Newspace parameters
Level: | \( N \) | \(=\) | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 630.bv (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.03057532734\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −2.10096 | − | 0.765474i | 0 | −2.01472 | + | 1.71490i | −0.707107 | − | 0.707107i | 0 | 1.83126 | + | 1.28316i | ||||||
73.2 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −1.78539 | + | 1.34625i | 0 | 1.03034 | − | 2.43688i | −0.707107 | − | 0.707107i | 0 | 2.07299 | − | 0.838283i | ||||||
73.3 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.316731 | − | 2.21352i | 0 | 1.51871 | + | 2.16646i | −0.707107 | − | 0.707107i | 0 | −0.878841 | + | 2.05612i | ||||||
73.4 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | 1.89659 | + | 1.18446i | 0 | 2.56375 | + | 0.653601i | −0.707107 | − | 0.707107i | 0 | −1.52540 | − | 1.63497i | ||||||
73.5 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −1.89659 | − | 1.18446i | 0 | 2.56375 | + | 0.653601i | 0.707107 | + | 0.707107i | 0 | −1.52540 | − | 1.63497i | ||||||
73.6 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.316731 | + | 2.21352i | 0 | 1.51871 | + | 2.16646i | 0.707107 | + | 0.707107i | 0 | −0.878841 | + | 2.05612i | ||||||
73.7 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 1.78539 | − | 1.34625i | 0 | 1.03034 | − | 2.43688i | 0.707107 | + | 0.707107i | 0 | 2.07299 | − | 0.838283i | ||||||
73.8 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 2.10096 | + | 0.765474i | 0 | −2.01472 | + | 1.71490i | 0.707107 | + | 0.707107i | 0 | 1.83126 | + | 1.28316i | ||||||
397.1 | −0.965926 | + | 0.258819i | 0 | 0.866025 | − | 0.500000i | −2.10096 | + | 0.765474i | 0 | −2.01472 | − | 1.71490i | −0.707107 | + | 0.707107i | 0 | 1.83126 | − | 1.28316i | ||||||
397.2 | −0.965926 | + | 0.258819i | 0 | 0.866025 | − | 0.500000i | −1.78539 | − | 1.34625i | 0 | 1.03034 | + | 2.43688i | −0.707107 | + | 0.707107i | 0 | 2.07299 | + | 0.838283i | ||||||
397.3 | −0.965926 | + | 0.258819i | 0 | 0.866025 | − | 0.500000i | 0.316731 | + | 2.21352i | 0 | 1.51871 | − | 2.16646i | −0.707107 | + | 0.707107i | 0 | −0.878841 | − | 2.05612i | ||||||
397.4 | −0.965926 | + | 0.258819i | 0 | 0.866025 | − | 0.500000i | 1.89659 | − | 1.18446i | 0 | 2.56375 | − | 0.653601i | −0.707107 | + | 0.707107i | 0 | −1.52540 | + | 1.63497i | ||||||
397.5 | 0.965926 | − | 0.258819i | 0 | 0.866025 | − | 0.500000i | −1.89659 | + | 1.18446i | 0 | 2.56375 | − | 0.653601i | 0.707107 | − | 0.707107i | 0 | −1.52540 | + | 1.63497i | ||||||
397.6 | 0.965926 | − | 0.258819i | 0 | 0.866025 | − | 0.500000i | −0.316731 | − | 2.21352i | 0 | 1.51871 | − | 2.16646i | 0.707107 | − | 0.707107i | 0 | −0.878841 | − | 2.05612i | ||||||
397.7 | 0.965926 | − | 0.258819i | 0 | 0.866025 | − | 0.500000i | 1.78539 | + | 1.34625i | 0 | 1.03034 | + | 2.43688i | 0.707107 | − | 0.707107i | 0 | 2.07299 | + | 0.838283i | ||||||
397.8 | 0.965926 | − | 0.258819i | 0 | 0.866025 | − | 0.500000i | 2.10096 | − | 0.765474i | 0 | −2.01472 | − | 1.71490i | 0.707107 | − | 0.707107i | 0 | 1.83126 | − | 1.28316i | ||||||
523.1 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | −2.07533 | + | 0.832464i | 0 | −2.16646 | − | 1.51871i | 0.707107 | + | 0.707107i | 0 | 1.34123 | + | 1.78916i | ||||||
523.2 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 0.0774781 | − | 2.23473i | 0 | −0.653601 | − | 2.56375i | 0.707107 | + | 0.707107i | 0 | −2.17863 | + | 0.503551i | ||||||
523.3 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 0.387562 | + | 2.20223i | 0 | −1.71490 | + | 2.01472i | 0.707107 | + | 0.707107i | 0 | 2.02688 | − | 0.944334i | ||||||
523.4 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 2.05858 | + | 0.873069i | 0 | 2.43688 | − | 1.03034i | 0.707107 | + | 0.707107i | 0 | 0.310520 | − | 2.21440i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.k | even | 12 | 1 | inner |
105.w | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 630.2.bv.d | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 630.2.bv.d | ✓ | 32 |
5.c | odd | 4 | 1 | inner | 630.2.bv.d | ✓ | 32 |
7.d | odd | 6 | 1 | inner | 630.2.bv.d | ✓ | 32 |
15.e | even | 4 | 1 | inner | 630.2.bv.d | ✓ | 32 |
21.g | even | 6 | 1 | inner | 630.2.bv.d | ✓ | 32 |
35.k | even | 12 | 1 | inner | 630.2.bv.d | ✓ | 32 |
105.w | odd | 12 | 1 | inner | 630.2.bv.d | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.2.bv.d | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
630.2.bv.d | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
630.2.bv.d | ✓ | 32 | 5.c | odd | 4 | 1 | inner |
630.2.bv.d | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
630.2.bv.d | ✓ | 32 | 15.e | even | 4 | 1 | inner |
630.2.bv.d | ✓ | 32 | 21.g | even | 6 | 1 | inner |
630.2.bv.d | ✓ | 32 | 35.k | even | 12 | 1 | inner |
630.2.bv.d | ✓ | 32 | 105.w | odd | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):
\( T_{11}^{16} + 74 T_{11}^{14} + 3946 T_{11}^{12} + 98192 T_{11}^{10} + 1774255 T_{11}^{8} + \cdots + 112550881 \)
|
\( T_{13}^{16} + 2754T_{13}^{12} + 1807361T_{13}^{8} + 48864T_{13}^{4} + 256 \)
|