Properties

Label 630.2.bv.d.577.3
Level $630$
Weight $2$
Character 630.577
Analytic conductor $5.031$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 577.3
Character \(\chi\) \(=\) 630.577
Dual form 630.2.bv.d.523.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(0.387562 - 2.20223i) q^{5} +(-1.71490 - 2.01472i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.02688 + 0.944334i) q^{10} +(-2.58598 + 4.47905i) q^{11} +(-0.265680 - 0.265680i) q^{13} +(2.38992 - 1.13502i) q^{14} +(0.500000 + 0.866025i) q^{16} +(0.340048 + 1.26908i) q^{17} +(-3.75044 - 6.49596i) q^{19} +(-1.43675 + 1.71340i) q^{20} +(-3.65713 - 3.65713i) q^{22} +(-7.51645 - 2.01403i) q^{23} +(-4.69959 - 1.70700i) q^{25} +(0.325390 - 0.187864i) q^{26} +(0.477786 + 2.60225i) q^{28} +8.10291i q^{29} +(-6.65309 - 3.84116i) q^{31} +(-0.965926 + 0.258819i) q^{32} -1.31385 q^{34} +(-5.10151 + 2.99577i) q^{35} +(-0.510547 + 1.90539i) q^{37} +(7.24530 - 1.94137i) q^{38} +(-1.28316 - 1.83126i) q^{40} -3.37852i q^{41} +(8.71627 - 8.71627i) q^{43} +(4.47905 - 2.58598i) q^{44} +(3.89080 - 6.73906i) q^{46} +(3.38598 + 0.907271i) q^{47} +(-1.11822 + 6.91011i) q^{49} +(2.86518 - 4.09765i) q^{50} +(0.0972457 + 0.362926i) q^{52} +(-1.70930 - 6.37920i) q^{53} +(8.86165 + 7.43083i) q^{55} +(-2.63724 - 0.212006i) q^{56} +(-7.82681 - 2.09719i) q^{58} +(3.36216 - 5.82343i) q^{59} +(-5.17644 + 2.98862i) q^{61} +(5.43223 - 5.43223i) q^{62} -1.00000i q^{64} +(-0.688055 + 0.482120i) q^{65} +(2.29172 - 0.614064i) q^{67} +(0.340048 - 1.26908i) q^{68} +(-1.57332 - 5.70304i) q^{70} -4.54008 q^{71} +(6.77465 - 1.81526i) q^{73} +(-1.70832 - 0.986302i) q^{74} +7.50089i q^{76} +(13.4588 - 2.47109i) q^{77} +(-10.3622 + 5.98260i) q^{79} +(2.10096 - 0.765474i) q^{80} +(3.26340 + 0.874425i) q^{82} +(-5.48051 - 5.48051i) q^{83} +(2.92659 - 0.257017i) q^{85} +(6.16333 + 10.6752i) q^{86} +(1.33860 + 4.99573i) q^{88} +(6.80532 + 11.7872i) q^{89} +(-0.0796568 + 0.990888i) q^{91} +(5.50242 + 5.50242i) q^{92} +(-1.75271 + 3.03579i) q^{94} +(-15.7591 + 5.74173i) q^{95} +(8.75027 - 8.75027i) q^{97} +(-6.38523 - 2.86859i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{10} + 16 q^{16} + 8 q^{22} + 20 q^{28} + 48 q^{31} + 32 q^{37} + 80 q^{43} + 8 q^{46} - 28 q^{58} + 48 q^{61} + 16 q^{67} - 60 q^{70} - 24 q^{73} + 48 q^{82} - 144 q^{85} + 4 q^{88}+ \cdots - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 0.387562 2.20223i 0.173323 0.984865i
\(6\) 0 0
\(7\) −1.71490 2.01472i −0.648172 0.761494i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 2.02688 + 0.944334i 0.640955 + 0.298625i
\(11\) −2.58598 + 4.47905i −0.779703 + 1.35049i 0.152410 + 0.988317i \(0.451297\pi\)
−0.932113 + 0.362168i \(0.882037\pi\)
\(12\) 0 0
\(13\) −0.265680 0.265680i −0.0736864 0.0736864i 0.669303 0.742989i \(-0.266593\pi\)
−0.742989 + 0.669303i \(0.766593\pi\)
\(14\) 2.38992 1.13502i 0.638734 0.303347i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 0.340048 + 1.26908i 0.0824739 + 0.307797i 0.994824 0.101615i \(-0.0324008\pi\)
−0.912350 + 0.409411i \(0.865734\pi\)
\(18\) 0 0
\(19\) −3.75044 6.49596i −0.860411 1.49028i −0.871533 0.490337i \(-0.836874\pi\)
0.0111223 0.999938i \(-0.496460\pi\)
\(20\) −1.43675 + 1.71340i −0.321267 + 0.383128i
\(21\) 0 0
\(22\) −3.65713 3.65713i −0.779703 0.779703i
\(23\) −7.51645 2.01403i −1.56729 0.419953i −0.632326 0.774702i \(-0.717900\pi\)
−0.934962 + 0.354749i \(0.884566\pi\)
\(24\) 0 0
\(25\) −4.69959 1.70700i −0.939918 0.341400i
\(26\) 0.325390 0.187864i 0.0638143 0.0368432i
\(27\) 0 0
\(28\) 0.477786 + 2.60225i 0.0902931 + 0.491780i
\(29\) 8.10291i 1.50467i 0.658779 + 0.752337i \(0.271073\pi\)
−0.658779 + 0.752337i \(0.728927\pi\)
\(30\) 0 0
\(31\) −6.65309 3.84116i −1.19493 0.689893i −0.235510 0.971872i \(-0.575676\pi\)
−0.959421 + 0.281979i \(0.909009\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −1.31385 −0.225323
\(35\) −5.10151 + 2.99577i −0.862312 + 0.506377i
\(36\) 0 0
\(37\) −0.510547 + 1.90539i −0.0839334 + 0.313244i −0.995110 0.0987721i \(-0.968509\pi\)
0.911177 + 0.412016i \(0.135175\pi\)
\(38\) 7.24530 1.94137i 1.17534 0.314932i
\(39\) 0 0
\(40\) −1.28316 1.83126i −0.202885 0.289547i
\(41\) 3.37852i 0.527636i −0.964572 0.263818i \(-0.915018\pi\)
0.964572 0.263818i \(-0.0849818\pi\)
\(42\) 0 0
\(43\) 8.71627 8.71627i 1.32922 1.32922i 0.423166 0.906052i \(-0.360919\pi\)
0.906052 0.423166i \(-0.139081\pi\)
\(44\) 4.47905 2.58598i 0.675243 0.389852i
\(45\) 0 0
\(46\) 3.89080 6.73906i 0.573667 0.993620i
\(47\) 3.38598 + 0.907271i 0.493896 + 0.132339i 0.497166 0.867656i \(-0.334374\pi\)
−0.00326972 + 0.999995i \(0.501041\pi\)
\(48\) 0 0
\(49\) −1.11822 + 6.91011i −0.159746 + 0.987158i
\(50\) 2.86518 4.09765i 0.405197 0.579496i
\(51\) 0 0
\(52\) 0.0972457 + 0.362926i 0.0134856 + 0.0503288i
\(53\) −1.70930 6.37920i −0.234791 0.876251i −0.978243 0.207462i \(-0.933480\pi\)
0.743452 0.668789i \(-0.233187\pi\)
\(54\) 0 0
\(55\) 8.86165 + 7.43083i 1.19491 + 1.00197i
\(56\) −2.63724 0.212006i −0.352416 0.0283305i
\(57\) 0 0
\(58\) −7.82681 2.09719i −1.02771 0.275374i
\(59\) 3.36216 5.82343i 0.437716 0.758146i −0.559797 0.828630i \(-0.689121\pi\)
0.997513 + 0.0704836i \(0.0224542\pi\)
\(60\) 0 0
\(61\) −5.17644 + 2.98862i −0.662775 + 0.382653i −0.793334 0.608787i \(-0.791656\pi\)
0.130558 + 0.991441i \(0.458323\pi\)
\(62\) 5.43223 5.43223i 0.689893 0.689893i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.688055 + 0.482120i −0.0853427 + 0.0597996i
\(66\) 0 0
\(67\) 2.29172 0.614064i 0.279978 0.0750198i −0.116098 0.993238i \(-0.537039\pi\)
0.396075 + 0.918218i \(0.370372\pi\)
\(68\) 0.340048 1.26908i 0.0412369 0.153898i
\(69\) 0 0
\(70\) −1.57332 5.70304i −0.188048 0.681644i
\(71\) −4.54008 −0.538808 −0.269404 0.963027i \(-0.586827\pi\)
−0.269404 + 0.963027i \(0.586827\pi\)
\(72\) 0 0
\(73\) 6.77465 1.81526i 0.792913 0.212460i 0.160443 0.987045i \(-0.448708\pi\)
0.632470 + 0.774585i \(0.282041\pi\)
\(74\) −1.70832 0.986302i −0.198589 0.114655i
\(75\) 0 0
\(76\) 7.50089i 0.860411i
\(77\) 13.4588 2.47109i 1.53377 0.281607i
\(78\) 0 0
\(79\) −10.3622 + 5.98260i −1.16583 + 0.673095i −0.952695 0.303927i \(-0.901702\pi\)
−0.213140 + 0.977022i \(0.568369\pi\)
\(80\) 2.10096 0.765474i 0.234895 0.0855826i
\(81\) 0 0
\(82\) 3.26340 + 0.874425i 0.360382 + 0.0965641i
\(83\) −5.48051 5.48051i −0.601564 0.601564i 0.339163 0.940727i \(-0.389856\pi\)
−0.940727 + 0.339163i \(0.889856\pi\)
\(84\) 0 0
\(85\) 2.92659 0.257017i 0.317433 0.0278774i
\(86\) 6.16333 + 10.6752i 0.664609 + 1.15114i
\(87\) 0 0
\(88\) 1.33860 + 4.99573i 0.142696 + 0.532547i
\(89\) 6.80532 + 11.7872i 0.721363 + 1.24944i 0.960454 + 0.278440i \(0.0898173\pi\)
−0.239091 + 0.970997i \(0.576849\pi\)
\(90\) 0 0
\(91\) −0.0796568 + 0.990888i −0.00835031 + 0.103873i
\(92\) 5.50242 + 5.50242i 0.573667 + 0.573667i
\(93\) 0 0
\(94\) −1.75271 + 3.03579i −0.180778 + 0.313117i
\(95\) −15.7591 + 5.74173i −1.61685 + 0.589089i
\(96\) 0 0
\(97\) 8.75027 8.75027i 0.888456 0.888456i −0.105919 0.994375i \(-0.533778\pi\)
0.994375 + 0.105919i \(0.0337785\pi\)
\(98\) −6.38523 2.86859i −0.645006 0.289771i
\(99\) 0 0
\(100\) 3.21647 + 3.82810i 0.321647 + 0.382810i
\(101\) −8.00611 4.62233i −0.796638 0.459939i 0.0456565 0.998957i \(-0.485462\pi\)
−0.842294 + 0.539018i \(0.818795\pi\)
\(102\) 0 0
\(103\) −0.905259 + 3.37847i −0.0891978 + 0.332891i −0.996076 0.0885021i \(-0.971792\pi\)
0.906878 + 0.421393i \(0.138459\pi\)
\(104\) −0.375729 −0.0368432
\(105\) 0 0
\(106\) 6.60424 0.641460
\(107\) 1.51700 5.66154i 0.146654 0.547322i −0.853022 0.521875i \(-0.825233\pi\)
0.999676 0.0254463i \(-0.00810068\pi\)
\(108\) 0 0
\(109\) 0.113156 + 0.0653306i 0.0108384 + 0.00625754i 0.505409 0.862880i \(-0.331341\pi\)
−0.494571 + 0.869137i \(0.664675\pi\)
\(110\) −9.47119 + 6.63646i −0.903043 + 0.632762i
\(111\) 0 0
\(112\) 0.887351 2.49251i 0.0838468 0.235520i
\(113\) 3.87916 3.87916i 0.364921 0.364921i −0.500700 0.865621i \(-0.666924\pi\)
0.865621 + 0.500700i \(0.166924\pi\)
\(114\) 0 0
\(115\) −7.34843 + 15.7723i −0.685245 + 1.47078i
\(116\) 4.05146 7.01733i 0.376168 0.651543i
\(117\) 0 0
\(118\) 4.75481 + 4.75481i 0.437716 + 0.437716i
\(119\) 1.97369 2.86145i 0.180928 0.262309i
\(120\) 0 0
\(121\) −7.87461 13.6392i −0.715874 1.23993i
\(122\) −1.54702 5.77357i −0.140061 0.522714i
\(123\) 0 0
\(124\) 3.84116 + 6.65309i 0.344947 + 0.597465i
\(125\) −5.58058 + 9.68799i −0.499142 + 0.866520i
\(126\) 0 0
\(127\) 9.07777 + 9.07777i 0.805522 + 0.805522i 0.983952 0.178431i \(-0.0571021\pi\)
−0.178431 + 0.983952i \(0.557102\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) −0.287610 0.789392i −0.0252251 0.0692343i
\(131\) 0.982572 0.567288i 0.0858477 0.0495642i −0.456462 0.889743i \(-0.650883\pi\)
0.542309 + 0.840179i \(0.317550\pi\)
\(132\) 0 0
\(133\) −6.65592 + 18.6960i −0.577142 + 1.62115i
\(134\) 2.37256i 0.204958i
\(135\) 0 0
\(136\) 1.13782 + 0.656923i 0.0975676 + 0.0563307i
\(137\) 5.15899 1.38235i 0.440762 0.118102i −0.0316115 0.999500i \(-0.510064\pi\)
0.472374 + 0.881398i \(0.343397\pi\)
\(138\) 0 0
\(139\) 18.5198 1.57083 0.785414 0.618970i \(-0.212450\pi\)
0.785414 + 0.618970i \(0.212450\pi\)
\(140\) 5.91592 0.0436585i 0.499986 0.00368982i
\(141\) 0 0
\(142\) 1.17506 4.38538i 0.0986087 0.368013i
\(143\) 1.87704 0.502951i 0.156966 0.0420589i
\(144\) 0 0
\(145\) 17.8444 + 3.14038i 1.48190 + 0.260795i
\(146\) 7.01363i 0.580452i
\(147\) 0 0
\(148\) 1.39484 1.39484i 0.114655 0.114655i
\(149\) −8.57321 + 4.94975i −0.702345 + 0.405499i −0.808220 0.588880i \(-0.799569\pi\)
0.105875 + 0.994379i \(0.466236\pi\)
\(150\) 0 0
\(151\) 5.06845 8.77882i 0.412465 0.714410i −0.582694 0.812692i \(-0.698001\pi\)
0.995159 + 0.0982818i \(0.0313347\pi\)
\(152\) −7.24530 1.94137i −0.587671 0.157466i
\(153\) 0 0
\(154\) −1.09649 + 13.6397i −0.0883577 + 1.09912i
\(155\) −11.0376 + 13.1629i −0.886561 + 1.05727i
\(156\) 0 0
\(157\) −0.664809 2.48110i −0.0530575 0.198013i 0.934310 0.356463i \(-0.116017\pi\)
−0.987367 + 0.158449i \(0.949351\pi\)
\(158\) −3.09682 11.5575i −0.246370 0.919465i
\(159\) 0 0
\(160\) 0.195622 + 2.22749i 0.0154652 + 0.176099i
\(161\) 8.83226 + 18.5974i 0.696080 + 1.46568i
\(162\) 0 0
\(163\) −10.8917 2.91842i −0.853104 0.228589i −0.194337 0.980935i \(-0.562255\pi\)
−0.658768 + 0.752346i \(0.728922\pi\)
\(164\) −1.68926 + 2.92588i −0.131909 + 0.228473i
\(165\) 0 0
\(166\) 6.71223 3.87531i 0.520970 0.300782i
\(167\) −10.5786 + 10.5786i −0.818599 + 0.818599i −0.985905 0.167306i \(-0.946493\pi\)
0.167306 + 0.985905i \(0.446493\pi\)
\(168\) 0 0
\(169\) 12.8588i 0.989141i
\(170\) −0.509197 + 2.89339i −0.0390536 + 0.221913i
\(171\) 0 0
\(172\) −11.9066 + 3.19038i −0.907873 + 0.243264i
\(173\) 4.54389 16.9580i 0.345465 1.28929i −0.546602 0.837392i \(-0.684079\pi\)
0.892068 0.451902i \(-0.149254\pi\)
\(174\) 0 0
\(175\) 4.62021 + 12.3957i 0.349255 + 0.937028i
\(176\) −5.17197 −0.389852
\(177\) 0 0
\(178\) −13.1469 + 3.52269i −0.985400 + 0.264037i
\(179\) 1.69842 + 0.980586i 0.126946 + 0.0732924i 0.562128 0.827050i \(-0.309983\pi\)
−0.435182 + 0.900342i \(0.643316\pi\)
\(180\) 0 0
\(181\) 25.3622i 1.88515i 0.333988 + 0.942577i \(0.391606\pi\)
−0.333988 + 0.942577i \(0.608394\pi\)
\(182\) −0.936507 0.333403i −0.0694185 0.0247135i
\(183\) 0 0
\(184\) −6.73906 + 3.89080i −0.496810 + 0.286834i
\(185\) 3.99822 + 1.86280i 0.293955 + 0.136956i
\(186\) 0 0
\(187\) −6.56363 1.75872i −0.479980 0.128610i
\(188\) −2.47871 2.47871i −0.180778 0.180778i
\(189\) 0 0
\(190\) −1.46733 16.7082i −0.106452 1.21214i
\(191\) 0.907736 + 1.57224i 0.0656815 + 0.113764i 0.896996 0.442039i \(-0.145745\pi\)
−0.831315 + 0.555802i \(0.812411\pi\)
\(192\) 0 0
\(193\) −1.79837 6.71159i −0.129449 0.483111i 0.870510 0.492151i \(-0.163789\pi\)
−0.999959 + 0.00903978i \(0.997123\pi\)
\(194\) 6.18738 + 10.7169i 0.444228 + 0.769425i
\(195\) 0 0
\(196\) 4.42346 5.42522i 0.315962 0.387515i
\(197\) −0.403956 0.403956i −0.0287807 0.0287807i 0.692570 0.721351i \(-0.256478\pi\)
−0.721351 + 0.692570i \(0.756478\pi\)
\(198\) 0 0
\(199\) 1.43941 2.49313i 0.102037 0.176733i −0.810487 0.585757i \(-0.800797\pi\)
0.912524 + 0.409024i \(0.134131\pi\)
\(200\) −4.53014 + 2.11608i −0.320329 + 0.149630i
\(201\) 0 0
\(202\) 6.53696 6.53696i 0.459939 0.459939i
\(203\) 16.3251 13.8957i 1.14580 0.975287i
\(204\) 0 0
\(205\) −7.44026 1.30939i −0.519650 0.0914515i
\(206\) −3.02906 1.74883i −0.211044 0.121847i
\(207\) 0 0
\(208\) 0.0972457 0.362926i 0.00674278 0.0251644i
\(209\) 38.7943 2.68346
\(210\) 0 0
\(211\) −10.7019 −0.736752 −0.368376 0.929677i \(-0.620086\pi\)
−0.368376 + 0.929677i \(0.620086\pi\)
\(212\) −1.70930 + 6.37920i −0.117395 + 0.438126i
\(213\) 0 0
\(214\) 5.07600 + 2.93063i 0.346988 + 0.200334i
\(215\) −15.8171 22.5733i −1.07872 1.53948i
\(216\) 0 0
\(217\) 3.67051 + 19.9914i 0.249171 + 1.35710i
\(218\) −0.0923914 + 0.0923914i −0.00625754 + 0.00625754i
\(219\) 0 0
\(220\) −3.95900 10.8661i −0.266916 0.732593i
\(221\) 0.246825 0.427513i 0.0166032 0.0287576i
\(222\) 0 0
\(223\) 8.44168 + 8.44168i 0.565296 + 0.565296i 0.930807 0.365511i \(-0.119106\pi\)
−0.365511 + 0.930807i \(0.619106\pi\)
\(224\) 2.17792 + 1.50222i 0.145518 + 0.100372i
\(225\) 0 0
\(226\) 2.74298 + 4.75099i 0.182461 + 0.316031i
\(227\) −4.63445 17.2960i −0.307599 1.14798i −0.930685 0.365823i \(-0.880788\pi\)
0.623085 0.782154i \(-0.285879\pi\)
\(228\) 0 0
\(229\) −4.32943 7.49879i −0.286097 0.495534i 0.686778 0.726867i \(-0.259024\pi\)
−0.972875 + 0.231334i \(0.925691\pi\)
\(230\) −13.3330 11.1802i −0.879152 0.737202i
\(231\) 0 0
\(232\) 5.72963 + 5.72963i 0.376168 + 0.376168i
\(233\) −18.5041 4.95817i −1.21225 0.324820i −0.404603 0.914492i \(-0.632590\pi\)
−0.807643 + 0.589672i \(0.799257\pi\)
\(234\) 0 0
\(235\) 3.31029 7.10507i 0.215940 0.463483i
\(236\) −5.82343 + 3.36216i −0.379073 + 0.218858i
\(237\) 0 0
\(238\) 2.25312 + 2.64704i 0.146048 + 0.171582i
\(239\) 6.70759i 0.433878i −0.976185 0.216939i \(-0.930393\pi\)
0.976185 0.216939i \(-0.0696073\pi\)
\(240\) 0 0
\(241\) −0.374613 0.216283i −0.0241309 0.0139320i 0.487886 0.872907i \(-0.337768\pi\)
−0.512017 + 0.858975i \(0.671102\pi\)
\(242\) 15.2126 4.07620i 0.977902 0.262028i
\(243\) 0 0
\(244\) 5.97724 0.382653
\(245\) 14.7842 + 5.14068i 0.944530 + 0.328426i
\(246\) 0 0
\(247\) −0.729429 + 2.72227i −0.0464125 + 0.173214i
\(248\) −7.42056 + 1.98833i −0.471206 + 0.126259i
\(249\) 0 0
\(250\) −7.91352 7.89786i −0.500495 0.499505i
\(251\) 19.4059i 1.22489i 0.790513 + 0.612446i \(0.209814\pi\)
−0.790513 + 0.612446i \(0.790186\pi\)
\(252\) 0 0
\(253\) 28.4583 28.4583i 1.78916 1.78916i
\(254\) −11.1179 + 6.41895i −0.697602 + 0.402761i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 18.0244 + 4.82963i 1.12433 + 0.301264i 0.772636 0.634849i \(-0.218938\pi\)
0.351698 + 0.936114i \(0.385604\pi\)
\(258\) 0 0
\(259\) 4.71437 2.23894i 0.292937 0.139121i
\(260\) 0.836933 0.0735006i 0.0519044 0.00455831i
\(261\) 0 0
\(262\) 0.293650 + 1.09592i 0.0181418 + 0.0677060i
\(263\) 1.76101 + 6.57217i 0.108588 + 0.405257i 0.998728 0.0504316i \(-0.0160597\pi\)
−0.890139 + 0.455689i \(0.849393\pi\)
\(264\) 0 0
\(265\) −14.7109 + 1.29193i −0.903684 + 0.0793627i
\(266\) −16.3363 11.2680i −1.00164 0.690886i
\(267\) 0 0
\(268\) −2.29172 0.614064i −0.139989 0.0375099i
\(269\) −3.23386 + 5.60121i −0.197172 + 0.341512i −0.947610 0.319428i \(-0.896509\pi\)
0.750438 + 0.660940i \(0.229842\pi\)
\(270\) 0 0
\(271\) 11.5028 6.64116i 0.698747 0.403422i −0.108134 0.994136i \(-0.534487\pi\)
0.806881 + 0.590715i \(0.201154\pi\)
\(272\) −0.929030 + 0.929030i −0.0563307 + 0.0563307i
\(273\) 0 0
\(274\) 5.34098i 0.322660i
\(275\) 19.7988 16.6355i 1.19391 1.00316i
\(276\) 0 0
\(277\) −3.10859 + 0.832945i −0.186777 + 0.0500468i −0.350995 0.936377i \(-0.614157\pi\)
0.164218 + 0.986424i \(0.447490\pi\)
\(278\) −4.79328 + 17.8888i −0.287482 + 1.07290i
\(279\) 0 0
\(280\) −1.48898 + 5.72564i −0.0889837 + 0.342172i
\(281\) 4.88199 0.291235 0.145618 0.989341i \(-0.453483\pi\)
0.145618 + 0.989341i \(0.453483\pi\)
\(282\) 0 0
\(283\) −11.7546 + 3.14962i −0.698736 + 0.187226i −0.590664 0.806917i \(-0.701134\pi\)
−0.108071 + 0.994143i \(0.534468\pi\)
\(284\) 3.93182 + 2.27004i 0.233311 + 0.134702i
\(285\) 0 0
\(286\) 1.94325i 0.114907i
\(287\) −6.80678 + 5.79383i −0.401792 + 0.341999i
\(288\) 0 0
\(289\) 13.2275 7.63690i 0.778089 0.449230i
\(290\) −7.65186 + 16.4236i −0.449333 + 0.964428i
\(291\) 0 0
\(292\) −6.77465 1.81526i −0.396456 0.106230i
\(293\) −3.88255 3.88255i −0.226821 0.226821i 0.584542 0.811363i \(-0.301274\pi\)
−0.811363 + 0.584542i \(0.801274\pi\)
\(294\) 0 0
\(295\) −11.5215 9.66117i −0.670805 0.562495i
\(296\) 0.986302 + 1.70832i 0.0573276 + 0.0992943i
\(297\) 0 0
\(298\) −2.56218 9.56218i −0.148423 0.553922i
\(299\) 1.46188 + 2.53206i 0.0845429 + 0.146433i
\(300\) 0 0
\(301\) −32.5084 2.61333i −1.87375 0.150630i
\(302\) 7.16787 + 7.16787i 0.412465 + 0.412465i
\(303\) 0 0
\(304\) 3.75044 6.49596i 0.215103 0.372569i
\(305\) 4.57542 + 12.5580i 0.261988 + 0.719067i
\(306\) 0 0
\(307\) −8.99757 + 8.99757i −0.513519 + 0.513519i −0.915603 0.402084i \(-0.868286\pi\)
0.402084 + 0.915603i \(0.368286\pi\)
\(308\) −12.8912 4.58935i −0.734543 0.261502i
\(309\) 0 0
\(310\) −9.85766 14.0683i −0.559877 0.799026i
\(311\) −18.6303 10.7562i −1.05643 0.609929i −0.131985 0.991252i \(-0.542135\pi\)
−0.924442 + 0.381323i \(0.875469\pi\)
\(312\) 0 0
\(313\) 3.69885 13.8043i 0.209071 0.780265i −0.779099 0.626901i \(-0.784323\pi\)
0.988170 0.153363i \(-0.0490105\pi\)
\(314\) 2.56862 0.144956
\(315\) 0 0
\(316\) 11.9652 0.673095
\(317\) 5.24563 19.5770i 0.294624 1.09955i −0.646891 0.762582i \(-0.723931\pi\)
0.941515 0.336970i \(-0.109402\pi\)
\(318\) 0 0
\(319\) −36.2934 20.9540i −2.03204 1.17320i
\(320\) −2.20223 0.387562i −0.123108 0.0216654i
\(321\) 0 0
\(322\) −20.2497 + 3.71794i −1.12847 + 0.207193i
\(323\) 6.96855 6.96855i 0.387740 0.387740i
\(324\) 0 0
\(325\) 0.795073 + 1.70210i 0.0441027 + 0.0944157i
\(326\) 5.63796 9.76524i 0.312258 0.540847i
\(327\) 0 0
\(328\) −2.38897 2.38897i −0.131909 0.131909i
\(329\) −3.97872 8.37769i −0.219354 0.461877i
\(330\) 0 0
\(331\) −1.02862 1.78163i −0.0565383 0.0979271i 0.836371 0.548164i \(-0.184673\pi\)
−0.892909 + 0.450237i \(0.851340\pi\)
\(332\) 2.00601 + 7.48652i 0.110094 + 0.410876i
\(333\) 0 0
\(334\) −7.48023 12.9561i −0.409300 0.708928i
\(335\) −0.464124 5.28486i −0.0253578 0.288743i
\(336\) 0 0
\(337\) −13.1092 13.1092i −0.714105 0.714105i 0.253287 0.967391i \(-0.418488\pi\)
−0.967391 + 0.253287i \(0.918488\pi\)
\(338\) 12.4207 + 3.32811i 0.675596 + 0.181025i
\(339\) 0 0
\(340\) −2.66301 1.24071i −0.144422 0.0672869i
\(341\) 34.4096 19.8664i 1.86338 1.07582i
\(342\) 0 0
\(343\) 15.8396 9.59724i 0.855258 0.518202i
\(344\) 12.3267i 0.664609i
\(345\) 0 0
\(346\) 15.2041 + 8.77812i 0.817380 + 0.471914i
\(347\) 3.67205 0.983922i 0.197126 0.0528197i −0.158905 0.987294i \(-0.550796\pi\)
0.356031 + 0.934474i \(0.384130\pi\)
\(348\) 0 0
\(349\) 25.5306 1.36662 0.683312 0.730126i \(-0.260539\pi\)
0.683312 + 0.730126i \(0.260539\pi\)
\(350\) −13.1691 + 1.25453i −0.703920 + 0.0670574i
\(351\) 0 0
\(352\) 1.33860 4.99573i 0.0713478 0.266274i
\(353\) 28.4961 7.63550i 1.51669 0.406396i 0.598041 0.801466i \(-0.295946\pi\)
0.918651 + 0.395069i \(0.129279\pi\)
\(354\) 0 0
\(355\) −1.75956 + 9.99827i −0.0933878 + 0.530653i
\(356\) 13.6106i 0.721363i
\(357\) 0 0
\(358\) −1.38676 + 1.38676i −0.0732924 + 0.0732924i
\(359\) 4.59185 2.65110i 0.242348 0.139920i −0.373907 0.927466i \(-0.621982\pi\)
0.616256 + 0.787546i \(0.288649\pi\)
\(360\) 0 0
\(361\) −18.6316 + 32.2710i −0.980613 + 1.69847i
\(362\) −24.4980 6.56421i −1.28758 0.345007i
\(363\) 0 0
\(364\) 0.564429 0.818305i 0.0295841 0.0428909i
\(365\) −1.37202 15.6228i −0.0718147 0.817736i
\(366\) 0 0
\(367\) −2.73302 10.1998i −0.142662 0.532423i −0.999848 0.0174162i \(-0.994456\pi\)
0.857186 0.515007i \(-0.172211\pi\)
\(368\) −2.01403 7.51645i −0.104988 0.391822i
\(369\) 0 0
\(370\) −2.83414 + 3.37986i −0.147340 + 0.175711i
\(371\) −9.92105 + 14.3835i −0.515075 + 0.746753i
\(372\) 0 0
\(373\) −21.2597 5.69653i −1.10079 0.294955i −0.337702 0.941253i \(-0.609650\pi\)
−0.763085 + 0.646298i \(0.776316\pi\)
\(374\) 3.39758 5.88479i 0.175685 0.304295i
\(375\) 0 0
\(376\) 3.03579 1.75271i 0.156559 0.0903892i
\(377\) 2.15278 2.15278i 0.110874 0.110874i
\(378\) 0 0
\(379\) 14.8451i 0.762541i −0.924464 0.381270i \(-0.875487\pi\)
0.924464 0.381270i \(-0.124513\pi\)
\(380\) 16.5186 + 2.90706i 0.847388 + 0.149129i
\(381\) 0 0
\(382\) −1.75361 + 0.469879i −0.0897225 + 0.0240411i
\(383\) −6.64174 + 24.7873i −0.339377 + 1.26657i 0.559668 + 0.828717i \(0.310929\pi\)
−0.899045 + 0.437856i \(0.855738\pi\)
\(384\) 0 0
\(385\) −0.225800 30.5969i −0.0115078 1.55936i
\(386\) 6.94835 0.353662
\(387\) 0 0
\(388\) −11.9531 + 3.20282i −0.606827 + 0.162599i
\(389\) −12.7527 7.36279i −0.646589 0.373308i 0.140559 0.990072i \(-0.455110\pi\)
−0.787148 + 0.616764i \(0.788443\pi\)
\(390\) 0 0
\(391\) 10.2238i 0.517041i
\(392\) 4.09548 + 5.67689i 0.206853 + 0.286726i
\(393\) 0 0
\(394\) 0.494743 0.285640i 0.0249248 0.0143903i
\(395\) 9.15905 + 25.1385i 0.460842 + 1.26485i
\(396\) 0 0
\(397\) −1.29904 0.348078i −0.0651971 0.0174695i 0.226073 0.974110i \(-0.427411\pi\)
−0.291270 + 0.956641i \(0.594078\pi\)
\(398\) 2.03563 + 2.03563i 0.102037 + 0.102037i
\(399\) 0 0
\(400\) −0.871492 4.92346i −0.0435746 0.246173i
\(401\) 10.4528 + 18.1048i 0.521989 + 0.904111i 0.999673 + 0.0255795i \(0.00814309\pi\)
−0.477684 + 0.878532i \(0.658524\pi\)
\(402\) 0 0
\(403\) 0.747073 + 2.78812i 0.0372144 + 0.138886i
\(404\) 4.62233 + 8.00611i 0.229969 + 0.398319i
\(405\) 0 0
\(406\) 9.19696 + 19.3653i 0.456437 + 0.961086i
\(407\) −7.21407 7.21407i −0.357588 0.357588i
\(408\) 0 0
\(409\) 2.52732 4.37744i 0.124968 0.216451i −0.796753 0.604306i \(-0.793451\pi\)
0.921720 + 0.387855i \(0.126784\pi\)
\(410\) 3.19045 6.84785i 0.157565 0.338191i
\(411\) 0 0
\(412\) 2.47321 2.47321i 0.121847 0.121847i
\(413\) −17.4984 + 3.21279i −0.861039 + 0.158091i
\(414\) 0 0
\(415\) −14.1934 + 9.94528i −0.696724 + 0.488194i
\(416\) 0.325390 + 0.187864i 0.0159536 + 0.00921080i
\(417\) 0 0
\(418\) −10.0407 + 37.4724i −0.491107 + 1.83284i
\(419\) −27.3949 −1.33833 −0.669164 0.743115i \(-0.733348\pi\)
−0.669164 + 0.743115i \(0.733348\pi\)
\(420\) 0 0
\(421\) 9.41821 0.459015 0.229508 0.973307i \(-0.426288\pi\)
0.229508 + 0.973307i \(0.426288\pi\)
\(422\) 2.76987 10.3373i 0.134835 0.503211i
\(423\) 0 0
\(424\) −5.71944 3.30212i −0.277760 0.160365i
\(425\) 0.568225 6.54461i 0.0275630 0.317460i
\(426\) 0 0
\(427\) 14.8983 + 5.30391i 0.720980 + 0.256674i
\(428\) −4.14453 + 4.14453i −0.200334 + 0.200334i
\(429\) 0 0
\(430\) 25.8979 9.43574i 1.24891 0.455032i
\(431\) −4.48816 + 7.77373i −0.216187 + 0.374447i −0.953639 0.300952i \(-0.902695\pi\)
0.737452 + 0.675400i \(0.236029\pi\)
\(432\) 0 0
\(433\) −10.7835 10.7835i −0.518224 0.518224i 0.398810 0.917034i \(-0.369423\pi\)
−0.917034 + 0.398810i \(0.869423\pi\)
\(434\) −20.2602 1.62870i −0.972519 0.0781802i
\(435\) 0 0
\(436\) −0.0653306 0.113156i −0.00312877 0.00541919i
\(437\) 15.1070 + 56.3800i 0.722665 + 2.69702i
\(438\) 0 0
\(439\) −2.89682 5.01745i −0.138258 0.239470i 0.788579 0.614933i \(-0.210817\pi\)
−0.926837 + 0.375463i \(0.877484\pi\)
\(440\) 11.5205 1.01175i 0.549219 0.0482332i
\(441\) 0 0
\(442\) 0.349063 + 0.349063i 0.0166032 + 0.0166032i
\(443\) −20.4558 5.48110i −0.971882 0.260415i −0.262260 0.964997i \(-0.584468\pi\)
−0.709622 + 0.704582i \(0.751134\pi\)
\(444\) 0 0
\(445\) 28.5955 10.4186i 1.35556 0.493889i
\(446\) −10.3389 + 5.96917i −0.489561 + 0.282648i
\(447\) 0 0
\(448\) −2.01472 + 1.71490i −0.0951868 + 0.0810215i
\(449\) 14.3195i 0.675780i −0.941186 0.337890i \(-0.890287\pi\)
0.941186 0.337890i \(-0.109713\pi\)
\(450\) 0 0
\(451\) 15.1326 + 8.73679i 0.712565 + 0.411400i
\(452\) −5.29904 + 1.41987i −0.249246 + 0.0667852i
\(453\) 0 0
\(454\) 17.9062 0.840377
\(455\) 2.15129 + 0.559453i 0.100854 + 0.0262276i
\(456\) 0 0
\(457\) −8.47498 + 31.6291i −0.396443 + 1.47954i 0.422866 + 0.906192i \(0.361024\pi\)
−0.819309 + 0.573353i \(0.805643\pi\)
\(458\) 8.36381 2.24108i 0.390815 0.104719i
\(459\) 0 0
\(460\) 14.2501 9.98504i 0.664414 0.465555i
\(461\) 35.9488i 1.67430i −0.546972 0.837151i \(-0.684219\pi\)
0.546972 0.837151i \(-0.315781\pi\)
\(462\) 0 0
\(463\) 7.46017 7.46017i 0.346704 0.346704i −0.512177 0.858880i \(-0.671161\pi\)
0.858880 + 0.512177i \(0.171161\pi\)
\(464\) −7.01733 + 4.05146i −0.325771 + 0.188084i
\(465\) 0 0
\(466\) 9.57844 16.5904i 0.443713 0.768533i
\(467\) −19.9137 5.33585i −0.921494 0.246914i −0.233270 0.972412i \(-0.574943\pi\)
−0.688224 + 0.725498i \(0.741609\pi\)
\(468\) 0 0
\(469\) −5.16724 3.56412i −0.238601 0.164576i
\(470\) 6.00620 + 5.03642i 0.277045 + 0.232313i
\(471\) 0 0
\(472\) −1.74038 6.49519i −0.0801076 0.298966i
\(473\) 16.5005 + 61.5807i 0.758694 + 2.83149i
\(474\) 0 0
\(475\) 6.53696 + 36.9303i 0.299936 + 1.69448i
\(476\) −3.13999 + 1.49124i −0.143921 + 0.0683509i
\(477\) 0 0
\(478\) 6.47904 + 1.73605i 0.296344 + 0.0794052i
\(479\) −2.18200 + 3.77934i −0.0996983 + 0.172682i −0.911560 0.411168i \(-0.865121\pi\)
0.811861 + 0.583850i \(0.198454\pi\)
\(480\) 0 0
\(481\) 0.641866 0.370582i 0.0292666 0.0168971i
\(482\) 0.305870 0.305870i 0.0139320 0.0139320i
\(483\) 0 0
\(484\) 15.7492i 0.715874i
\(485\) −15.8788 22.6613i −0.721019 1.02900i
\(486\) 0 0
\(487\) 22.7332 6.09135i 1.03014 0.276026i 0.296119 0.955151i \(-0.404307\pi\)
0.734022 + 0.679125i \(0.237641\pi\)
\(488\) −1.54702 + 5.77357i −0.0700304 + 0.261357i
\(489\) 0 0
\(490\) −8.79195 + 12.9500i −0.397180 + 0.585020i
\(491\) −37.0535 −1.67220 −0.836100 0.548577i \(-0.815170\pi\)
−0.836100 + 0.548577i \(0.815170\pi\)
\(492\) 0 0
\(493\) −10.2832 + 2.75538i −0.463133 + 0.124096i
\(494\) −2.44072 1.40915i −0.109813 0.0634006i
\(495\) 0 0
\(496\) 7.68233i 0.344947i
\(497\) 7.78578 + 9.14700i 0.349240 + 0.410299i
\(498\) 0 0
\(499\) 16.6242 9.59800i 0.744202 0.429665i −0.0793930 0.996843i \(-0.525298\pi\)
0.823595 + 0.567178i \(0.191965\pi\)
\(500\) 9.67692 5.59976i 0.432765 0.250429i
\(501\) 0 0
\(502\) −18.7447 5.02263i −0.836617 0.224171i
\(503\) 22.3585 + 22.3585i 0.996914 + 0.996914i 0.999995 0.00308078i \(-0.000980643\pi\)
−0.00308078 + 0.999995i \(0.500981\pi\)
\(504\) 0 0
\(505\) −13.2823 + 15.8398i −0.591053 + 0.704862i
\(506\) 20.1231 + 34.8542i 0.894580 + 1.54946i
\(507\) 0 0
\(508\) −3.32269 12.4005i −0.147421 0.550182i
\(509\) −7.74622 13.4168i −0.343345 0.594691i 0.641706 0.766950i \(-0.278227\pi\)
−0.985052 + 0.172259i \(0.944893\pi\)
\(510\) 0 0
\(511\) −15.2751 10.5361i −0.675731 0.466088i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −9.33014 + 16.1603i −0.411535 + 0.712799i
\(515\) 7.08931 + 3.30295i 0.312393 + 0.145545i
\(516\) 0 0
\(517\) −12.8198 + 12.8198i −0.563814 + 0.563814i
\(518\) 0.942483 + 5.13321i 0.0414103 + 0.225540i
\(519\) 0 0
\(520\) −0.145618 + 0.827439i −0.00638578 + 0.0362856i
\(521\) −25.9155 14.9623i −1.13538 0.655511i −0.190096 0.981766i \(-0.560880\pi\)
−0.945282 + 0.326255i \(0.894213\pi\)
\(522\) 0 0
\(523\) −6.17629 + 23.0502i −0.270070 + 1.00792i 0.689003 + 0.724758i \(0.258049\pi\)
−0.959073 + 0.283158i \(0.908618\pi\)
\(524\) −1.13458 −0.0495642
\(525\) 0 0
\(526\) −6.80401 −0.296669
\(527\) 2.61236 9.74947i 0.113796 0.424694i
\(528\) 0 0
\(529\) 32.5221 + 18.7766i 1.41400 + 0.816375i
\(530\) 2.55955 14.5440i 0.111180 0.631752i
\(531\) 0 0
\(532\) 15.1122 12.8633i 0.655198 0.557694i
\(533\) −0.897606 + 0.897606i −0.0388796 + 0.0388796i
\(534\) 0 0
\(535\) −11.8800 5.53498i −0.513619 0.239298i
\(536\) 1.18628 2.05470i 0.0512395 0.0887494i
\(537\) 0 0
\(538\) −4.57337 4.57337i −0.197172 0.197172i
\(539\) −28.0590 22.8780i −1.20859 0.985425i
\(540\) 0 0
\(541\) 2.85409 + 4.94343i 0.122707 + 0.212535i 0.920834 0.389954i \(-0.127509\pi\)
−0.798127 + 0.602489i \(0.794176\pi\)
\(542\) 3.43772 + 12.8297i 0.147663 + 0.551084i
\(543\) 0 0
\(544\) −0.656923 1.13782i −0.0281653 0.0487838i
\(545\) 0.187728 0.223875i 0.00804137 0.00958976i
\(546\) 0 0
\(547\) 24.1755 + 24.1755i 1.03367 + 1.03367i 0.999413 + 0.0342575i \(0.0109066\pi\)
0.0342575 + 0.999413i \(0.489093\pi\)
\(548\) −5.15899 1.38235i −0.220381 0.0590509i
\(549\) 0 0
\(550\) 10.9443 + 23.4297i 0.466667 + 0.999048i
\(551\) 52.6362 30.3895i 2.24238 1.29464i
\(552\) 0 0
\(553\) 29.8234 + 10.6173i 1.26822 + 0.451495i
\(554\) 3.21825i 0.136730i
\(555\) 0 0
\(556\) −16.0386 9.25990i −0.680189 0.392707i
\(557\) −30.7756 + 8.24631i −1.30401 + 0.349407i −0.842964 0.537971i \(-0.819191\pi\)
−0.461042 + 0.887378i \(0.652524\pi\)
\(558\) 0 0
\(559\) −4.63148 −0.195891
\(560\) −5.14517 2.92015i −0.217423 0.123399i
\(561\) 0 0
\(562\) −1.26355 + 4.71564i −0.0532997 + 0.198917i
\(563\) −12.2262 + 3.27600i −0.515272 + 0.138067i −0.507079 0.861900i \(-0.669275\pi\)
−0.00819336 + 0.999966i \(0.502608\pi\)
\(564\) 0 0
\(565\) −7.03938 10.0462i −0.296149 0.422647i
\(566\) 12.1692i 0.511510i
\(567\) 0 0
\(568\) −3.21032 + 3.21032i −0.134702 + 0.134702i
\(569\) −12.2235 + 7.05724i −0.512436 + 0.295855i −0.733834 0.679328i \(-0.762271\pi\)
0.221399 + 0.975183i \(0.428938\pi\)
\(570\) 0 0
\(571\) −2.32235 + 4.02242i −0.0971872 + 0.168333i −0.910519 0.413466i \(-0.864318\pi\)
0.813332 + 0.581800i \(0.197651\pi\)
\(572\) −1.87704 0.502951i −0.0784830 0.0210295i
\(573\) 0 0
\(574\) −3.83468 8.07440i −0.160057 0.337019i
\(575\) 31.8863 + 22.2957i 1.32975 + 0.929793i
\(576\) 0 0
\(577\) 0.375902 + 1.40289i 0.0156490 + 0.0584029i 0.973309 0.229499i \(-0.0737089\pi\)
−0.957660 + 0.287902i \(0.907042\pi\)
\(578\) 3.95315 + 14.7534i 0.164429 + 0.613659i
\(579\) 0 0
\(580\) −13.8835 11.6419i −0.576483 0.483402i
\(581\) −1.64318 + 20.4402i −0.0681705 + 0.848004i
\(582\) 0 0
\(583\) 32.9930 + 8.84045i 1.36643 + 0.366134i
\(584\) 3.50682 6.07399i 0.145113 0.251343i
\(585\) 0 0
\(586\) 4.75513 2.74537i 0.196433 0.113410i
\(587\) −11.1465 + 11.1465i −0.460066 + 0.460066i −0.898677 0.438611i \(-0.855471\pi\)
0.438611 + 0.898677i \(0.355471\pi\)
\(588\) 0 0
\(589\) 57.6243i 2.37437i
\(590\) 12.3140 8.62838i 0.506957 0.355225i
\(591\) 0 0
\(592\) −1.90539 + 0.510547i −0.0783110 + 0.0209834i
\(593\) −4.02100 + 15.0066i −0.165123 + 0.616246i 0.832902 + 0.553420i \(0.186678\pi\)
−0.998025 + 0.0628252i \(0.979989\pi\)
\(594\) 0 0
\(595\) −5.53662 5.45550i −0.226979 0.223654i
\(596\) 9.89949 0.405499
\(597\) 0 0
\(598\) −2.82414 + 0.756727i −0.115488 + 0.0309449i
\(599\) 36.6022 + 21.1323i 1.49552 + 0.863441i 0.999987 0.00514553i \(-0.00163788\pi\)
0.495537 + 0.868587i \(0.334971\pi\)
\(600\) 0 0
\(601\) 36.4403i 1.48643i −0.669052 0.743216i \(-0.733300\pi\)
0.669052 0.743216i \(-0.266700\pi\)
\(602\) 10.9381 30.7243i 0.445803 1.25223i
\(603\) 0 0
\(604\) −8.77882 + 5.06845i −0.357205 + 0.206232i
\(605\) −33.0886 + 12.0556i −1.34524 + 0.490131i
\(606\) 0 0
\(607\) 19.7380 + 5.28879i 0.801141 + 0.214665i 0.636085 0.771619i \(-0.280553\pi\)
0.165056 + 0.986284i \(0.447219\pi\)
\(608\) 5.30393 + 5.30393i 0.215103 + 0.215103i
\(609\) 0 0
\(610\) −13.3143 + 1.16928i −0.539079 + 0.0473426i
\(611\) −0.658544 1.14063i −0.0266418 0.0461450i
\(612\) 0 0
\(613\) 2.94267 + 10.9822i 0.118853 + 0.443567i 0.999546 0.0301206i \(-0.00958915\pi\)
−0.880693 + 0.473688i \(0.842922\pi\)
\(614\) −6.36225 11.0197i −0.256759 0.444720i
\(615\) 0 0
\(616\) 7.76945 11.2641i 0.313040 0.453844i
\(617\) −19.5003 19.5003i −0.785051 0.785051i 0.195628 0.980678i \(-0.437326\pi\)
−0.980678 + 0.195628i \(0.937326\pi\)
\(618\) 0 0
\(619\) −8.77812 + 15.2041i −0.352822 + 0.611106i −0.986743 0.162292i \(-0.948111\pi\)
0.633920 + 0.773398i \(0.281445\pi\)
\(620\) 16.1403 5.88062i 0.648210 0.236171i
\(621\) 0 0
\(622\) 15.2116 15.2116i 0.609929 0.609929i
\(623\) 12.0774 33.9247i 0.483872 1.35916i
\(624\) 0 0
\(625\) 19.1723 + 16.0444i 0.766893 + 0.641776i
\(626\) 12.3766 + 7.14563i 0.494668 + 0.285597i
\(627\) 0 0
\(628\) −0.664809 + 2.48110i −0.0265288 + 0.0990066i
\(629\) −2.59170 −0.103338
\(630\) 0 0
\(631\) −23.1755 −0.922603 −0.461301 0.887243i \(-0.652617\pi\)
−0.461301 + 0.887243i \(0.652617\pi\)
\(632\) −3.09682 + 11.5575i −0.123185 + 0.459733i
\(633\) 0 0
\(634\) 17.5522 + 10.1338i 0.697088 + 0.402464i
\(635\) 23.5095 16.4731i 0.932946 0.653715i
\(636\) 0 0
\(637\) 2.13297 1.53879i 0.0845113 0.0609690i
\(638\) 29.6334 29.6334i 1.17320 1.17320i
\(639\) 0 0
\(640\) 0.944334 2.02688i 0.0373281 0.0801194i
\(641\) 8.67383 15.0235i 0.342596 0.593393i −0.642318 0.766438i \(-0.722027\pi\)
0.984914 + 0.173045i \(0.0553606\pi\)
\(642\) 0 0
\(643\) −26.2988 26.2988i −1.03712 1.03712i −0.999284 0.0378384i \(-0.987953\pi\)
−0.0378384 0.999284i \(-0.512047\pi\)
\(644\) 1.64975 20.5220i 0.0650092 0.808679i
\(645\) 0 0
\(646\) 4.92751 + 8.53469i 0.193870 + 0.335793i
\(647\) −6.46061 24.1113i −0.253993 0.947914i −0.968648 0.248437i \(-0.920083\pi\)
0.714655 0.699477i \(-0.246584\pi\)
\(648\) 0 0
\(649\) 17.3890 + 30.1186i 0.682577 + 1.18226i
\(650\) −1.84989 + 0.327444i −0.0725585 + 0.0128434i
\(651\) 0 0
\(652\) 7.97328 + 7.97328i 0.312258 + 0.312258i
\(653\) −36.4118 9.75652i −1.42490 0.381802i −0.537683 0.843147i \(-0.680700\pi\)
−0.887221 + 0.461345i \(0.847367\pi\)
\(654\) 0 0
\(655\) −0.868489 2.38370i −0.0339347 0.0931390i
\(656\) 2.92588 1.68926i 0.114237 0.0659545i
\(657\) 0 0
\(658\) 9.12200 1.67484i 0.355613 0.0652922i
\(659\) 22.3934i 0.872324i 0.899868 + 0.436162i \(0.143663\pi\)
−0.899868 + 0.436162i \(0.856337\pi\)
\(660\) 0 0
\(661\) 22.3529 + 12.9054i 0.869426 + 0.501963i 0.867158 0.498034i \(-0.165945\pi\)
0.00226869 + 0.999997i \(0.499278\pi\)
\(662\) 1.98715 0.532455i 0.0772327 0.0206944i
\(663\) 0 0
\(664\) −7.75061 −0.300782
\(665\) 38.5933 + 21.9037i 1.49658 + 0.849390i
\(666\) 0 0
\(667\) 16.3195 60.9051i 0.631893 2.35826i
\(668\) 14.4507 3.87205i 0.559114 0.149814i
\(669\) 0 0
\(670\) 5.22491 + 0.919514i 0.201856 + 0.0355239i
\(671\) 30.9141i 1.19342i
\(672\) 0 0
\(673\) −20.6481 + 20.6481i −0.795927 + 0.795927i −0.982450 0.186524i \(-0.940278\pi\)
0.186524 + 0.982450i \(0.440278\pi\)
\(674\) 16.0554 9.26962i 0.618433 0.357052i
\(675\) 0 0
\(676\) −6.42941 + 11.1361i −0.247285 + 0.428310i
\(677\) −45.6033 12.2194i −1.75268 0.469628i −0.767483 0.641070i \(-0.778491\pi\)
−0.985194 + 0.171441i \(0.945158\pi\)
\(678\) 0 0
\(679\) −32.6352 2.62353i −1.25243 0.100682i
\(680\) 1.88767 2.25115i 0.0723889 0.0863275i
\(681\) 0 0
\(682\) 10.2836 + 38.3789i 0.393779 + 1.46960i
\(683\) −1.40443 5.24140i −0.0537389 0.200556i 0.933837 0.357699i \(-0.116439\pi\)
−0.987576 + 0.157142i \(0.949772\pi\)
\(684\) 0 0
\(685\) −1.04481 11.8970i −0.0399202 0.454561i
\(686\) 5.17063 + 17.7838i 0.197416 + 0.678990i
\(687\) 0 0
\(688\) 11.9066 + 3.19038i 0.453937 + 0.121632i
\(689\) −1.24070 + 2.14896i −0.0472669 + 0.0818687i
\(690\) 0 0
\(691\) −6.84020 + 3.94919i −0.260213 + 0.150234i −0.624432 0.781079i \(-0.714669\pi\)
0.364219 + 0.931314i \(0.381336\pi\)
\(692\) −12.4141 + 12.4141i −0.471914 + 0.471914i
\(693\) 0 0
\(694\) 3.80158i 0.144306i
\(695\) 7.17757 40.7848i 0.272261 1.54705i
\(696\) 0 0
\(697\) 4.28761 1.14886i 0.162405 0.0435162i
\(698\) −6.60782 + 24.6607i −0.250110 + 0.933422i
\(699\) 0 0
\(700\) 2.19664 13.0451i 0.0830252 0.493059i
\(701\) −16.5213 −0.624002 −0.312001 0.950082i \(-0.600999\pi\)
−0.312001 + 0.950082i \(0.600999\pi\)
\(702\) 0 0
\(703\) 14.2921 3.82956i 0.539037 0.144434i
\(704\) 4.47905 + 2.58598i 0.168811 + 0.0974629i
\(705\) 0 0
\(706\) 29.5013i 1.11030i
\(707\) 4.41697 + 24.0569i 0.166117 + 0.904754i
\(708\) 0 0
\(709\) −17.6039 + 10.1636i −0.661129 + 0.381703i −0.792707 0.609603i \(-0.791329\pi\)
0.131578 + 0.991306i \(0.457996\pi\)
\(710\) −9.20218 4.28735i −0.345352 0.160901i
\(711\) 0 0
\(712\) 13.1469 + 3.52269i 0.492700 + 0.132019i
\(713\) 42.2714 + 42.2714i 1.58308 + 1.58308i
\(714\) 0 0
\(715\) −0.380142 4.32859i −0.0142165 0.161880i
\(716\) −0.980586 1.69842i −0.0366462 0.0634731i
\(717\) 0 0
\(718\) 1.37231 + 5.12154i 0.0512142 + 0.191134i
\(719\) 13.0472 + 22.5984i 0.486578 + 0.842778i 0.999881 0.0154296i \(-0.00491158\pi\)
−0.513303 + 0.858208i \(0.671578\pi\)
\(720\) 0 0
\(721\) 8.35912 3.96990i 0.311310 0.147847i
\(722\) −26.3491 26.3491i −0.980613 0.980613i
\(723\) 0 0
\(724\) 12.6811 21.9643i 0.471289 0.816296i
\(725\) 13.8317 38.0804i 0.513695 1.41427i
\(726\) 0 0
\(727\) 11.3764 11.3764i 0.421926 0.421926i −0.463940 0.885867i \(-0.653565\pi\)
0.885867 + 0.463940i \(0.153565\pi\)
\(728\) 0.644337 + 0.756989i 0.0238807 + 0.0280559i
\(729\) 0 0
\(730\) 15.4456 + 2.71822i 0.571667 + 0.100606i
\(731\) 14.0256 + 8.09767i 0.518755 + 0.299503i
\(732\) 0 0
\(733\) 4.00892 14.9615i 0.148073 0.552616i −0.851526 0.524312i \(-0.824323\pi\)
0.999599 0.0283041i \(-0.00901066\pi\)
\(734\) 10.5596 0.389761
\(735\) 0 0
\(736\) 7.78160 0.286834
\(737\) −3.17592 + 11.8527i −0.116986 + 0.436599i
\(738\) 0 0
\(739\) −32.3862 18.6982i −1.19135 0.687824i −0.232734 0.972540i \(-0.574767\pi\)
−0.958612 + 0.284716i \(0.908101\pi\)
\(740\) −2.53117 3.61234i −0.0930475 0.132792i
\(741\) 0 0
\(742\) −11.3256 13.3057i −0.415777 0.488468i
\(743\) −33.9689 + 33.9689i −1.24620 + 1.24620i −0.288811 + 0.957386i \(0.593260\pi\)
−0.957386 + 0.288811i \(0.906740\pi\)
\(744\) 0 0
\(745\) 7.57780 + 20.7985i 0.277629 + 0.761997i
\(746\) 11.0048 19.0609i 0.402916 0.697871i
\(747\) 0 0
\(748\) 4.80491 + 4.80491i 0.175685 + 0.175685i
\(749\) −14.0079 + 6.65264i −0.511839 + 0.243082i
\(750\) 0 0
\(751\) 5.15430 + 8.92752i 0.188083 + 0.325770i 0.944611 0.328192i \(-0.106439\pi\)
−0.756528 + 0.653961i \(0.773106\pi\)
\(752\) 0.907271 + 3.38598i 0.0330848 + 0.123474i
\(753\) 0 0
\(754\) 1.52225 + 2.63661i 0.0554370 + 0.0960197i
\(755\) −17.3686 14.5642i −0.632108 0.530046i
\(756\) 0 0
\(757\) −3.50029 3.50029i −0.127220 0.127220i 0.640630 0.767850i \(-0.278673\pi\)
−0.767850 + 0.640630i \(0.778673\pi\)
\(758\) 14.3393 + 3.84219i 0.520825 + 0.139555i
\(759\) 0 0
\(760\) −7.08334 + 15.2034i −0.256940 + 0.551485i
\(761\) −3.24761 + 1.87501i −0.117726 + 0.0679689i −0.557707 0.830038i \(-0.688319\pi\)
0.439981 + 0.898007i \(0.354985\pi\)
\(762\) 0 0
\(763\) −0.0624282 0.340014i −0.00226005 0.0123093i
\(764\) 1.81547i 0.0656815i
\(765\) 0 0
\(766\) −22.2237 12.8309i −0.802975 0.463598i
\(767\) −2.44043 + 0.653911i −0.0881188 + 0.0236114i
\(768\) 0 0
\(769\) 1.95836 0.0706204 0.0353102 0.999376i \(-0.488758\pi\)
0.0353102 + 0.999376i \(0.488758\pi\)
\(770\) 29.6128 + 7.70096i 1.06717 + 0.277523i
\(771\) 0 0
\(772\) −1.79837 + 6.71159i −0.0647246 + 0.241556i
\(773\) −7.46390 + 1.99995i −0.268458 + 0.0719331i −0.390537 0.920587i \(-0.627711\pi\)
0.122079 + 0.992520i \(0.461044\pi\)
\(774\) 0 0
\(775\) 24.7099 + 29.4087i 0.887607 + 1.05639i
\(776\) 12.3748i 0.444228i
\(777\) 0 0
\(778\) 10.4126 10.4126i 0.373308 0.373308i
\(779\) −21.9467 + 12.6709i −0.786323 + 0.453984i
\(780\) 0 0
\(781\) 11.7406 20.3352i 0.420110 0.727652i
\(782\) 9.87546 + 2.64612i 0.353146 + 0.0946251i
\(783\) 0 0
\(784\) −6.54344 + 2.48664i −0.233694 + 0.0888086i
\(785\) −5.72159 + 0.502478i −0.204212 + 0.0179342i
\(786\) 0 0
\(787\) −6.04166 22.5478i −0.215362 0.803741i −0.986039 0.166515i \(-0.946749\pi\)
0.770677 0.637226i \(-0.219918\pi\)
\(788\) 0.147858 + 0.551814i 0.00526723 + 0.0196576i
\(789\) 0 0
\(790\) −26.6524 + 2.34065i −0.948251 + 0.0832766i
\(791\) −14.4678 1.16306i −0.514417 0.0413537i
\(792\) 0 0
\(793\) 2.16929 + 0.581261i 0.0770339 + 0.0206412i
\(794\) 0.672435 1.16469i 0.0238638 0.0413333i
\(795\) 0 0
\(796\) −2.49313 + 1.43941i −0.0883666 + 0.0510185i
\(797\) 17.3884 17.3884i 0.615928 0.615928i −0.328556 0.944484i \(-0.606562\pi\)
0.944484 + 0.328556i \(0.106562\pi\)
\(798\) 0 0
\(799\) 4.60559i 0.162934i
\(800\) 4.98126 + 0.432490i 0.176114 + 0.0152908i
\(801\) 0 0
\(802\) −20.1933 + 5.41078i −0.713050 + 0.191061i
\(803\) −9.38847 + 35.0383i −0.331312 + 1.23647i
\(804\) 0 0
\(805\) 44.3788 12.2430i 1.56415 0.431508i
\(806\) −2.88647 −0.101672
\(807\) 0 0
\(808\) −8.92965 + 2.39269i −0.314144 + 0.0841747i
\(809\) −35.3260 20.3955i −1.24200 0.717067i −0.272497 0.962157i \(-0.587849\pi\)
−0.969500 + 0.245089i \(0.921183\pi\)
\(810\) 0 0
\(811\) 18.7583i 0.658694i −0.944209 0.329347i \(-0.893171\pi\)
0.944209 0.329347i \(-0.106829\pi\)
\(812\) −21.0858 + 3.87146i −0.739968 + 0.135862i
\(813\) 0 0
\(814\) 8.83539 5.10112i 0.309680 0.178794i
\(815\) −10.6482 + 22.8549i −0.372992 + 0.800573i
\(816\) 0 0
\(817\) −89.3104 23.9306i −3.12457 0.837227i
\(818\) 3.57417 + 3.57417i 0.124968 + 0.124968i
\(819\) 0 0
\(820\) 5.78876 + 4.85409i 0.202152 + 0.169512i
\(821\) 11.1282 + 19.2747i 0.388378 + 0.672691i 0.992232 0.124405i \(-0.0397021\pi\)
−0.603853 + 0.797095i \(0.706369\pi\)
\(822\) 0 0
\(823\) 13.7894 + 51.4628i 0.480669 + 1.79388i 0.598819 + 0.800885i \(0.295637\pi\)
−0.118150 + 0.992996i \(0.537696\pi\)
\(824\) 1.74883 + 3.02906i 0.0609233 + 0.105522i
\(825\) 0 0
\(826\) 1.42560 17.7337i 0.0496029 0.617033i
\(827\) 38.5557 + 38.5557i 1.34071 + 1.34071i 0.895351 + 0.445362i \(0.146925\pi\)
0.445362 + 0.895351i \(0.353075\pi\)
\(828\) 0 0
\(829\) 15.5028 26.8517i 0.538435 0.932597i −0.460554 0.887632i \(-0.652349\pi\)
0.998989 0.0449649i \(-0.0143176\pi\)
\(830\) −5.93289 16.2838i −0.205934 0.565217i
\(831\) 0 0
\(832\) −0.265680 + 0.265680i −0.00921080 + 0.00921080i
\(833\) −9.14972 + 0.930656i −0.317019 + 0.0322453i
\(834\) 0 0
\(835\) 19.1967 + 27.3964i 0.664328 + 0.948092i
\(836\) −33.5969 19.3972i −1.16197 0.670865i
\(837\) 0 0
\(838\) 7.09032 26.4614i 0.244931 0.914095i
\(839\) −45.3891 −1.56701 −0.783503 0.621389i \(-0.786569\pi\)
−0.783503 + 0.621389i \(0.786569\pi\)
\(840\) 0 0
\(841\) −36.6572 −1.26404
\(842\) −2.43761 + 9.09729i −0.0840057 + 0.313513i
\(843\) 0 0
\(844\) 9.26815 + 5.35097i 0.319023 + 0.184188i
\(845\) −28.3180 4.98360i −0.974170 0.171441i
\(846\) 0 0
\(847\) −13.9751 + 39.2551i −0.480190 + 1.34882i
\(848\) 4.66990 4.66990i 0.160365 0.160365i
\(849\) 0 0
\(850\) 6.17454 + 2.24273i 0.211785 + 0.0769251i
\(851\) 7.67500 13.2935i 0.263096 0.455695i
\(852\) 0 0
\(853\) −37.3879 37.3879i −1.28014 1.28014i −0.940588 0.339550i \(-0.889725\pi\)
−0.339550 0.940588i \(-0.610275\pi\)
\(854\) −8.97915 + 13.0179i −0.307260 + 0.445464i
\(855\) 0 0
\(856\) −2.93063 5.07600i −0.100167 0.173494i
\(857\) −8.63985 32.2444i −0.295132 1.10145i −0.941113 0.338093i \(-0.890218\pi\)
0.645981 0.763353i \(-0.276448\pi\)
\(858\) 0 0
\(859\) −24.5307 42.4884i −0.836977 1.44969i −0.892411 0.451224i \(-0.850987\pi\)
0.0554337 0.998462i \(-0.482346\pi\)
\(860\) 2.41136 + 27.4576i 0.0822267 + 0.936296i
\(861\) 0 0
\(862\) −6.34722 6.34722i −0.216187 0.216187i
\(863\) 34.1092 + 9.13954i 1.16109 + 0.311113i 0.787402 0.616440i \(-0.211426\pi\)
0.373690 + 0.927554i \(0.378093\pi\)
\(864\) 0 0
\(865\) −35.5843 16.5789i −1.20990 0.563701i
\(866\) 13.2071 7.62512i 0.448795 0.259112i
\(867\) 0 0
\(868\) 6.81692 19.1483i 0.231381 0.649935i
\(869\) 61.8836i 2.09926i
\(870\) 0 0
\(871\) −0.772008 0.445719i −0.0261585 0.0151026i
\(872\) 0.126209 0.0338176i 0.00427398 0.00114521i
\(873\) 0 0
\(874\) −58.3689 −1.97436
\(875\) 29.0888 5.37062i 0.983380 0.181560i
\(876\) 0 0
\(877\) 2.58487 9.64685i 0.0872847 0.325751i −0.908452 0.417988i \(-0.862735\pi\)
0.995737 + 0.0922375i \(0.0294019\pi\)
\(878\) 5.59624 1.49951i 0.188864 0.0506059i
\(879\) 0 0
\(880\) −2.00446 + 11.3898i −0.0675703 + 0.383951i
\(881\) 55.0348i 1.85417i 0.374852 + 0.927085i \(0.377694\pi\)
−0.374852 + 0.927085i \(0.622306\pi\)
\(882\) 0 0
\(883\) −30.2776 + 30.2776i −1.01892 + 1.01892i −0.0191057 + 0.999817i \(0.506082\pi\)
−0.999817 + 0.0191057i \(0.993918\pi\)
\(884\) −0.427513 + 0.246825i −0.0143788 + 0.00830162i
\(885\) 0 0
\(886\) 10.5887 18.3401i 0.355734 0.616149i
\(887\) −4.24066 1.13628i −0.142387 0.0381526i 0.186921 0.982375i \(-0.440149\pi\)
−0.329309 + 0.944222i \(0.606816\pi\)
\(888\) 0 0
\(889\) 2.72172 33.8567i 0.0912835 1.13552i
\(890\) 2.66254 + 30.3176i 0.0892484 + 1.01625i
\(891\) 0 0
\(892\) −3.08987 11.5315i −0.103456 0.386105i
\(893\) −6.80533 25.3979i −0.227732 0.849907i
\(894\) 0 0
\(895\) 2.81771 3.36027i 0.0941858 0.112322i
\(896\) −1.13502 2.38992i −0.0379183 0.0798417i
\(897\) 0 0
\(898\) 13.8316 + 3.70617i 0.461567 + 0.123676i
\(899\) 31.1246 53.9094i 1.03806 1.79798i
\(900\) 0 0
\(901\) 7.51446 4.33848i 0.250343 0.144536i
\(902\) −12.3557 + 12.3557i −0.411400 + 0.411400i
\(903\) 0 0
\(904\) 5.48597i 0.182461i
\(905\) 55.8532 + 9.82942i 1.85662 + 0.326741i
\(906\) 0 0
\(907\) 29.9158 8.01591i 0.993337 0.266164i 0.274685 0.961534i \(-0.411426\pi\)
0.718652 + 0.695370i \(0.244760\pi\)
\(908\) −4.63445 + 17.2960i −0.153800 + 0.573988i
\(909\) 0 0
\(910\) −1.09718 + 1.93319i −0.0363713 + 0.0640845i
\(911\) 40.8011 1.35180 0.675901 0.736993i \(-0.263755\pi\)
0.675901 + 0.736993i \(0.263755\pi\)
\(912\) 0 0
\(913\) 38.7200 10.3750i 1.28144 0.343362i
\(914\) −28.3578 16.3724i −0.937994 0.541551i
\(915\) 0 0
\(916\) 8.65885i 0.286097i
\(917\) −2.82794 1.00677i −0.0933869 0.0332464i
\(918\) 0 0
\(919\) 10.8623 6.27134i 0.358314 0.206873i −0.310027 0.950728i \(-0.600338\pi\)
0.668341 + 0.743855i \(0.267005\pi\)
\(920\) 5.95661 + 16.3489i 0.196384 + 0.539006i
\(921\) 0 0
\(922\) 34.7239 + 9.30423i 1.14357 + 0.306419i
\(923\) 1.20621 + 1.20621i 0.0397028 + 0.0397028i
\(924\) 0 0
\(925\) 5.65186 8.08304i 0.185832 0.265769i
\(926\) 5.27514 + 9.13681i 0.173352 + 0.300254i
\(927\) 0 0
\(928\) −2.09719 7.82681i −0.0688436 0.256928i
\(929\) 15.2979 + 26.4968i 0.501909 + 0.869331i 0.999998 + 0.00220528i \(0.000701963\pi\)
−0.498089 + 0.867126i \(0.665965\pi\)
\(930\) 0 0
\(931\) 49.0816 18.6520i 1.60858 0.611295i
\(932\) 13.5460 + 13.5460i 0.443713 + 0.443713i
\(933\) 0 0
\(934\) 10.3081 17.8541i 0.337290 0.584204i
\(935\) −6.41691 + 13.7730i −0.209855 + 0.450424i
\(936\) 0 0
\(937\) −2.47704 + 2.47704i −0.0809213 + 0.0809213i −0.746409 0.665488i \(-0.768224\pi\)
0.665488 + 0.746409i \(0.268224\pi\)
\(938\) 4.78005 4.06871i 0.156074 0.132848i
\(939\) 0 0
\(940\) −6.41933 + 4.49802i −0.209375 + 0.146709i
\(941\) −35.9162 20.7362i −1.17083 0.675981i −0.216958 0.976181i \(-0.569613\pi\)
−0.953876 + 0.300200i \(0.902947\pi\)
\(942\) 0 0
\(943\) −6.80443 + 25.3945i −0.221583 + 0.826957i
\(944\) 6.72432 0.218858
\(945\) 0 0
\(946\) −63.7531 −2.07279
\(947\) 11.1457 41.5961i 0.362185 1.35169i −0.509012 0.860759i \(-0.669989\pi\)
0.871197 0.490933i \(-0.163344\pi\)
\(948\) 0 0
\(949\) −2.28217 1.31761i −0.0740824 0.0427715i
\(950\) −37.3639 3.24406i −1.21224 0.105251i
\(951\) 0 0
\(952\) −0.627738 3.41896i −0.0203451 0.110809i
\(953\) 10.9239 10.9239i 0.353859 0.353859i −0.507684 0.861543i \(-0.669498\pi\)
0.861543 + 0.507684i \(0.169498\pi\)
\(954\) 0 0
\(955\) 3.81424 1.38970i 0.123426 0.0449695i
\(956\) −3.35380 + 5.80894i −0.108470 + 0.187875i
\(957\) 0 0
\(958\) −3.08582 3.08582i −0.0996983 0.0996983i
\(959\) −11.6322 8.02335i −0.375624 0.259088i
\(960\) 0 0
\(961\) 14.0091 + 24.2644i 0.451906 + 0.782723i
\(962\) 0.191827 + 0.715909i 0.00618476 + 0.0230818i
\(963\) 0 0
\(964\) 0.216283 + 0.374613i 0.00696600 + 0.0120655i
\(965\) −15.4774 + 1.35925i −0.498236 + 0.0437557i
\(966\) 0 0
\(967\) −0.946186 0.946186i −0.0304273 0.0304273i 0.691729 0.722157i \(-0.256849\pi\)
−0.722157 + 0.691729i \(0.756849\pi\)
\(968\) −15.2126 4.07620i −0.488951 0.131014i
\(969\) 0 0
\(970\) 25.9989 9.47255i 0.834775 0.304145i
\(971\) 43.9590 25.3797i 1.41071 0.814474i 0.415256 0.909705i \(-0.363692\pi\)
0.995455 + 0.0952305i \(0.0303588\pi\)
\(972\) 0 0
\(973\) −31.7596 37.3123i −1.01817 1.19618i
\(974\) 23.5352i 0.754116i
\(975\) 0 0
\(976\) −5.17644 2.98862i −0.165694 0.0956633i
\(977\) −35.6762 + 9.55940i −1.14138 + 0.305832i −0.779506 0.626394i \(-0.784530\pi\)
−0.361875 + 0.932227i \(0.617863\pi\)
\(978\) 0 0
\(979\) −70.3938 −2.24980
\(980\) −10.2332 11.8441i −0.326887 0.378345i
\(981\) 0 0
\(982\) 9.59015 35.7909i 0.306034 1.14213i
\(983\) 18.2298 4.88466i 0.581440 0.155796i 0.0439021 0.999036i \(-0.486021\pi\)
0.537538 + 0.843239i \(0.319354\pi\)
\(984\) 0 0
\(985\) −1.04616 + 0.733044i −0.0333334 + 0.0233567i
\(986\) 10.6460i 0.339037i
\(987\) 0 0
\(988\) 1.99284 1.99284i 0.0634006 0.0634006i
\(989\) −83.0702 + 47.9606i −2.64148 + 1.52506i
\(990\) 0 0
\(991\) −11.1490 + 19.3107i −0.354161 + 0.613424i −0.986974 0.160880i \(-0.948567\pi\)
0.632813 + 0.774304i \(0.281900\pi\)
\(992\) 7.42056 + 1.98833i 0.235603 + 0.0631296i
\(993\) 0 0
\(994\) −10.8504 + 5.15307i −0.344155 + 0.163445i
\(995\) −4.93257 4.13615i −0.156373 0.131125i
\(996\) 0 0
\(997\) −14.9857 55.9272i −0.474600 1.77123i −0.622912 0.782292i \(-0.714050\pi\)
0.148311 0.988941i \(-0.452616\pi\)
\(998\) 4.96829 + 18.5419i 0.157268 + 0.586934i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.d.577.3 yes 32
3.2 odd 2 inner 630.2.bv.d.577.6 yes 32
5.3 odd 4 inner 630.2.bv.d.73.8 yes 32
7.5 odd 6 inner 630.2.bv.d.397.8 yes 32
15.8 even 4 inner 630.2.bv.d.73.1 32
21.5 even 6 inner 630.2.bv.d.397.1 yes 32
35.33 even 12 inner 630.2.bv.d.523.3 yes 32
105.68 odd 12 inner 630.2.bv.d.523.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bv.d.73.1 32 15.8 even 4 inner
630.2.bv.d.73.8 yes 32 5.3 odd 4 inner
630.2.bv.d.397.1 yes 32 21.5 even 6 inner
630.2.bv.d.397.8 yes 32 7.5 odd 6 inner
630.2.bv.d.523.3 yes 32 35.33 even 12 inner
630.2.bv.d.523.6 yes 32 105.68 odd 12 inner
630.2.bv.d.577.3 yes 32 1.1 even 1 trivial
630.2.bv.d.577.6 yes 32 3.2 odd 2 inner