 10.9239i −0.353859 0.353859i 0.507684 0.861543i \(-0.330502\pi\)
−0.861543 + 0.507684i \(0.830502\pi\)
\(954\) 0 0
\(955\) 0.703608 + 3.99808i 0.0227682 + 0.129375i
\(956\) 3.35380 5.80894i 0.108470 0.187875i
\(957\) 0 0
\(958\) 3.08582 3.08582i 0.0996983 0.0996983i
\(959\) −11.6322 8.02335i −0.375624 0.259088i
\(960\) 0 0
\(961\) 14.0091 + 24.2644i 0.451906 + 0.782723i
\(962\) −0.715909 + 0.191827i −0.0230818 + 0.00618476i
\(963\) 0 0
\(964\) −0.216283 0.374613i −0.00696600 0.0120655i
\(965\) −15.4774 1.35925i −0.498236 0.0437557i
\(966\) 0 0
\(967\) −0.946186 + 0.946186i −0.0304273 + 0.0304273i −0.722157 0.691729i \(-0.756849\pi\)
0.691729 + 0.722157i \(0.256849\pi\)
\(968\) −4.07620 + 15.2126i −0.131014 + 0.488951i
\(969\) 0 0
\(970\) −4.79599 27.2520i −0.153990 0.875009i
\(971\) −43.9590 + 25.3797i −1.41071 + 0.814474i −0.995455 0.0952305i \(-0.969641\pi\)
−0.415256 + 0.909705i \(0.636308\pi\)
\(972\) 0 0
\(973\) 37.3123 31.7596i 1.19618 1.01817i
\(974\) 23.5352i 0.754116i
\(975\) 0 0
\(976\) −5.17644 2.98862i −0.165694 0.0956633i
\(977\) −9.55940 35.6762i −0.305832 1.14138i −0.932227 0.361875i \(-0.882137\pi\)
0.626394 0.779506i \(-0.284530\pi\)
\(978\) 0 0
\(979\) 70.3938 2.24980
\(980\) −13.4464 + 8.01214i −0.429530 + 0.255938i
\(981\) 0 0
\(982\) −35.7909 9.59015i −1.14213 0.306034i
\(983\) −4.88466 18.2298i −0.155796 0.581440i −0.999036 0.0439021i \(-0.986021\pi\)
0.843239 0.537538i \(-0.180646\pi\)
\(984\) 0 0
\(985\) −1.15792 + 0.539479i −0.0368942 + 0.0171892i
\(986\) 10.6460i 0.339037i
\(987\) 0 0
\(988\) 1.99284 + 1.99284i 0.0634006 + 0.0634006i
\(989\) −83.0702 + 47.9606i −2.64148 + 1.52506i
\(990\) 0 0
\(991\) −11.1490 + 19.3107i −0.354161 + 0.613424i −0.986974 0.160880i \(-0.948567\pi\)
0.632813 + 0.774304i \(0.281900\pi\)
\(992\) −1.98833 + 7.42056i −0.0631296 + 0.235603i
\(993\) 0 0
\(994\) 10.8504 5.15307i 0.344155 0.163445i
\(995\) 4.93257 4.13615i 0.156373 0.131125i
\(996\) 0 0
\(997\) −55.9272 + 14.9857i −1.77123 + 0.474600i −0.988941 0.148311i \(-0.952616\pi\)
−0.782292 + 0.622912i \(0.785950\pi\)
\(998\) 18.5419 4.96829i 0.586934 0.157268i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.d.73.1 32
3.2 odd 2 inner 630.2.bv.d.73.8 yes 32
5.2 odd 4 inner 630.2.bv.d.577.6 yes 32
7.5 odd 6 inner 630.2.bv.d.523.6 yes 32
15.2 even 4 inner 630.2.bv.d.577.3 yes 32
21.5 even 6 inner 630.2.bv.d.523.3 yes 32
35.12 even 12 inner 630.2.bv.d.397.1 yes 32
105.47 odd 12 inner 630.2.bv.d.397.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bv.d.73.1 32 1.1 even 1 trivial
630.2.bv.d.73.8 yes 32 3.2 odd 2 inner
630.2.bv.d.397.1 yes 32 35.12 even 12 inner
630.2.bv.d.397.8 yes 32 105.47 odd 12 inner
630.2.bv.d.523.3 yes 32 21.5 even 6 inner
630.2.bv.d.523.6 yes 32 7.5 odd 6 inner
630.2.bv.d.577.3 yes 32 15.2 even 4 inner
630.2.bv.d.577.6 yes 32 5.2 odd 4 inner