Defining parameters
Level: | \( N \) | \(=\) | \( 624 = 2^{4} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 624.bc (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(624, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 28 | 220 |
Cusp forms | 200 | 28 | 172 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(624, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
624.2.bc.a | $2$ | $4.983$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+i q^{3}+(-2 i-2)q^{7}-q^{9}+(-3 i-3)q^{11}+\cdots\) |
624.2.bc.b | $2$ | $4.983$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-i q^{3}+(2 i+2)q^{7}-q^{9}+(3 i+3)q^{11}+\cdots\) |
624.2.bc.c | $4$ | $4.983$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(0\) | \(-2\) | \(-8\) | \(q-\beta _{1}q^{3}+(-1+\beta _{2})q^{5}+(-2-2\beta _{1}+\cdots)q^{7}+\cdots\) |
624.2.bc.d | $4$ | $4.983$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(0\) | \(-2\) | \(8\) | \(q-\beta _{1}q^{3}+(-1+\beta _{1}-\beta _{3})q^{5}+(2-2\beta _{1}+\cdots)q^{7}+\cdots\) |
624.2.bc.e | $8$ | $4.983$ | 8.0.56070144.2 | None | \(0\) | \(0\) | \(-4\) | \(-8\) | \(q+\beta _{1}q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\) |
624.2.bc.f | $8$ | $4.983$ | 8.0.56070144.2 | None | \(0\) | \(0\) | \(-4\) | \(8\) | \(q-\beta _{1}q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(1+\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(624, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(624, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)