Properties

Label 624.2
Level 624
Weight 2
Dimension 4382
Nonzero newspaces 28
Newform subspaces 120
Sturm bound 43008
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 28 \)
Newform subspaces: \( 120 \)
Sturm bound: \(43008\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(624))\).

Total New Old
Modular forms 11424 4582 6842
Cusp forms 10081 4382 5699
Eisenstein series 1343 200 1143

Trace form

\( 4382q - 16q^{3} - 32q^{4} + 4q^{5} - 8q^{6} - 20q^{7} + 24q^{8} + 4q^{9} + O(q^{10}) \) \( 4382q - 16q^{3} - 32q^{4} + 4q^{5} - 8q^{6} - 20q^{7} + 24q^{8} + 4q^{9} - 32q^{10} + 24q^{11} - 24q^{12} - 50q^{13} - 24q^{14} + 2q^{15} - 80q^{16} - 4q^{17} - 40q^{18} - 4q^{19} - 32q^{20} - 38q^{21} - 80q^{22} - 16q^{23} - 80q^{24} - 18q^{25} - 20q^{26} - 58q^{27} - 48q^{28} + 20q^{29} - 64q^{30} - 68q^{31} - 38q^{33} - 32q^{34} - 48q^{35} - 56q^{36} + 8q^{37} + 16q^{38} - 24q^{39} - 48q^{40} + 60q^{41} + 64q^{42} + 60q^{43} + 80q^{44} + 22q^{45} + 48q^{46} + 72q^{47} + 104q^{48} + 78q^{49} + 72q^{50} - 20q^{51} - 16q^{52} + 68q^{53} + 72q^{54} + 44q^{55} + 58q^{57} - 80q^{58} + 16q^{59} - 40q^{60} - 48q^{61} + 24q^{62} - 22q^{63} - 176q^{64} + 60q^{65} - 152q^{66} - 44q^{67} - 64q^{68} - 86q^{69} - 192q^{70} + 16q^{71} - 96q^{72} - 72q^{73} - 104q^{74} + 2q^{75} - 176q^{76} - 32q^{77} - 72q^{78} - 40q^{79} - 16q^{80} - 68q^{81} - 96q^{82} + 72q^{83} - 176q^{84} - 132q^{85} - 160q^{86} + 54q^{87} - 224q^{88} - 180q^{89} - 288q^{90} - 68q^{91} - 256q^{92} - 190q^{93} - 352q^{94} - 8q^{95} - 344q^{96} - 232q^{97} - 352q^{98} + 14q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(624))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
624.2.a \(\chi_{624}(1, \cdot)\) 624.2.a.a 1 1
624.2.a.b 1
624.2.a.c 1
624.2.a.d 1
624.2.a.e 1
624.2.a.f 1
624.2.a.g 1
624.2.a.h 1
624.2.a.i 1
624.2.a.j 1
624.2.a.k 2
624.2.c \(\chi_{624}(337, \cdot)\) 624.2.c.a 2 1
624.2.c.b 2
624.2.c.c 2
624.2.c.d 2
624.2.c.e 2
624.2.c.f 2
624.2.c.g 2
624.2.d \(\chi_{624}(287, \cdot)\) 624.2.d.a 2 1
624.2.d.b 2
624.2.d.c 2
624.2.d.d 2
624.2.d.e 2
624.2.d.f 2
624.2.d.g 4
624.2.d.h 4
624.2.d.i 4
624.2.g \(\chi_{624}(313, \cdot)\) None 0 1
624.2.h \(\chi_{624}(311, \cdot)\) None 0 1
624.2.j \(\chi_{624}(599, \cdot)\) None 0 1
624.2.m \(\chi_{624}(25, \cdot)\) None 0 1
624.2.n \(\chi_{624}(623, \cdot)\) 624.2.n.a 2 1
624.2.n.b 2
624.2.n.c 4
624.2.n.d 4
624.2.n.e 8
624.2.n.f 8
624.2.q \(\chi_{624}(289, \cdot)\) 624.2.q.a 2 2
624.2.q.b 2
624.2.q.c 2
624.2.q.d 2
624.2.q.e 2
624.2.q.f 2
624.2.q.g 2
624.2.q.h 4
624.2.q.i 4
624.2.q.j 6
624.2.r \(\chi_{624}(499, \cdot)\) 624.2.r.a 112 2
624.2.u \(\chi_{624}(5, \cdot)\) 624.2.u.a 4 2
624.2.u.b 4
624.2.u.c 208
624.2.v \(\chi_{624}(155, \cdot)\) 624.2.v.a 16 2
624.2.v.b 200
624.2.x \(\chi_{624}(157, \cdot)\) 624.2.x.a 40 2
624.2.x.b 56
624.2.bb \(\chi_{624}(151, \cdot)\) None 0 2
624.2.bc \(\chi_{624}(31, \cdot)\) 624.2.bc.a 2 2
624.2.bc.b 2
624.2.bc.c 4
624.2.bc.d 4
624.2.bc.e 8
624.2.bc.f 8
624.2.bf \(\chi_{624}(161, \cdot)\) 624.2.bf.a 4 2
624.2.bf.b 4
624.2.bf.c 4
624.2.bf.d 4
624.2.bf.e 8
624.2.bf.f 12
624.2.bf.g 16
624.2.bg \(\chi_{624}(281, \cdot)\) None 0 2
624.2.bh \(\chi_{624}(131, \cdot)\) 624.2.bh.a 192 2
624.2.bj \(\chi_{624}(181, \cdot)\) 624.2.bj.a 112 2
624.2.bm \(\chi_{624}(317, \cdot)\) 624.2.bm.a 4 2
624.2.bm.b 4
624.2.bm.c 208
624.2.bn \(\chi_{624}(187, \cdot)\) 624.2.bn.a 112 2
624.2.bq \(\chi_{624}(23, \cdot)\) None 0 2
624.2.br \(\chi_{624}(217, \cdot)\) None 0 2
624.2.bu \(\chi_{624}(191, \cdot)\) 624.2.bu.a 2 2
624.2.bu.b 2
624.2.bu.c 2
624.2.bu.d 2
624.2.bu.e 2
624.2.bu.f 2
624.2.bu.g 2
624.2.bu.h 2
624.2.bu.i 4
624.2.bu.j 4
624.2.bu.k 6
624.2.bu.l 6
624.2.bu.m 6
624.2.bu.n 6
624.2.bu.o 8
624.2.bv \(\chi_{624}(49, \cdot)\) 624.2.bv.a 2 2
624.2.bv.b 2
624.2.bv.c 4
624.2.bv.d 4
624.2.bv.e 4
624.2.bv.f 4
624.2.bv.g 8
624.2.bz \(\chi_{624}(95, \cdot)\) 624.2.bz.a 2 2
624.2.bz.b 2
624.2.bz.c 2
624.2.bz.d 2
624.2.bz.e 8
624.2.bz.f 8
624.2.bz.g 16
624.2.bz.h 16
624.2.ca \(\chi_{624}(121, \cdot)\) None 0 2
624.2.cd \(\chi_{624}(263, \cdot)\) None 0 2
624.2.ce \(\chi_{624}(149, \cdot)\) 624.2.ce.a 432 4
624.2.ch \(\chi_{624}(19, \cdot)\) 624.2.ch.a 224 4
624.2.cj \(\chi_{624}(205, \cdot)\) 624.2.cj.a 224 4
624.2.cl \(\chi_{624}(35, \cdot)\) 624.2.cl.a 432 4
624.2.cm \(\chi_{624}(41, \cdot)\) None 0 4
624.2.cn \(\chi_{624}(305, \cdot)\) 624.2.cn.a 4 4
624.2.cn.b 4
624.2.cn.c 8
624.2.cn.d 16
624.2.cn.e 16
624.2.cn.f 56
624.2.cq \(\chi_{624}(175, \cdot)\) 624.2.cq.a 8 4
624.2.cq.b 8
624.2.cq.c 8
624.2.cq.d 8
624.2.cq.e 12
624.2.cq.f 12
624.2.cr \(\chi_{624}(7, \cdot)\) None 0 4
624.2.cv \(\chi_{624}(61, \cdot)\) 624.2.cv.a 224 4
624.2.cx \(\chi_{624}(179, \cdot)\) 624.2.cx.a 432 4
624.2.cz \(\chi_{624}(115, \cdot)\) 624.2.cz.a 224 4
624.2.da \(\chi_{624}(245, \cdot)\) 624.2.da.a 432 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(624))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(624)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(312))\)\(^{\oplus 2}\)