Properties

Label 624.2.bc.a.31.1
Level $624$
Weight $2$
Character 624.31
Analytic conductor $4.983$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,2,Mod(31,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 624.31
Dual form 624.2.bc.a.463.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-2.00000 + 2.00000i) q^{7} -1.00000 q^{9} +(-3.00000 + 3.00000i) q^{11} +(-3.00000 - 2.00000i) q^{13} -6.00000i q^{17} +(-4.00000 - 4.00000i) q^{19} +(2.00000 + 2.00000i) q^{21} -6.00000 q^{23} +5.00000i q^{25} +1.00000i q^{27} -6.00000 q^{29} +(4.00000 + 4.00000i) q^{31} +(3.00000 + 3.00000i) q^{33} +(7.00000 + 7.00000i) q^{37} +(-2.00000 + 3.00000i) q^{39} +(6.00000 - 6.00000i) q^{41} -8.00000 q^{43} +(-3.00000 + 3.00000i) q^{47} -1.00000i q^{49} -6.00000 q^{51} -6.00000 q^{53} +(-4.00000 + 4.00000i) q^{57} +(9.00000 - 9.00000i) q^{59} +(2.00000 - 2.00000i) q^{63} +(-2.00000 - 2.00000i) q^{67} +6.00000i q^{69} +(3.00000 + 3.00000i) q^{71} +(1.00000 + 1.00000i) q^{73} +5.00000 q^{75} -12.0000i q^{77} +8.00000i q^{79} +1.00000 q^{81} +(-3.00000 - 3.00000i) q^{83} +6.00000i q^{87} +(10.0000 - 2.00000i) q^{91} +(4.00000 - 4.00000i) q^{93} +(-7.00000 + 7.00000i) q^{97} +(3.00000 - 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 2 q^{9} - 6 q^{11} - 6 q^{13} - 8 q^{19} + 4 q^{21} - 12 q^{23} - 12 q^{29} + 8 q^{31} + 6 q^{33} + 14 q^{37} - 4 q^{39} + 12 q^{41} - 16 q^{43} - 6 q^{47} - 12 q^{51} - 12 q^{53} - 8 q^{57}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) 0 0
\(7\) −2.00000 + 2.00000i −0.755929 + 0.755929i −0.975579 0.219650i \(-0.929509\pi\)
0.219650 + 0.975579i \(0.429509\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.00000 + 3.00000i −0.904534 + 0.904534i −0.995824 0.0912903i \(-0.970901\pi\)
0.0912903 + 0.995824i \(0.470901\pi\)
\(12\) 0 0
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) −4.00000 4.00000i −0.917663 0.917663i 0.0791961 0.996859i \(-0.474765\pi\)
−0.996859 + 0.0791961i \(0.974765\pi\)
\(20\) 0 0
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 + 4.00000i 0.718421 + 0.718421i 0.968282 0.249861i \(-0.0803848\pi\)
−0.249861 + 0.968282i \(0.580385\pi\)
\(32\) 0 0
\(33\) 3.00000 + 3.00000i 0.522233 + 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.00000 + 7.00000i 1.15079 + 1.15079i 0.986394 + 0.164399i \(0.0525685\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −2.00000 + 3.00000i −0.320256 + 0.480384i
\(40\) 0 0
\(41\) 6.00000 6.00000i 0.937043 0.937043i −0.0610897 0.998132i \(-0.519458\pi\)
0.998132 + 0.0610897i \(0.0194576\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 + 3.00000i −0.437595 + 0.437595i −0.891202 0.453607i \(-0.850137\pi\)
0.453607 + 0.891202i \(0.350137\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 + 4.00000i −0.529813 + 0.529813i
\(58\) 0 0
\(59\) 9.00000 9.00000i 1.17170 1.17170i 0.189896 0.981804i \(-0.439185\pi\)
0.981804 0.189896i \(-0.0608151\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 2.00000 2.00000i 0.251976 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 2.00000i −0.244339 0.244339i 0.574304 0.818642i \(-0.305273\pi\)
−0.818642 + 0.574304i \(0.805273\pi\)
\(68\) 0 0
\(69\) 6.00000i 0.722315i
\(70\) 0 0
\(71\) 3.00000 + 3.00000i 0.356034 + 0.356034i 0.862349 0.506314i \(-0.168992\pi\)
−0.506314 + 0.862349i \(0.668992\pi\)
\(72\) 0 0
\(73\) 1.00000 + 1.00000i 0.117041 + 0.117041i 0.763202 0.646160i \(-0.223626\pi\)
−0.646160 + 0.763202i \(0.723626\pi\)
\(74\) 0 0
\(75\) 5.00000 0.577350
\(76\) 0 0
\(77\) 12.0000i 1.36753i
\(78\) 0 0
\(79\) 8.00000i 0.900070i 0.893011 + 0.450035i \(0.148589\pi\)
−0.893011 + 0.450035i \(0.851411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −3.00000 3.00000i −0.329293 0.329293i 0.523025 0.852318i \(-0.324804\pi\)
−0.852318 + 0.523025i \(0.824804\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) 0 0
\(91\) 10.0000 2.00000i 1.04828 0.209657i
\(92\) 0 0
\(93\) 4.00000 4.00000i 0.414781 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.00000 + 7.00000i −0.710742 + 0.710742i −0.966691 0.255948i \(-0.917612\pi\)
0.255948 + 0.966691i \(0.417612\pi\)
\(98\) 0 0
\(99\) 3.00000 3.00000i 0.301511 0.301511i
\(100\) 0 0
\(101\) 18.0000i 1.79107i −0.444994 0.895533i \(-0.646794\pi\)
0.444994 0.895533i \(-0.353206\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000i 1.74013i −0.492941 0.870063i \(-0.664078\pi\)
0.492941 0.870063i \(-0.335922\pi\)
\(108\) 0 0
\(109\) −5.00000 + 5.00000i −0.478913 + 0.478913i −0.904784 0.425871i \(-0.859968\pi\)
0.425871 + 0.904784i \(0.359968\pi\)
\(110\) 0 0
\(111\) 7.00000 7.00000i 0.664411 0.664411i
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 + 2.00000i 0.277350 + 0.184900i
\(118\) 0 0
\(119\) 12.0000 + 12.0000i 1.10004 + 1.10004i
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) −6.00000 6.00000i −0.541002 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 8.00000i 0.704361i
\(130\) 0 0
\(131\) 18.0000i 1.57267i 0.617802 + 0.786334i \(0.288023\pi\)
−0.617802 + 0.786334i \(0.711977\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 6.00000i −0.512615 0.512615i 0.402712 0.915327i \(-0.368068\pi\)
−0.915327 + 0.402712i \(0.868068\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) 3.00000 + 3.00000i 0.252646 + 0.252646i
\(142\) 0 0
\(143\) 15.0000 3.00000i 1.25436 0.250873i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −6.00000 + 6.00000i −0.491539 + 0.491539i −0.908791 0.417252i \(-0.862993\pi\)
0.417252 + 0.908791i \(0.362993\pi\)
\(150\) 0 0
\(151\) 4.00000 4.00000i 0.325515 0.325515i −0.525363 0.850878i \(-0.676070\pi\)
0.850878 + 0.525363i \(0.176070\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 6.00000i 0.475831i
\(160\) 0 0
\(161\) 12.0000 12.0000i 0.945732 0.945732i
\(162\) 0 0
\(163\) 16.0000 16.0000i 1.25322 1.25322i 0.298947 0.954270i \(-0.403365\pi\)
0.954270 0.298947i \(-0.0966354\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.00000 + 3.00000i −0.232147 + 0.232147i −0.813588 0.581441i \(-0.802489\pi\)
0.581441 + 0.813588i \(0.302489\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 4.00000 + 4.00000i 0.305888 + 0.305888i
\(172\) 0 0
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) −10.0000 10.0000i −0.755929 0.755929i
\(176\) 0 0
\(177\) −9.00000 9.00000i −0.676481 0.676481i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 6.00000i 0.445976i 0.974821 + 0.222988i \(0.0715812\pi\)
−0.974821 + 0.222988i \(0.928419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.0000 + 18.0000i 1.31629 + 1.31629i
\(188\) 0 0
\(189\) −2.00000 2.00000i −0.145479 0.145479i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −7.00000 7.00000i −0.503871 0.503871i 0.408768 0.912639i \(-0.365959\pi\)
−0.912639 + 0.408768i \(0.865959\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 + 12.0000i −0.854965 + 0.854965i −0.990740 0.135775i \(-0.956648\pi\)
0.135775 + 0.990740i \(0.456648\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) −2.00000 + 2.00000i −0.141069 + 0.141069i
\(202\) 0 0
\(203\) 12.0000 12.0000i 0.842235 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 4.00000i 0.275371i 0.990476 + 0.137686i \(0.0439664\pi\)
−0.990476 + 0.137686i \(0.956034\pi\)
\(212\) 0 0
\(213\) 3.00000 3.00000i 0.205557 0.205557i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 1.00000 1.00000i 0.0675737 0.0675737i
\(220\) 0 0
\(221\) −12.0000 + 18.0000i −0.807207 + 1.21081i
\(222\) 0 0
\(223\) 8.00000 + 8.00000i 0.535720 + 0.535720i 0.922269 0.386549i \(-0.126333\pi\)
−0.386549 + 0.922269i \(0.626333\pi\)
\(224\) 0 0
\(225\) 5.00000i 0.333333i
\(226\) 0 0
\(227\) −9.00000 9.00000i −0.597351 0.597351i 0.342256 0.939607i \(-0.388809\pi\)
−0.939607 + 0.342256i \(0.888809\pi\)
\(228\) 0 0
\(229\) −17.0000 17.0000i −1.12339 1.12339i −0.991228 0.132164i \(-0.957808\pi\)
−0.132164 0.991228i \(-0.542192\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 0 0
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 9.00000 + 9.00000i 0.582162 + 0.582162i 0.935497 0.353335i \(-0.114952\pi\)
−0.353335 + 0.935497i \(0.614952\pi\)
\(240\) 0 0
\(241\) 11.0000 + 11.0000i 0.708572 + 0.708572i 0.966235 0.257663i \(-0.0829523\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 + 20.0000i 0.254514 + 1.27257i
\(248\) 0 0
\(249\) −3.00000 + 3.00000i −0.190117 + 0.190117i
\(250\) 0 0
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 18.0000 18.0000i 1.13165 1.13165i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 0 0
\(259\) −28.0000 −1.73984
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 30.0000i 1.84988i −0.380114 0.924940i \(-0.624115\pi\)
0.380114 0.924940i \(-0.375885\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −10.0000 + 10.0000i −0.607457 + 0.607457i −0.942281 0.334824i \(-0.891323\pi\)
0.334824 + 0.942281i \(0.391323\pi\)
\(272\) 0 0
\(273\) −2.00000 10.0000i −0.121046 0.605228i
\(274\) 0 0
\(275\) −15.0000 15.0000i −0.904534 0.904534i
\(276\) 0 0
\(277\) 24.0000i 1.44202i 0.692925 + 0.721010i \(0.256322\pi\)
−0.692925 + 0.721010i \(0.743678\pi\)
\(278\) 0 0
\(279\) −4.00000 4.00000i −0.239474 0.239474i
\(280\) 0 0
\(281\) 18.0000 + 18.0000i 1.07379 + 1.07379i 0.997051 + 0.0767387i \(0.0244507\pi\)
0.0767387 + 0.997051i \(0.475549\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.0000i 1.41668i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 7.00000 + 7.00000i 0.410347 + 0.410347i
\(292\) 0 0
\(293\) −6.00000 6.00000i −0.350524 0.350524i 0.509781 0.860304i \(-0.329727\pi\)
−0.860304 + 0.509781i \(0.829727\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.00000 3.00000i −0.174078 0.174078i
\(298\) 0 0
\(299\) 18.0000 + 12.0000i 1.04097 + 0.693978i
\(300\) 0 0
\(301\) 16.0000 16.0000i 0.922225 0.922225i
\(302\) 0 0
\(303\) −18.0000 −1.03407
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −10.0000 + 10.0000i −0.570730 + 0.570730i −0.932332 0.361602i \(-0.882230\pi\)
0.361602 + 0.932332i \(0.382230\pi\)
\(308\) 0 0
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 + 12.0000i −0.673987 + 0.673987i −0.958633 0.284646i \(-0.908124\pi\)
0.284646 + 0.958633i \(0.408124\pi\)
\(318\) 0 0
\(319\) 18.0000 18.0000i 1.00781 1.00781i
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) −24.0000 + 24.0000i −1.33540 + 1.33540i
\(324\) 0 0
\(325\) 10.0000 15.0000i 0.554700 0.832050i
\(326\) 0 0
\(327\) 5.00000 + 5.00000i 0.276501 + 0.276501i
\(328\) 0 0
\(329\) 12.0000i 0.661581i
\(330\) 0 0
\(331\) −2.00000 2.00000i −0.109930 0.109930i 0.650002 0.759932i \(-0.274768\pi\)
−0.759932 + 0.650002i \(0.774768\pi\)
\(332\) 0 0
\(333\) −7.00000 7.00000i −0.383598 0.383598i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 32.0000i 1.74315i −0.490261 0.871576i \(-0.663099\pi\)
0.490261 0.871576i \(-0.336901\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 0 0
\(349\) −7.00000 7.00000i −0.374701 0.374701i 0.494485 0.869186i \(-0.335357\pi\)
−0.869186 + 0.494485i \(0.835357\pi\)
\(350\) 0 0
\(351\) 2.00000 3.00000i 0.106752 0.160128i
\(352\) 0 0
\(353\) −18.0000 + 18.0000i −0.958043 + 0.958043i −0.999155 0.0411112i \(-0.986910\pi\)
0.0411112 + 0.999155i \(0.486910\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12.0000 12.0000i 0.635107 0.635107i
\(358\) 0 0
\(359\) −9.00000 + 9.00000i −0.475002 + 0.475002i −0.903529 0.428527i \(-0.859033\pi\)
0.428527 + 0.903529i \(0.359033\pi\)
\(360\) 0 0
\(361\) 13.0000i 0.684211i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 36.0000i 1.87918i −0.342296 0.939592i \(-0.611204\pi\)
0.342296 0.939592i \(-0.388796\pi\)
\(368\) 0 0
\(369\) −6.00000 + 6.00000i −0.312348 + 0.312348i
\(370\) 0 0
\(371\) 12.0000 12.0000i 0.623009 0.623009i
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000 + 12.0000i 0.927047 + 0.618031i
\(378\) 0 0
\(379\) 16.0000 + 16.0000i 0.821865 + 0.821865i 0.986375 0.164511i \(-0.0526045\pi\)
−0.164511 + 0.986375i \(0.552604\pi\)
\(380\) 0 0
\(381\) 12.0000i 0.614779i
\(382\) 0 0
\(383\) −21.0000 21.0000i −1.07305 1.07305i −0.997113 0.0759373i \(-0.975805\pi\)
−0.0759373 0.997113i \(-0.524195\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) 36.0000i 1.82060i
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 7.00000i −0.351320 0.351320i 0.509281 0.860601i \(-0.329912\pi\)
−0.860601 + 0.509281i \(0.829912\pi\)
\(398\) 0 0
\(399\) 16.0000i 0.801002i
\(400\) 0 0
\(401\) 24.0000 + 24.0000i 1.19850 + 1.19850i 0.974615 + 0.223888i \(0.0718750\pi\)
0.223888 + 0.974615i \(0.428125\pi\)
\(402\) 0 0
\(403\) −4.00000 20.0000i −0.199254 0.996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −42.0000 −2.08186
\(408\) 0 0
\(409\) 1.00000 1.00000i 0.0494468 0.0494468i −0.681951 0.731398i \(-0.738868\pi\)
0.731398 + 0.681951i \(0.238868\pi\)
\(410\) 0 0
\(411\) −6.00000 + 6.00000i −0.295958 + 0.295958i
\(412\) 0 0
\(413\) 36.0000i 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) 30.0000i 1.46560i 0.680446 + 0.732798i \(0.261786\pi\)
−0.680446 + 0.732798i \(0.738214\pi\)
\(420\) 0 0
\(421\) −11.0000 + 11.0000i −0.536107 + 0.536107i −0.922383 0.386276i \(-0.873761\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(422\) 0 0
\(423\) 3.00000 3.00000i 0.145865 0.145865i
\(424\) 0 0
\(425\) 30.0000 1.45521
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.00000 15.0000i −0.144841 0.724207i
\(430\) 0 0
\(431\) 15.0000 + 15.0000i 0.722525 + 0.722525i 0.969119 0.246594i \(-0.0793115\pi\)
−0.246594 + 0.969119i \(0.579311\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 + 24.0000i 1.14808 + 1.14808i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 1.00000i 0.0476190i
\(442\) 0 0
\(443\) 6.00000i 0.285069i 0.989790 + 0.142534i \(0.0455251\pi\)
−0.989790 + 0.142534i \(0.954475\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 + 6.00000i 0.283790 + 0.283790i
\(448\) 0 0
\(449\) 12.0000 + 12.0000i 0.566315 + 0.566315i 0.931094 0.364779i \(-0.118855\pi\)
−0.364779 + 0.931094i \(0.618855\pi\)
\(450\) 0 0
\(451\) 36.0000i 1.69517i
\(452\) 0 0
\(453\) −4.00000 4.00000i −0.187936 0.187936i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 + 1.00000i −0.0467780 + 0.0467780i −0.730109 0.683331i \(-0.760531\pi\)
0.683331 + 0.730109i \(0.260531\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) −12.0000 + 12.0000i −0.558896 + 0.558896i −0.928993 0.370097i \(-0.879324\pi\)
0.370097 + 0.928993i \(0.379324\pi\)
\(462\) 0 0
\(463\) 14.0000 14.0000i 0.650635 0.650635i −0.302511 0.953146i \(-0.597825\pi\)
0.953146 + 0.302511i \(0.0978248\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 4.00000i 0.184310i
\(472\) 0 0
\(473\) 24.0000 24.0000i 1.10352 1.10352i
\(474\) 0 0
\(475\) 20.0000 20.0000i 0.917663 0.917663i
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 21.0000 21.0000i 0.959514 0.959514i −0.0396973 0.999212i \(-0.512639\pi\)
0.999212 + 0.0396973i \(0.0126394\pi\)
\(480\) 0 0
\(481\) −7.00000 35.0000i −0.319173 1.59586i
\(482\) 0 0
\(483\) −12.0000 12.0000i −0.546019 0.546019i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0000 20.0000i −0.906287 0.906287i 0.0896838 0.995970i \(-0.471414\pi\)
−0.995970 + 0.0896838i \(0.971414\pi\)
\(488\) 0 0
\(489\) −16.0000 16.0000i −0.723545 0.723545i
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 2.00000 + 2.00000i 0.0895323 + 0.0895323i 0.750454 0.660922i \(-0.229835\pi\)
−0.660922 + 0.750454i \(0.729835\pi\)
\(500\) 0 0
\(501\) 3.00000 + 3.00000i 0.134030 + 0.134030i
\(502\) 0 0
\(503\) 30.0000i 1.33763i −0.743427 0.668817i \(-0.766801\pi\)
0.743427 0.668817i \(-0.233199\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000 5.00000i 0.532939 0.222058i
\(508\) 0 0
\(509\) −12.0000 + 12.0000i −0.531891 + 0.531891i −0.921135 0.389244i \(-0.872736\pi\)
0.389244 + 0.921135i \(0.372736\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) 4.00000 4.00000i 0.176604 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000i 0.791639i
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) −10.0000 + 10.0000i −0.436436 + 0.436436i
\(526\) 0 0
\(527\) 24.0000 24.0000i 1.04546 1.04546i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −9.00000 + 9.00000i −0.390567 + 0.390567i
\(532\) 0 0
\(533\) −30.0000 + 6.00000i −1.29944 + 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) 0 0
\(541\) 7.00000 + 7.00000i 0.300954 + 0.300954i 0.841387 0.540433i \(-0.181740\pi\)
−0.540433 + 0.841387i \(0.681740\pi\)
\(542\) 0 0
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 36.0000i 1.53925i 0.638497 + 0.769624i \(0.279557\pi\)
−0.638497 + 0.769624i \(0.720443\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000 + 24.0000i 1.02243 + 1.02243i
\(552\) 0 0
\(553\) −16.0000 16.0000i −0.680389 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 6.00000i −0.254228 0.254228i 0.568473 0.822702i \(-0.307534\pi\)
−0.822702 + 0.568473i \(0.807534\pi\)
\(558\) 0 0
\(559\) 24.0000 + 16.0000i 1.01509 + 0.676728i
\(560\) 0 0
\(561\) 18.0000 18.0000i 0.759961 0.759961i
\(562\) 0 0
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.00000 + 2.00000i −0.0839921 + 0.0839921i
\(568\) 0 0
\(569\) 30.0000i 1.25767i −0.777541 0.628833i \(-0.783533\pi\)
0.777541 0.628833i \(-0.216467\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 30.0000i 1.25109i
\(576\) 0 0
\(577\) 1.00000 1.00000i 0.0416305 0.0416305i −0.685985 0.727616i \(-0.740628\pi\)
0.727616 + 0.685985i \(0.240628\pi\)
\(578\) 0 0
\(579\) −7.00000 + 7.00000i −0.290910 + 0.290910i
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 18.0000 18.0000i 0.745484 0.745484i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00000 + 3.00000i 0.123823 + 0.123823i 0.766303 0.642480i \(-0.222094\pi\)
−0.642480 + 0.766303i \(0.722094\pi\)
\(588\) 0 0
\(589\) 32.0000i 1.31854i
\(590\) 0 0
\(591\) 12.0000 + 12.0000i 0.493614 + 0.493614i
\(592\) 0 0
\(593\) 24.0000 + 24.0000i 0.985562 + 0.985562i 0.999897 0.0143354i \(-0.00456325\pi\)
−0.0143354 + 0.999897i \(0.504563\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000i 0.982255i
\(598\) 0 0
\(599\) 18.0000i 0.735460i −0.929933 0.367730i \(-0.880135\pi\)
0.929933 0.367730i \(-0.119865\pi\)
\(600\) 0 0
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 0 0
\(603\) 2.00000 + 2.00000i 0.0814463 + 0.0814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0000i 0.487065i 0.969893 + 0.243532i \(0.0783062\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(608\) 0 0
\(609\) −12.0000 12.0000i −0.486265 0.486265i
\(610\) 0 0
\(611\) 15.0000 3.00000i 0.606835 0.121367i
\(612\) 0 0
\(613\) 1.00000 1.00000i 0.0403896 0.0403896i −0.686624 0.727013i \(-0.740908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 + 6.00000i −0.241551 + 0.241551i −0.817492 0.575941i \(-0.804636\pi\)
0.575941 + 0.817492i \(0.304636\pi\)
\(618\) 0 0
\(619\) 22.0000 22.0000i 0.884255 0.884255i −0.109709 0.993964i \(-0.534992\pi\)
0.993964 + 0.109709i \(0.0349919\pi\)
\(620\) 0 0
\(621\) 6.00000i 0.240772i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 24.0000i 0.958468i
\(628\) 0 0
\(629\) 42.0000 42.0000i 1.67465 1.67465i
\(630\) 0 0
\(631\) −4.00000 + 4.00000i −0.159237 + 0.159237i −0.782229 0.622991i \(-0.785917\pi\)
0.622991 + 0.782229i \(0.285917\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 + 3.00000i −0.0792429 + 0.118864i
\(638\) 0 0
\(639\) −3.00000 3.00000i −0.118678 0.118678i
\(640\) 0 0
\(641\) 18.0000i 0.710957i 0.934684 + 0.355479i \(0.115682\pi\)
−0.934684 + 0.355479i \(0.884318\pi\)
\(642\) 0 0
\(643\) −2.00000 2.00000i −0.0788723 0.0788723i 0.666570 0.745442i \(-0.267762\pi\)
−0.745442 + 0.666570i \(0.767762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 54.0000i 2.11969i
\(650\) 0 0
\(651\) 16.0000i 0.627089i
\(652\) 0 0
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.00000 1.00000i −0.0390137 0.0390137i
\(658\) 0 0
\(659\) 12.0000i 0.467454i −0.972302 0.233727i \(-0.924908\pi\)
0.972302 0.233727i \(-0.0750921\pi\)
\(660\) 0 0
\(661\) −29.0000 29.0000i −1.12797 1.12797i −0.990507 0.137462i \(-0.956105\pi\)
−0.137462 0.990507i \(-0.543895\pi\)
\(662\) 0 0
\(663\) 18.0000 + 12.0000i 0.699062 + 0.466041i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 8.00000 8.00000i 0.309298 0.309298i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 30.0000i 1.15642i 0.815890 + 0.578208i \(0.196248\pi\)
−0.815890 + 0.578208i \(0.803752\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 28.0000i 1.07454i
\(680\) 0 0
\(681\) −9.00000 + 9.00000i −0.344881 + 0.344881i
\(682\) 0 0
\(683\) 15.0000 15.0000i 0.573959 0.573959i −0.359273 0.933232i \(-0.616975\pi\)
0.933232 + 0.359273i \(0.116975\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −17.0000 + 17.0000i −0.648590 + 0.648590i
\(688\) 0 0
\(689\) 18.0000 + 12.0000i 0.685745 + 0.457164i
\(690\) 0 0
\(691\) 2.00000 + 2.00000i 0.0760836 + 0.0760836i 0.744125 0.668041i \(-0.232867\pi\)
−0.668041 + 0.744125i \(0.732867\pi\)
\(692\) 0 0
\(693\) 12.0000i 0.455842i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −36.0000 36.0000i −1.36360 1.36360i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 30.0000i 1.13308i −0.824033 0.566542i \(-0.808281\pi\)
0.824033 0.566542i \(-0.191719\pi\)
\(702\) 0 0
\(703\) 56.0000i 2.11208i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000 + 36.0000i 1.35392 + 1.35392i
\(708\) 0 0
\(709\) 29.0000 + 29.0000i 1.08912 + 1.08912i 0.995619 + 0.0934984i \(0.0298050\pi\)
0.0934984 + 0.995619i \(0.470195\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) −24.0000 24.0000i −0.898807 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.00000 9.00000i 0.336111 0.336111i
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −8.00000 + 8.00000i −0.297936 + 0.297936i
\(722\) 0 0
\(723\) 11.0000 11.0000i 0.409094 0.409094i
\(724\) 0 0
\(725\) 30.0000i 1.11417i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 48.0000i 1.77534i
\(732\) 0 0
\(733\) 5.00000 5.00000i 0.184679 0.184679i −0.608712 0.793391i \(-0.708314\pi\)
0.793391 + 0.608712i \(0.208314\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) −38.0000 + 38.0000i −1.39785 + 1.39785i −0.591679 + 0.806174i \(0.701535\pi\)
−0.806174 + 0.591679i \(0.798465\pi\)
\(740\) 0 0
\(741\) 20.0000 4.00000i 0.734718 0.146944i
\(742\) 0 0
\(743\) 21.0000 + 21.0000i 0.770415 + 0.770415i 0.978179 0.207764i \(-0.0666185\pi\)
−0.207764 + 0.978179i \(0.566619\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.00000 + 3.00000i 0.109764 + 0.109764i
\(748\) 0 0
\(749\) 36.0000 + 36.0000i 1.31541 + 1.31541i
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 6.00000i 0.218652i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 36.0000 1.30844 0.654221 0.756303i \(-0.272997\pi\)
0.654221 + 0.756303i \(0.272997\pi\)
\(758\) 0 0
\(759\) −18.0000 18.0000i −0.653359 0.653359i
\(760\) 0 0
\(761\) −18.0000 18.0000i −0.652499 0.652499i 0.301095 0.953594i \(-0.402648\pi\)
−0.953594 + 0.301095i \(0.902648\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −45.0000 + 9.00000i −1.62486 + 0.324971i
\(768\) 0 0
\(769\) 1.00000 1.00000i 0.0360609 0.0360609i −0.688846 0.724907i \(-0.741883\pi\)
0.724907 + 0.688846i \(0.241883\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −30.0000 + 30.0000i −1.07903 + 1.07903i −0.0824280 + 0.996597i \(0.526267\pi\)
−0.996597 + 0.0824280i \(0.973733\pi\)
\(774\) 0 0
\(775\) −20.0000 + 20.0000i −0.718421 + 0.718421i
\(776\) 0 0
\(777\) 28.0000i 1.00449i
\(778\) 0 0
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 2.00000i 0.0712923 0.0712923i −0.670562 0.741854i \(-0.733947\pi\)
0.741854 + 0.670562i \(0.233947\pi\)
\(788\) 0 0
\(789\) −30.0000 −1.06803
\(790\) 0 0
\(791\) 12.0000 12.0000i 0.426671 0.426671i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000i 0.212531i −0.994338 0.106265i \(-0.966111\pi\)
0.994338 0.106265i \(-0.0338893\pi\)
\(798\) 0 0
\(799\) 18.0000 + 18.0000i 0.636794 + 0.636794i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000i 0.633630i
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) −4.00000 4.00000i −0.140459 0.140459i 0.633381 0.773840i \(-0.281667\pi\)
−0.773840 + 0.633381i \(0.781667\pi\)
\(812\) 0 0
\(813\) 10.0000 + 10.0000i 0.350715 + 0.350715i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000 + 32.0000i 1.11954 + 1.11954i
\(818\) 0 0
\(819\) −10.0000 + 2.00000i −0.349428 + 0.0698857i
\(820\) 0 0
\(821\) 6.00000 6.00000i 0.209401 0.209401i −0.594612 0.804013i \(-0.702694\pi\)
0.804013 + 0.594612i \(0.202694\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 0 0
\(825\) −15.0000 + 15.0000i −0.522233 + 0.522233i
\(826\) 0 0
\(827\) 9.00000 9.00000i 0.312961 0.312961i −0.533095 0.846055i \(-0.678971\pi\)
0.846055 + 0.533095i \(0.178971\pi\)
\(828\) 0 0
\(829\) 2.00000i 0.0694629i −0.999397 0.0347314i \(-0.988942\pi\)
0.999397 0.0347314i \(-0.0110576\pi\)
\(830\) 0 0
\(831\) 24.0000 0.832551
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 + 4.00000i −0.138260 + 0.138260i
\(838\) 0 0
\(839\) −15.0000 + 15.0000i −0.517858 + 0.517858i −0.916923 0.399065i \(-0.869335\pi\)
0.399065 + 0.916923i \(0.369335\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 18.0000 18.0000i 0.619953 0.619953i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000 + 14.0000i 0.481046 + 0.481046i
\(848\) 0 0
\(849\) 24.0000i 0.823678i
\(850\) 0 0
\(851\) −42.0000 42.0000i −1.43974 1.43974i
\(852\) 0 0
\(853\) 13.0000 + 13.0000i 0.445112 + 0.445112i 0.893726 0.448614i \(-0.148082\pi\)
−0.448614 + 0.893726i \(0.648082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 54.0000i 1.84460i −0.386469 0.922302i \(-0.626305\pi\)
0.386469 0.922302i \(-0.373695\pi\)
\(858\) 0 0
\(859\) 40.0000i 1.36478i 0.730987 + 0.682391i \(0.239060\pi\)
−0.730987 + 0.682391i \(0.760940\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) 0 0
\(863\) −27.0000 27.0000i −0.919091 0.919091i 0.0778726 0.996963i \(-0.475187\pi\)
−0.996963 + 0.0778726i \(0.975187\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 19.0000i 0.645274i
\(868\) 0 0
\(869\) −24.0000 24.0000i −0.814144 0.814144i
\(870\) 0 0
\(871\) 2.00000 + 10.0000i 0.0677674 + 0.338837i
\(872\) 0 0
\(873\) 7.00000 7.00000i 0.236914 0.236914i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.0000 19.0000i 0.641584 0.641584i −0.309360 0.950945i \(-0.600115\pi\)
0.950945 + 0.309360i \(0.100115\pi\)
\(878\) 0 0
\(879\) −6.00000 + 6.00000i −0.202375 + 0.202375i
\(880\) 0 0
\(881\) 18.0000i 0.606435i −0.952921 0.303218i \(-0.901939\pi\)
0.952921 0.303218i \(-0.0980609\pi\)
\(882\) 0 0
\(883\) −24.0000 −0.807664 −0.403832 0.914833i \(-0.632322\pi\)
−0.403832 + 0.914833i \(0.632322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) 0 0
\(889\) −24.0000 + 24.0000i −0.804934 + 0.804934i
\(890\) 0 0
\(891\) −3.00000 + 3.00000i −0.100504 + 0.100504i
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000 18.0000i 0.400668 0.601003i
\(898\) 0 0
\(899\) −24.0000 24.0000i −0.800445 0.800445i
\(900\) 0 0
\(901\) 36.0000i 1.19933i
\(902\) 0 0
\(903\) −16.0000 16.0000i −0.532447 0.532447i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) 18.0000i 0.597022i
\(910\) 0 0
\(911\) 24.0000i 0.795155i 0.917568 + 0.397578i \(0.130149\pi\)
−0.917568 + 0.397578i \(0.869851\pi\)
\(912\) 0 0
\(913\) 18.0000 0.595713
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.0000 36.0000i −1.18882 1.18882i
\(918\) 0 0
\(919\) 16.0000i 0.527791i −0.964551 0.263896i \(-0.914993\pi\)
0.964551 0.263896i \(-0.0850075\pi\)
\(920\) 0 0
\(921\) 10.0000 + 10.0000i 0.329511 + 0.329511i
\(922\) 0 0
\(923\) −3.00000 15.0000i −0.0987462 0.493731i
\(924\) 0 0
\(925\) −35.0000 + 35.0000i −1.15079 + 1.15079i
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) 30.0000 30.0000i 0.984268 0.984268i −0.0156101 0.999878i \(-0.504969\pi\)
0.999878 + 0.0156101i \(0.00496905\pi\)
\(930\) 0 0
\(931\) −4.00000 + 4.00000i −0.131095 + 0.131095i
\(932\) 0 0
\(933\) 18.0000i 0.589294i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 6.00000i 0.195803i
\(940\) 0 0
\(941\) −6.00000 + 6.00000i −0.195594 + 0.195594i −0.798108 0.602514i \(-0.794166\pi\)
0.602514 + 0.798108i \(0.294166\pi\)
\(942\) 0 0
\(943\) −36.0000 + 36.0000i −1.17232 + 1.17232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.00000 + 3.00000i −0.0974869 + 0.0974869i −0.754168 0.656681i \(-0.771960\pi\)
0.656681 + 0.754168i \(0.271960\pi\)
\(948\) 0 0
\(949\) −1.00000 5.00000i −0.0324614 0.162307i
\(950\) 0 0
\(951\) 12.0000 + 12.0000i 0.389127 + 0.389127i
\(952\) 0 0
\(953\) 42.0000i 1.36051i −0.732974 0.680257i \(-0.761868\pi\)
0.732974 0.680257i \(-0.238132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18.0000 18.0000i −0.581857 0.581857i
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) 18.0000i 0.580042i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −16.0000 16.0000i −0.514525 0.514525i 0.401384 0.915910i \(-0.368529\pi\)
−0.915910 + 0.401384i \(0.868529\pi\)
\(968\) 0 0
\(969\) 24.0000 + 24.0000i 0.770991 + 0.770991i
\(970\) 0 0
\(971\) 60.0000i 1.92549i 0.270408 + 0.962746i \(0.412841\pi\)
−0.270408 + 0.962746i \(0.587159\pi\)
\(972\) 0 0
\(973\) 24.0000 + 24.0000i 0.769405 + 0.769405i
\(974\) 0 0
\(975\) −15.0000 10.0000i −0.480384 0.320256i
\(976\) 0 0
\(977\) −24.0000 + 24.0000i −0.767828 + 0.767828i −0.977724 0.209896i \(-0.932688\pi\)
0.209896 + 0.977724i \(0.432688\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.00000 5.00000i 0.159638 0.159638i
\(982\) 0 0
\(983\) 9.00000 9.00000i 0.287055 0.287055i −0.548859 0.835915i \(-0.684938\pi\)
0.835915 + 0.548859i \(0.184938\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −2.00000 + 2.00000i −0.0634681 + 0.0634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 0 0
\(999\) −7.00000 + 7.00000i −0.221470 + 0.221470i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.bc.a.31.1 2
3.2 odd 2 1872.2.bf.c.1279.1 2
4.3 odd 2 624.2.bc.b.31.1 yes 2
12.11 even 2 1872.2.bf.d.1279.1 2
13.8 odd 4 624.2.bc.b.463.1 yes 2
39.8 even 4 1872.2.bf.d.1711.1 2
52.47 even 4 inner 624.2.bc.a.463.1 yes 2
156.47 odd 4 1872.2.bf.c.1711.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.2.bc.a.31.1 2 1.1 even 1 trivial
624.2.bc.a.463.1 yes 2 52.47 even 4 inner
624.2.bc.b.31.1 yes 2 4.3 odd 2
624.2.bc.b.463.1 yes 2 13.8 odd 4
1872.2.bf.c.1279.1 2 3.2 odd 2
1872.2.bf.c.1711.1 2 156.47 odd 4
1872.2.bf.d.1279.1 2 12.11 even 2
1872.2.bf.d.1711.1 2 39.8 even 4