Properties

Label 6223.2.a.p.1.9
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,11,38,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80084 q^{2} -3.27481 q^{3} +1.24303 q^{4} +1.98237 q^{5} +5.89741 q^{6} +1.36319 q^{8} +7.72436 q^{9} -3.56994 q^{10} -3.35625 q^{11} -4.07068 q^{12} -2.29226 q^{13} -6.49189 q^{15} -4.94094 q^{16} -0.137620 q^{17} -13.9104 q^{18} +0.990399 q^{19} +2.46415 q^{20} +6.04408 q^{22} -5.97904 q^{23} -4.46417 q^{24} -1.07020 q^{25} +4.12800 q^{26} -15.4714 q^{27} -9.52451 q^{29} +11.6909 q^{30} -9.64350 q^{31} +6.17147 q^{32} +10.9911 q^{33} +0.247832 q^{34} +9.60161 q^{36} -10.0947 q^{37} -1.78355 q^{38} +7.50672 q^{39} +2.70234 q^{40} -4.24513 q^{41} +3.91855 q^{43} -4.17192 q^{44} +15.3126 q^{45} +10.7673 q^{46} -3.08238 q^{47} +16.1806 q^{48} +1.92726 q^{50} +0.450679 q^{51} -2.84935 q^{52} +3.23436 q^{53} +27.8615 q^{54} -6.65334 q^{55} -3.24337 q^{57} +17.1521 q^{58} -7.78466 q^{59} -8.06960 q^{60} -3.32649 q^{61} +17.3664 q^{62} -1.23197 q^{64} -4.54412 q^{65} -19.7932 q^{66} -8.34418 q^{67} -0.171066 q^{68} +19.5802 q^{69} -5.67836 q^{71} +10.5297 q^{72} +7.22014 q^{73} +18.1790 q^{74} +3.50470 q^{75} +1.23109 q^{76} -13.5184 q^{78} -7.90576 q^{79} -9.79477 q^{80} +27.4927 q^{81} +7.64480 q^{82} +17.2797 q^{83} -0.272814 q^{85} -7.05669 q^{86} +31.1909 q^{87} -4.57519 q^{88} +5.07565 q^{89} -27.5755 q^{90} -7.43211 q^{92} +31.5806 q^{93} +5.55087 q^{94} +1.96334 q^{95} -20.2104 q^{96} +14.4942 q^{97} -25.9249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} + 11 q^{3} + 38 q^{4} + 16 q^{5} + 11 q^{6} + 47 q^{9} + 12 q^{10} - 2 q^{11} + 30 q^{12} + 21 q^{13} + 7 q^{15} + 46 q^{16} + 58 q^{17} - 13 q^{18} + 17 q^{19} + 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80084 −1.27339 −0.636693 0.771117i \(-0.719698\pi\)
−0.636693 + 0.771117i \(0.719698\pi\)
\(3\) −3.27481 −1.89071 −0.945356 0.326041i \(-0.894285\pi\)
−0.945356 + 0.326041i \(0.894285\pi\)
\(4\) 1.24303 0.621514
\(5\) 1.98237 0.886544 0.443272 0.896387i \(-0.353818\pi\)
0.443272 + 0.896387i \(0.353818\pi\)
\(6\) 5.89741 2.40761
\(7\) 0 0
\(8\) 1.36319 0.481959
\(9\) 7.72436 2.57479
\(10\) −3.56994 −1.12891
\(11\) −3.35625 −1.01195 −0.505974 0.862549i \(-0.668867\pi\)
−0.505974 + 0.862549i \(0.668867\pi\)
\(12\) −4.07068 −1.17510
\(13\) −2.29226 −0.635759 −0.317880 0.948131i \(-0.602971\pi\)
−0.317880 + 0.948131i \(0.602971\pi\)
\(14\) 0 0
\(15\) −6.49189 −1.67620
\(16\) −4.94094 −1.23523
\(17\) −0.137620 −0.0333778 −0.0166889 0.999861i \(-0.505312\pi\)
−0.0166889 + 0.999861i \(0.505312\pi\)
\(18\) −13.9104 −3.27870
\(19\) 0.990399 0.227213 0.113607 0.993526i \(-0.463760\pi\)
0.113607 + 0.993526i \(0.463760\pi\)
\(20\) 2.46415 0.551000
\(21\) 0 0
\(22\) 6.04408 1.28860
\(23\) −5.97904 −1.24672 −0.623358 0.781937i \(-0.714232\pi\)
−0.623358 + 0.781937i \(0.714232\pi\)
\(24\) −4.46417 −0.911245
\(25\) −1.07020 −0.214040
\(26\) 4.12800 0.809568
\(27\) −15.4714 −2.97747
\(28\) 0 0
\(29\) −9.52451 −1.76866 −0.884329 0.466865i \(-0.845383\pi\)
−0.884329 + 0.466865i \(0.845383\pi\)
\(30\) 11.6909 2.13445
\(31\) −9.64350 −1.73202 −0.866012 0.500024i \(-0.833325\pi\)
−0.866012 + 0.500024i \(0.833325\pi\)
\(32\) 6.17147 1.09097
\(33\) 10.9911 1.91330
\(34\) 0.247832 0.0425028
\(35\) 0 0
\(36\) 9.60161 1.60027
\(37\) −10.0947 −1.65956 −0.829780 0.558090i \(-0.811534\pi\)
−0.829780 + 0.558090i \(0.811534\pi\)
\(38\) −1.78355 −0.289330
\(39\) 7.50672 1.20204
\(40\) 2.70234 0.427277
\(41\) −4.24513 −0.662978 −0.331489 0.943459i \(-0.607551\pi\)
−0.331489 + 0.943459i \(0.607551\pi\)
\(42\) 0 0
\(43\) 3.91855 0.597573 0.298787 0.954320i \(-0.403418\pi\)
0.298787 + 0.954320i \(0.403418\pi\)
\(44\) −4.17192 −0.628940
\(45\) 15.3126 2.28266
\(46\) 10.7673 1.58755
\(47\) −3.08238 −0.449611 −0.224806 0.974404i \(-0.572175\pi\)
−0.224806 + 0.974404i \(0.572175\pi\)
\(48\) 16.1806 2.33547
\(49\) 0 0
\(50\) 1.92726 0.272556
\(51\) 0.450679 0.0631077
\(52\) −2.84935 −0.395134
\(53\) 3.23436 0.444273 0.222137 0.975016i \(-0.428697\pi\)
0.222137 + 0.975016i \(0.428697\pi\)
\(54\) 27.8615 3.79147
\(55\) −6.65334 −0.897136
\(56\) 0 0
\(57\) −3.24337 −0.429594
\(58\) 17.1521 2.25218
\(59\) −7.78466 −1.01348 −0.506738 0.862100i \(-0.669149\pi\)
−0.506738 + 0.862100i \(0.669149\pi\)
\(60\) −8.06960 −1.04178
\(61\) −3.32649 −0.425913 −0.212956 0.977062i \(-0.568309\pi\)
−0.212956 + 0.977062i \(0.568309\pi\)
\(62\) 17.3664 2.20554
\(63\) 0 0
\(64\) −1.23197 −0.153996
\(65\) −4.54412 −0.563628
\(66\) −19.7932 −2.43637
\(67\) −8.34418 −1.01940 −0.509702 0.860351i \(-0.670244\pi\)
−0.509702 + 0.860351i \(0.670244\pi\)
\(68\) −0.171066 −0.0207448
\(69\) 19.5802 2.35718
\(70\) 0 0
\(71\) −5.67836 −0.673898 −0.336949 0.941523i \(-0.609395\pi\)
−0.336949 + 0.941523i \(0.609395\pi\)
\(72\) 10.5297 1.24094
\(73\) 7.22014 0.845053 0.422526 0.906351i \(-0.361143\pi\)
0.422526 + 0.906351i \(0.361143\pi\)
\(74\) 18.1790 2.11326
\(75\) 3.50470 0.404688
\(76\) 1.23109 0.141216
\(77\) 0 0
\(78\) −13.5184 −1.53066
\(79\) −7.90576 −0.889467 −0.444734 0.895663i \(-0.646702\pi\)
−0.444734 + 0.895663i \(0.646702\pi\)
\(80\) −9.79477 −1.09509
\(81\) 27.4927 3.05475
\(82\) 7.64480 0.844227
\(83\) 17.2797 1.89669 0.948345 0.317242i \(-0.102757\pi\)
0.948345 + 0.317242i \(0.102757\pi\)
\(84\) 0 0
\(85\) −0.272814 −0.0295909
\(86\) −7.05669 −0.760942
\(87\) 31.1909 3.34402
\(88\) −4.57519 −0.487717
\(89\) 5.07565 0.538017 0.269009 0.963138i \(-0.413304\pi\)
0.269009 + 0.963138i \(0.413304\pi\)
\(90\) −27.5755 −2.90671
\(91\) 0 0
\(92\) −7.43211 −0.774851
\(93\) 31.5806 3.27476
\(94\) 5.55087 0.572529
\(95\) 1.96334 0.201434
\(96\) −20.2104 −2.06271
\(97\) 14.4942 1.47166 0.735831 0.677166i \(-0.236792\pi\)
0.735831 + 0.677166i \(0.236792\pi\)
\(98\) 0 0
\(99\) −25.9249 −2.60555
\(100\) −1.33029 −0.133029
\(101\) 9.72113 0.967288 0.483644 0.875265i \(-0.339313\pi\)
0.483644 + 0.875265i \(0.339313\pi\)
\(102\) −0.811602 −0.0803606
\(103\) −9.87020 −0.972540 −0.486270 0.873809i \(-0.661643\pi\)
−0.486270 + 0.873809i \(0.661643\pi\)
\(104\) −3.12478 −0.306410
\(105\) 0 0
\(106\) −5.82457 −0.565732
\(107\) −20.3675 −1.96901 −0.984503 0.175370i \(-0.943888\pi\)
−0.984503 + 0.175370i \(0.943888\pi\)
\(108\) −19.2314 −1.85054
\(109\) 6.19814 0.593674 0.296837 0.954928i \(-0.404068\pi\)
0.296837 + 0.954928i \(0.404068\pi\)
\(110\) 11.9816 1.14240
\(111\) 33.0582 3.13775
\(112\) 0 0
\(113\) −13.4769 −1.26780 −0.633902 0.773413i \(-0.718548\pi\)
−0.633902 + 0.773413i \(0.718548\pi\)
\(114\) 5.84079 0.547040
\(115\) −11.8527 −1.10527
\(116\) −11.8392 −1.09925
\(117\) −17.7063 −1.63695
\(118\) 14.0189 1.29055
\(119\) 0 0
\(120\) −8.84964 −0.807858
\(121\) 0.264435 0.0240395
\(122\) 5.99047 0.542352
\(123\) 13.9020 1.25350
\(124\) −11.9871 −1.07648
\(125\) −12.0334 −1.07630
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −10.1244 −0.894876
\(129\) −12.8325 −1.12984
\(130\) 8.18323 0.717717
\(131\) 9.60089 0.838833 0.419417 0.907794i \(-0.362235\pi\)
0.419417 + 0.907794i \(0.362235\pi\)
\(132\) 13.6622 1.18914
\(133\) 0 0
\(134\) 15.0265 1.29810
\(135\) −30.6700 −2.63966
\(136\) −0.187602 −0.0160867
\(137\) 0.675259 0.0576913 0.0288456 0.999584i \(-0.490817\pi\)
0.0288456 + 0.999584i \(0.490817\pi\)
\(138\) −35.2608 −3.00160
\(139\) −8.99416 −0.762875 −0.381437 0.924395i \(-0.624571\pi\)
−0.381437 + 0.924395i \(0.624571\pi\)
\(140\) 0 0
\(141\) 10.0942 0.850085
\(142\) 10.2258 0.858133
\(143\) 7.69342 0.643356
\(144\) −38.1656 −3.18047
\(145\) −18.8811 −1.56799
\(146\) −13.0023 −1.07608
\(147\) 0 0
\(148\) −12.5480 −1.03144
\(149\) 10.1159 0.828726 0.414363 0.910112i \(-0.364004\pi\)
0.414363 + 0.910112i \(0.364004\pi\)
\(150\) −6.31142 −0.515325
\(151\) 17.7508 1.44454 0.722271 0.691610i \(-0.243098\pi\)
0.722271 + 0.691610i \(0.243098\pi\)
\(152\) 1.35010 0.109507
\(153\) −1.06303 −0.0859407
\(154\) 0 0
\(155\) −19.1170 −1.53551
\(156\) 9.33107 0.747083
\(157\) 5.37588 0.429042 0.214521 0.976719i \(-0.431181\pi\)
0.214521 + 0.976719i \(0.431181\pi\)
\(158\) 14.2370 1.13264
\(159\) −10.5919 −0.839993
\(160\) 12.2342 0.967195
\(161\) 0 0
\(162\) −49.5100 −3.88987
\(163\) 1.51523 0.118682 0.0593409 0.998238i \(-0.481100\pi\)
0.0593409 + 0.998238i \(0.481100\pi\)
\(164\) −5.27682 −0.412050
\(165\) 21.7884 1.69623
\(166\) −31.1179 −2.41522
\(167\) −1.54155 −0.119289 −0.0596443 0.998220i \(-0.518997\pi\)
−0.0596443 + 0.998220i \(0.518997\pi\)
\(168\) 0 0
\(169\) −7.74553 −0.595810
\(170\) 0.491295 0.0376806
\(171\) 7.65020 0.585026
\(172\) 4.87087 0.371400
\(173\) −6.51043 −0.494979 −0.247490 0.968891i \(-0.579606\pi\)
−0.247490 + 0.968891i \(0.579606\pi\)
\(174\) −56.1699 −4.25823
\(175\) 0 0
\(176\) 16.5830 1.24999
\(177\) 25.4933 1.91619
\(178\) −9.14043 −0.685104
\(179\) −26.0035 −1.94359 −0.971796 0.235823i \(-0.924221\pi\)
−0.971796 + 0.235823i \(0.924221\pi\)
\(180\) 19.0340 1.41871
\(181\) −11.6143 −0.863285 −0.431643 0.902045i \(-0.642066\pi\)
−0.431643 + 0.902045i \(0.642066\pi\)
\(182\) 0 0
\(183\) 10.8936 0.805278
\(184\) −8.15053 −0.600865
\(185\) −20.0115 −1.47127
\(186\) −56.8716 −4.17003
\(187\) 0.461888 0.0337766
\(188\) −3.83149 −0.279440
\(189\) 0 0
\(190\) −3.53566 −0.256504
\(191\) −0.698264 −0.0505246 −0.0252623 0.999681i \(-0.508042\pi\)
−0.0252623 + 0.999681i \(0.508042\pi\)
\(192\) 4.03445 0.291162
\(193\) 18.0329 1.29804 0.649018 0.760773i \(-0.275180\pi\)
0.649018 + 0.760773i \(0.275180\pi\)
\(194\) −26.1017 −1.87399
\(195\) 14.8811 1.06566
\(196\) 0 0
\(197\) 19.0765 1.35914 0.679571 0.733609i \(-0.262166\pi\)
0.679571 + 0.733609i \(0.262166\pi\)
\(198\) 46.6867 3.31788
\(199\) −9.17020 −0.650058 −0.325029 0.945704i \(-0.605374\pi\)
−0.325029 + 0.945704i \(0.605374\pi\)
\(200\) −1.45888 −0.103159
\(201\) 27.3256 1.92740
\(202\) −17.5062 −1.23173
\(203\) 0 0
\(204\) 0.560207 0.0392224
\(205\) −8.41542 −0.587759
\(206\) 17.7747 1.23842
\(207\) −46.1843 −3.21003
\(208\) 11.3259 0.785312
\(209\) −3.32403 −0.229928
\(210\) 0 0
\(211\) −4.83013 −0.332520 −0.166260 0.986082i \(-0.553169\pi\)
−0.166260 + 0.986082i \(0.553169\pi\)
\(212\) 4.02040 0.276122
\(213\) 18.5955 1.27415
\(214\) 36.6787 2.50731
\(215\) 7.76802 0.529775
\(216\) −21.0904 −1.43502
\(217\) 0 0
\(218\) −11.1619 −0.755976
\(219\) −23.6446 −1.59775
\(220\) −8.27029 −0.557583
\(221\) 0.315462 0.0212202
\(222\) −59.5327 −3.99557
\(223\) 5.63995 0.377679 0.188840 0.982008i \(-0.439527\pi\)
0.188840 + 0.982008i \(0.439527\pi\)
\(224\) 0 0
\(225\) −8.26663 −0.551109
\(226\) 24.2698 1.61441
\(227\) 16.5884 1.10101 0.550505 0.834832i \(-0.314435\pi\)
0.550505 + 0.834832i \(0.314435\pi\)
\(228\) −4.03160 −0.266999
\(229\) 4.83012 0.319183 0.159592 0.987183i \(-0.448982\pi\)
0.159592 + 0.987183i \(0.448982\pi\)
\(230\) 21.3448 1.40743
\(231\) 0 0
\(232\) −12.9837 −0.852420
\(233\) 10.1731 0.666464 0.333232 0.942845i \(-0.391861\pi\)
0.333232 + 0.942845i \(0.391861\pi\)
\(234\) 31.8862 2.08447
\(235\) −6.11042 −0.398600
\(236\) −9.67656 −0.629890
\(237\) 25.8898 1.68173
\(238\) 0 0
\(239\) −9.21458 −0.596042 −0.298021 0.954559i \(-0.596326\pi\)
−0.298021 + 0.954559i \(0.596326\pi\)
\(240\) 32.0760 2.07050
\(241\) −5.67147 −0.365331 −0.182666 0.983175i \(-0.558473\pi\)
−0.182666 + 0.983175i \(0.558473\pi\)
\(242\) −0.476205 −0.0306116
\(243\) −43.6192 −2.79817
\(244\) −4.13492 −0.264711
\(245\) 0 0
\(246\) −25.0353 −1.59619
\(247\) −2.27025 −0.144453
\(248\) −13.1459 −0.834764
\(249\) −56.5876 −3.58609
\(250\) 21.6702 1.37055
\(251\) −1.26471 −0.0798277 −0.0399139 0.999203i \(-0.512708\pi\)
−0.0399139 + 0.999203i \(0.512708\pi\)
\(252\) 0 0
\(253\) 20.0672 1.26161
\(254\) −1.80084 −0.112995
\(255\) 0.893414 0.0559478
\(256\) 20.6963 1.29352
\(257\) 28.2125 1.75985 0.879924 0.475114i \(-0.157593\pi\)
0.879924 + 0.475114i \(0.157593\pi\)
\(258\) 23.1093 1.43872
\(259\) 0 0
\(260\) −5.64847 −0.350303
\(261\) −73.5708 −4.55392
\(262\) −17.2897 −1.06816
\(263\) −1.93566 −0.119358 −0.0596790 0.998218i \(-0.519008\pi\)
−0.0596790 + 0.998218i \(0.519008\pi\)
\(264\) 14.9829 0.922133
\(265\) 6.41170 0.393868
\(266\) 0 0
\(267\) −16.6218 −1.01724
\(268\) −10.3721 −0.633574
\(269\) −28.9149 −1.76297 −0.881485 0.472212i \(-0.843456\pi\)
−0.881485 + 0.472212i \(0.843456\pi\)
\(270\) 55.2319 3.36130
\(271\) 15.5401 0.943992 0.471996 0.881601i \(-0.343534\pi\)
0.471996 + 0.881601i \(0.343534\pi\)
\(272\) 0.679972 0.0412294
\(273\) 0 0
\(274\) −1.21603 −0.0734633
\(275\) 3.59187 0.216598
\(276\) 24.3387 1.46502
\(277\) −2.86619 −0.172213 −0.0861064 0.996286i \(-0.527442\pi\)
−0.0861064 + 0.996286i \(0.527442\pi\)
\(278\) 16.1971 0.971435
\(279\) −74.4899 −4.45959
\(280\) 0 0
\(281\) −14.3969 −0.858847 −0.429423 0.903103i \(-0.641283\pi\)
−0.429423 + 0.903103i \(0.641283\pi\)
\(282\) −18.1780 −1.08249
\(283\) −6.49121 −0.385862 −0.192931 0.981212i \(-0.561799\pi\)
−0.192931 + 0.981212i \(0.561799\pi\)
\(284\) −7.05837 −0.418837
\(285\) −6.42956 −0.380854
\(286\) −13.8546 −0.819241
\(287\) 0 0
\(288\) 47.6707 2.80902
\(289\) −16.9811 −0.998886
\(290\) 34.0019 1.99666
\(291\) −47.4657 −2.78249
\(292\) 8.97484 0.525213
\(293\) 0.897213 0.0524157 0.0262079 0.999657i \(-0.491657\pi\)
0.0262079 + 0.999657i \(0.491657\pi\)
\(294\) 0 0
\(295\) −15.4321 −0.898491
\(296\) −13.7610 −0.799840
\(297\) 51.9259 3.01305
\(298\) −18.2171 −1.05529
\(299\) 13.7055 0.792611
\(300\) 4.35645 0.251520
\(301\) 0 0
\(302\) −31.9664 −1.83946
\(303\) −31.8348 −1.82886
\(304\) −4.89350 −0.280661
\(305\) −6.59433 −0.377590
\(306\) 1.91434 0.109436
\(307\) −5.70746 −0.325742 −0.162871 0.986647i \(-0.552075\pi\)
−0.162871 + 0.986647i \(0.552075\pi\)
\(308\) 0 0
\(309\) 32.3230 1.83879
\(310\) 34.4267 1.95530
\(311\) −7.79332 −0.441919 −0.220959 0.975283i \(-0.570919\pi\)
−0.220959 + 0.975283i \(0.570919\pi\)
\(312\) 10.2330 0.579332
\(313\) −1.91988 −0.108518 −0.0542590 0.998527i \(-0.517280\pi\)
−0.0542590 + 0.998527i \(0.517280\pi\)
\(314\) −9.68111 −0.546337
\(315\) 0 0
\(316\) −9.82708 −0.552817
\(317\) 11.2521 0.631981 0.315990 0.948762i \(-0.397663\pi\)
0.315990 + 0.948762i \(0.397663\pi\)
\(318\) 19.0743 1.06964
\(319\) 31.9667 1.78979
\(320\) −2.44222 −0.136524
\(321\) 66.6998 3.72282
\(322\) 0 0
\(323\) −0.136299 −0.00758387
\(324\) 34.1742 1.89857
\(325\) 2.45318 0.136078
\(326\) −2.72869 −0.151128
\(327\) −20.2977 −1.12247
\(328\) −5.78690 −0.319528
\(329\) 0 0
\(330\) −39.2375 −2.15995
\(331\) −20.3709 −1.11968 −0.559842 0.828599i \(-0.689138\pi\)
−0.559842 + 0.828599i \(0.689138\pi\)
\(332\) 21.4791 1.17882
\(333\) −77.9753 −4.27302
\(334\) 2.77608 0.151901
\(335\) −16.5413 −0.903746
\(336\) 0 0
\(337\) −22.1231 −1.20512 −0.602561 0.798073i \(-0.705853\pi\)
−0.602561 + 0.798073i \(0.705853\pi\)
\(338\) 13.9485 0.758697
\(339\) 44.1344 2.39705
\(340\) −0.339116 −0.0183911
\(341\) 32.3660 1.75272
\(342\) −13.7768 −0.744964
\(343\) 0 0
\(344\) 5.34171 0.288006
\(345\) 38.8152 2.08974
\(346\) 11.7243 0.630300
\(347\) 5.07759 0.272579 0.136290 0.990669i \(-0.456482\pi\)
0.136290 + 0.990669i \(0.456482\pi\)
\(348\) 38.7712 2.07836
\(349\) 0.944947 0.0505818 0.0252909 0.999680i \(-0.491949\pi\)
0.0252909 + 0.999680i \(0.491949\pi\)
\(350\) 0 0
\(351\) 35.4645 1.89295
\(352\) −20.7130 −1.10401
\(353\) −7.50900 −0.399664 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(354\) −45.9093 −2.44005
\(355\) −11.2566 −0.597440
\(356\) 6.30917 0.334386
\(357\) 0 0
\(358\) 46.8281 2.47494
\(359\) 16.1613 0.852962 0.426481 0.904497i \(-0.359753\pi\)
0.426481 + 0.904497i \(0.359753\pi\)
\(360\) 20.8739 1.10015
\(361\) −18.0191 −0.948374
\(362\) 20.9155 1.09930
\(363\) −0.865974 −0.0454518
\(364\) 0 0
\(365\) 14.3130 0.749176
\(366\) −19.6176 −1.02543
\(367\) 29.2953 1.52920 0.764601 0.644504i \(-0.222936\pi\)
0.764601 + 0.644504i \(0.222936\pi\)
\(368\) 29.5420 1.53999
\(369\) −32.7909 −1.70703
\(370\) 36.0375 1.87350
\(371\) 0 0
\(372\) 39.2556 2.03531
\(373\) 10.4385 0.540487 0.270243 0.962792i \(-0.412896\pi\)
0.270243 + 0.962792i \(0.412896\pi\)
\(374\) −0.831787 −0.0430107
\(375\) 39.4071 2.03497
\(376\) −4.20185 −0.216694
\(377\) 21.8327 1.12444
\(378\) 0 0
\(379\) 26.5965 1.36617 0.683085 0.730339i \(-0.260638\pi\)
0.683085 + 0.730339i \(0.260638\pi\)
\(380\) 2.44049 0.125194
\(381\) −3.27481 −0.167773
\(382\) 1.25746 0.0643374
\(383\) 36.7529 1.87799 0.938993 0.343937i \(-0.111761\pi\)
0.938993 + 0.343937i \(0.111761\pi\)
\(384\) 33.1554 1.69195
\(385\) 0 0
\(386\) −32.4744 −1.65290
\(387\) 30.2683 1.53862
\(388\) 18.0167 0.914659
\(389\) −22.8557 −1.15883 −0.579414 0.815033i \(-0.696719\pi\)
−0.579414 + 0.815033i \(0.696719\pi\)
\(390\) −26.7985 −1.35700
\(391\) 0.822836 0.0416126
\(392\) 0 0
\(393\) −31.4411 −1.58599
\(394\) −34.3537 −1.73071
\(395\) −15.6722 −0.788552
\(396\) −32.2254 −1.61939
\(397\) 9.08520 0.455973 0.227987 0.973664i \(-0.426786\pi\)
0.227987 + 0.973664i \(0.426786\pi\)
\(398\) 16.5141 0.827775
\(399\) 0 0
\(400\) 5.28780 0.264390
\(401\) 32.8290 1.63940 0.819701 0.572792i \(-0.194140\pi\)
0.819701 + 0.572792i \(0.194140\pi\)
\(402\) −49.2091 −2.45432
\(403\) 22.1054 1.10115
\(404\) 12.0836 0.601183
\(405\) 54.5008 2.70817
\(406\) 0 0
\(407\) 33.8804 1.67939
\(408\) 0.614360 0.0304153
\(409\) 29.5854 1.46290 0.731452 0.681893i \(-0.238843\pi\)
0.731452 + 0.681893i \(0.238843\pi\)
\(410\) 15.1548 0.748444
\(411\) −2.21134 −0.109078
\(412\) −12.2689 −0.604447
\(413\) 0 0
\(414\) 83.1705 4.08761
\(415\) 34.2547 1.68150
\(416\) −14.1466 −0.693596
\(417\) 29.4542 1.44238
\(418\) 5.98605 0.292787
\(419\) 1.88338 0.0920092 0.0460046 0.998941i \(-0.485351\pi\)
0.0460046 + 0.998941i \(0.485351\pi\)
\(420\) 0 0
\(421\) −4.88170 −0.237920 −0.118960 0.992899i \(-0.537956\pi\)
−0.118960 + 0.992899i \(0.537956\pi\)
\(422\) 8.69830 0.423426
\(423\) −23.8094 −1.15765
\(424\) 4.40903 0.214121
\(425\) 0.147281 0.00714419
\(426\) −33.4876 −1.62248
\(427\) 0 0
\(428\) −25.3174 −1.22376
\(429\) −25.1945 −1.21640
\(430\) −13.9890 −0.674608
\(431\) −14.4183 −0.694506 −0.347253 0.937771i \(-0.612885\pi\)
−0.347253 + 0.937771i \(0.612885\pi\)
\(432\) 76.4431 3.67787
\(433\) −4.06302 −0.195256 −0.0976280 0.995223i \(-0.531126\pi\)
−0.0976280 + 0.995223i \(0.531126\pi\)
\(434\) 0 0
\(435\) 61.8320 2.96462
\(436\) 7.70446 0.368977
\(437\) −5.92163 −0.283270
\(438\) 42.5801 2.03456
\(439\) 10.8643 0.518526 0.259263 0.965807i \(-0.416520\pi\)
0.259263 + 0.965807i \(0.416520\pi\)
\(440\) −9.06974 −0.432383
\(441\) 0 0
\(442\) −0.568096 −0.0270216
\(443\) −9.86391 −0.468649 −0.234324 0.972158i \(-0.575288\pi\)
−0.234324 + 0.972158i \(0.575288\pi\)
\(444\) 41.0923 1.95016
\(445\) 10.0618 0.476976
\(446\) −10.1567 −0.480932
\(447\) −33.1276 −1.56688
\(448\) 0 0
\(449\) 30.0837 1.41974 0.709869 0.704334i \(-0.248754\pi\)
0.709869 + 0.704334i \(0.248754\pi\)
\(450\) 14.8869 0.701774
\(451\) 14.2477 0.670899
\(452\) −16.7522 −0.787959
\(453\) −58.1305 −2.73121
\(454\) −29.8730 −1.40201
\(455\) 0 0
\(456\) −4.42131 −0.207047
\(457\) −10.6100 −0.496317 −0.248158 0.968719i \(-0.579825\pi\)
−0.248158 + 0.968719i \(0.579825\pi\)
\(458\) −8.69827 −0.406444
\(459\) 2.12917 0.0993813
\(460\) −14.7332 −0.686940
\(461\) 29.4065 1.36960 0.684799 0.728732i \(-0.259890\pi\)
0.684799 + 0.728732i \(0.259890\pi\)
\(462\) 0 0
\(463\) −14.6163 −0.679278 −0.339639 0.940556i \(-0.610305\pi\)
−0.339639 + 0.940556i \(0.610305\pi\)
\(464\) 47.0600 2.18471
\(465\) 62.6045 2.90321
\(466\) −18.3202 −0.848666
\(467\) −10.3293 −0.477982 −0.238991 0.971022i \(-0.576817\pi\)
−0.238991 + 0.971022i \(0.576817\pi\)
\(468\) −22.0094 −1.01739
\(469\) 0 0
\(470\) 11.0039 0.507572
\(471\) −17.6050 −0.811195
\(472\) −10.6119 −0.488454
\(473\) −13.1516 −0.604713
\(474\) −46.6235 −2.14149
\(475\) −1.05993 −0.0486328
\(476\) 0 0
\(477\) 24.9834 1.14391
\(478\) 16.5940 0.758992
\(479\) 8.63906 0.394729 0.197364 0.980330i \(-0.436762\pi\)
0.197364 + 0.980330i \(0.436762\pi\)
\(480\) −40.0645 −1.82869
\(481\) 23.1397 1.05508
\(482\) 10.2134 0.465208
\(483\) 0 0
\(484\) 0.328700 0.0149409
\(485\) 28.7329 1.30469
\(486\) 78.5513 3.56316
\(487\) −2.28698 −0.103633 −0.0518165 0.998657i \(-0.516501\pi\)
−0.0518165 + 0.998657i \(0.516501\pi\)
\(488\) −4.53461 −0.205272
\(489\) −4.96208 −0.224393
\(490\) 0 0
\(491\) −25.1332 −1.13425 −0.567123 0.823633i \(-0.691944\pi\)
−0.567123 + 0.823633i \(0.691944\pi\)
\(492\) 17.2806 0.779068
\(493\) 1.31076 0.0590339
\(494\) 4.08837 0.183944
\(495\) −51.3928 −2.30994
\(496\) 47.6479 2.13945
\(497\) 0 0
\(498\) 101.905 4.56648
\(499\) −13.5966 −0.608666 −0.304333 0.952566i \(-0.598434\pi\)
−0.304333 + 0.952566i \(0.598434\pi\)
\(500\) −14.9579 −0.668936
\(501\) 5.04827 0.225540
\(502\) 2.27754 0.101652
\(503\) −12.2279 −0.545217 −0.272609 0.962125i \(-0.587886\pi\)
−0.272609 + 0.962125i \(0.587886\pi\)
\(504\) 0 0
\(505\) 19.2709 0.857543
\(506\) −36.1378 −1.60652
\(507\) 25.3651 1.12650
\(508\) 1.24303 0.0551505
\(509\) −15.6079 −0.691808 −0.345904 0.938270i \(-0.612428\pi\)
−0.345904 + 0.938270i \(0.612428\pi\)
\(510\) −1.60890 −0.0712432
\(511\) 0 0
\(512\) −17.0220 −0.752275
\(513\) −15.3228 −0.676520
\(514\) −50.8063 −2.24097
\(515\) −19.5664 −0.862199
\(516\) −15.9512 −0.702211
\(517\) 10.3452 0.454983
\(518\) 0 0
\(519\) 21.3204 0.935862
\(520\) −6.19447 −0.271646
\(521\) 40.5639 1.77714 0.888569 0.458743i \(-0.151700\pi\)
0.888569 + 0.458743i \(0.151700\pi\)
\(522\) 132.489 5.79890
\(523\) −11.4330 −0.499929 −0.249964 0.968255i \(-0.580419\pi\)
−0.249964 + 0.968255i \(0.580419\pi\)
\(524\) 11.9342 0.521347
\(525\) 0 0
\(526\) 3.48582 0.151989
\(527\) 1.32714 0.0578111
\(528\) −54.3063 −2.36338
\(529\) 12.7489 0.554299
\(530\) −11.5465 −0.501546
\(531\) −60.1316 −2.60949
\(532\) 0 0
\(533\) 9.73095 0.421494
\(534\) 29.9332 1.29533
\(535\) −40.3761 −1.74561
\(536\) −11.3747 −0.491311
\(537\) 85.1564 3.67477
\(538\) 52.0711 2.24494
\(539\) 0 0
\(540\) −38.1237 −1.64058
\(541\) 7.22979 0.310833 0.155416 0.987849i \(-0.450328\pi\)
0.155416 + 0.987849i \(0.450328\pi\)
\(542\) −27.9852 −1.20207
\(543\) 38.0346 1.63222
\(544\) −0.849319 −0.0364142
\(545\) 12.2870 0.526318
\(546\) 0 0
\(547\) 28.3399 1.21173 0.605863 0.795569i \(-0.292828\pi\)
0.605863 + 0.795569i \(0.292828\pi\)
\(548\) 0.839366 0.0358559
\(549\) −25.6950 −1.09664
\(550\) −6.46838 −0.275813
\(551\) −9.43306 −0.401862
\(552\) 26.6914 1.13606
\(553\) 0 0
\(554\) 5.16156 0.219293
\(555\) 65.5337 2.78175
\(556\) −11.1800 −0.474138
\(557\) 21.2960 0.902341 0.451171 0.892438i \(-0.351007\pi\)
0.451171 + 0.892438i \(0.351007\pi\)
\(558\) 134.144 5.67879
\(559\) −8.98235 −0.379913
\(560\) 0 0
\(561\) −1.51259 −0.0638618
\(562\) 25.9265 1.09364
\(563\) 34.6578 1.46065 0.730326 0.683099i \(-0.239368\pi\)
0.730326 + 0.683099i \(0.239368\pi\)
\(564\) 12.5474 0.528340
\(565\) −26.7163 −1.12396
\(566\) 11.6896 0.491352
\(567\) 0 0
\(568\) −7.74066 −0.324791
\(569\) 38.0599 1.59555 0.797777 0.602952i \(-0.206009\pi\)
0.797777 + 0.602952i \(0.206009\pi\)
\(570\) 11.5786 0.484975
\(571\) −46.9386 −1.96432 −0.982160 0.188049i \(-0.939784\pi\)
−0.982160 + 0.188049i \(0.939784\pi\)
\(572\) 9.56314 0.399855
\(573\) 2.28668 0.0955274
\(574\) 0 0
\(575\) 6.39877 0.266847
\(576\) −9.51616 −0.396507
\(577\) 2.55401 0.106325 0.0531624 0.998586i \(-0.483070\pi\)
0.0531624 + 0.998586i \(0.483070\pi\)
\(578\) 30.5802 1.27197
\(579\) −59.0542 −2.45421
\(580\) −23.4698 −0.974529
\(581\) 0 0
\(582\) 85.4781 3.54318
\(583\) −10.8553 −0.449582
\(584\) 9.84238 0.407281
\(585\) −35.1004 −1.45122
\(586\) −1.61574 −0.0667455
\(587\) −39.0979 −1.61374 −0.806871 0.590727i \(-0.798841\pi\)
−0.806871 + 0.590727i \(0.798841\pi\)
\(588\) 0 0
\(589\) −9.55091 −0.393538
\(590\) 27.7907 1.14413
\(591\) −62.4718 −2.56975
\(592\) 49.8773 2.04995
\(593\) 22.4591 0.922283 0.461141 0.887327i \(-0.347440\pi\)
0.461141 + 0.887327i \(0.347440\pi\)
\(594\) −93.5103 −3.83677
\(595\) 0 0
\(596\) 12.5743 0.515065
\(597\) 30.0306 1.22907
\(598\) −24.6815 −1.00930
\(599\) −23.0291 −0.940942 −0.470471 0.882415i \(-0.655916\pi\)
−0.470471 + 0.882415i \(0.655916\pi\)
\(600\) 4.77756 0.195043
\(601\) −19.0265 −0.776106 −0.388053 0.921637i \(-0.626852\pi\)
−0.388053 + 0.921637i \(0.626852\pi\)
\(602\) 0 0
\(603\) −64.4535 −2.62475
\(604\) 22.0648 0.897804
\(605\) 0.524208 0.0213121
\(606\) 57.3294 2.32885
\(607\) −3.24590 −0.131747 −0.0658735 0.997828i \(-0.520983\pi\)
−0.0658735 + 0.997828i \(0.520983\pi\)
\(608\) 6.11222 0.247883
\(609\) 0 0
\(610\) 11.8753 0.480819
\(611\) 7.06562 0.285845
\(612\) −1.32137 −0.0534134
\(613\) 18.9340 0.764735 0.382368 0.924010i \(-0.375109\pi\)
0.382368 + 0.924010i \(0.375109\pi\)
\(614\) 10.2782 0.414796
\(615\) 27.5589 1.11128
\(616\) 0 0
\(617\) −5.25658 −0.211622 −0.105811 0.994386i \(-0.533744\pi\)
−0.105811 + 0.994386i \(0.533744\pi\)
\(618\) −58.2086 −2.34149
\(619\) −14.8394 −0.596445 −0.298222 0.954496i \(-0.596394\pi\)
−0.298222 + 0.954496i \(0.596394\pi\)
\(620\) −23.7630 −0.954344
\(621\) 92.5040 3.71206
\(622\) 14.0345 0.562734
\(623\) 0 0
\(624\) −37.0902 −1.48480
\(625\) −18.5037 −0.740146
\(626\) 3.45740 0.138185
\(627\) 10.8856 0.434727
\(628\) 6.68238 0.266656
\(629\) 1.38924 0.0553925
\(630\) 0 0
\(631\) −22.6218 −0.900558 −0.450279 0.892888i \(-0.648675\pi\)
−0.450279 + 0.892888i \(0.648675\pi\)
\(632\) −10.7770 −0.428686
\(633\) 15.8177 0.628699
\(634\) −20.2632 −0.804756
\(635\) 1.98237 0.0786680
\(636\) −13.1660 −0.522067
\(637\) 0 0
\(638\) −57.5669 −2.27909
\(639\) −43.8617 −1.73514
\(640\) −20.0703 −0.793347
\(641\) −7.00436 −0.276656 −0.138328 0.990386i \(-0.544173\pi\)
−0.138328 + 0.990386i \(0.544173\pi\)
\(642\) −120.116 −4.74059
\(643\) −32.6067 −1.28588 −0.642940 0.765916i \(-0.722286\pi\)
−0.642940 + 0.765916i \(0.722286\pi\)
\(644\) 0 0
\(645\) −25.4388 −1.00165
\(646\) 0.245452 0.00965720
\(647\) 31.6983 1.24619 0.623095 0.782146i \(-0.285875\pi\)
0.623095 + 0.782146i \(0.285875\pi\)
\(648\) 37.4777 1.47226
\(649\) 26.1273 1.02559
\(650\) −4.41779 −0.173280
\(651\) 0 0
\(652\) 1.88347 0.0737625
\(653\) −30.3739 −1.18862 −0.594312 0.804235i \(-0.702575\pi\)
−0.594312 + 0.804235i \(0.702575\pi\)
\(654\) 36.5529 1.42933
\(655\) 19.0325 0.743663
\(656\) 20.9749 0.818933
\(657\) 55.7710 2.17583
\(658\) 0 0
\(659\) 0.151867 0.00591590 0.00295795 0.999996i \(-0.499058\pi\)
0.00295795 + 0.999996i \(0.499058\pi\)
\(660\) 27.0836 1.05423
\(661\) −48.2442 −1.87648 −0.938242 0.345981i \(-0.887546\pi\)
−0.938242 + 0.345981i \(0.887546\pi\)
\(662\) 36.6847 1.42579
\(663\) −1.03308 −0.0401213
\(664\) 23.5554 0.914126
\(665\) 0 0
\(666\) 140.421 5.44121
\(667\) 56.9474 2.20501
\(668\) −1.91619 −0.0741396
\(669\) −18.4698 −0.714082
\(670\) 29.7882 1.15082
\(671\) 11.1645 0.431002
\(672\) 0 0
\(673\) −17.1107 −0.659570 −0.329785 0.944056i \(-0.606976\pi\)
−0.329785 + 0.944056i \(0.606976\pi\)
\(674\) 39.8402 1.53459
\(675\) 16.5575 0.637299
\(676\) −9.62792 −0.370304
\(677\) 1.94027 0.0745706 0.0372853 0.999305i \(-0.488129\pi\)
0.0372853 + 0.999305i \(0.488129\pi\)
\(678\) −79.4790 −3.05237
\(679\) 0 0
\(680\) −0.371896 −0.0142616
\(681\) −54.3237 −2.08169
\(682\) −58.2860 −2.23189
\(683\) 12.4756 0.477365 0.238683 0.971098i \(-0.423284\pi\)
0.238683 + 0.971098i \(0.423284\pi\)
\(684\) 9.50942 0.363602
\(685\) 1.33861 0.0511458
\(686\) 0 0
\(687\) −15.8177 −0.603483
\(688\) −19.3613 −0.738143
\(689\) −7.41400 −0.282451
\(690\) −69.9001 −2.66105
\(691\) −3.87191 −0.147295 −0.0736473 0.997284i \(-0.523464\pi\)
−0.0736473 + 0.997284i \(0.523464\pi\)
\(692\) −8.09265 −0.307637
\(693\) 0 0
\(694\) −9.14392 −0.347099
\(695\) −17.8298 −0.676322
\(696\) 42.5190 1.61168
\(697\) 0.584215 0.0221287
\(698\) −1.70170 −0.0644103
\(699\) −33.3150 −1.26009
\(700\) 0 0
\(701\) −32.6013 −1.23133 −0.615666 0.788007i \(-0.711113\pi\)
−0.615666 + 0.788007i \(0.711113\pi\)
\(702\) −63.8659 −2.41046
\(703\) −9.99779 −0.377074
\(704\) 4.13479 0.155836
\(705\) 20.0105 0.753637
\(706\) 13.5225 0.508927
\(707\) 0 0
\(708\) 31.6889 1.19094
\(709\) −13.4445 −0.504918 −0.252459 0.967608i \(-0.581239\pi\)
−0.252459 + 0.967608i \(0.581239\pi\)
\(710\) 20.2714 0.760772
\(711\) −61.0670 −2.29019
\(712\) 6.91905 0.259302
\(713\) 57.6588 2.15934
\(714\) 0 0
\(715\) 15.2512 0.570363
\(716\) −32.3231 −1.20797
\(717\) 30.1760 1.12694
\(718\) −29.1040 −1.08615
\(719\) −12.1949 −0.454792 −0.227396 0.973802i \(-0.573021\pi\)
−0.227396 + 0.973802i \(0.573021\pi\)
\(720\) −75.6584 −2.81962
\(721\) 0 0
\(722\) 32.4496 1.20765
\(723\) 18.5730 0.690736
\(724\) −14.4369 −0.536544
\(725\) 10.1931 0.378564
\(726\) 1.55948 0.0578778
\(727\) −10.5423 −0.390994 −0.195497 0.980704i \(-0.562632\pi\)
−0.195497 + 0.980704i \(0.562632\pi\)
\(728\) 0 0
\(729\) 60.3663 2.23579
\(730\) −25.7754 −0.953991
\(731\) −0.539271 −0.0199457
\(732\) 13.5411 0.500492
\(733\) −52.6760 −1.94563 −0.972816 0.231581i \(-0.925610\pi\)
−0.972816 + 0.231581i \(0.925610\pi\)
\(734\) −52.7562 −1.94727
\(735\) 0 0
\(736\) −36.8995 −1.36013
\(737\) 28.0052 1.03158
\(738\) 59.0512 2.17371
\(739\) 23.8910 0.878844 0.439422 0.898281i \(-0.355183\pi\)
0.439422 + 0.898281i \(0.355183\pi\)
\(740\) −24.8748 −0.914417
\(741\) 7.43465 0.273119
\(742\) 0 0
\(743\) −15.2274 −0.558641 −0.279320 0.960198i \(-0.590109\pi\)
−0.279320 + 0.960198i \(0.590109\pi\)
\(744\) 43.0502 1.57830
\(745\) 20.0534 0.734701
\(746\) −18.7981 −0.688249
\(747\) 133.474 4.88357
\(748\) 0.574140 0.0209926
\(749\) 0 0
\(750\) −70.9659 −2.59131
\(751\) −15.6849 −0.572349 −0.286175 0.958178i \(-0.592384\pi\)
−0.286175 + 0.958178i \(0.592384\pi\)
\(752\) 15.2298 0.555375
\(753\) 4.14168 0.150931
\(754\) −39.3172 −1.43185
\(755\) 35.1887 1.28065
\(756\) 0 0
\(757\) −48.0778 −1.74742 −0.873709 0.486449i \(-0.838292\pi\)
−0.873709 + 0.486449i \(0.838292\pi\)
\(758\) −47.8960 −1.73966
\(759\) −65.7161 −2.38534
\(760\) 2.67639 0.0970830
\(761\) 29.1430 1.05643 0.528217 0.849110i \(-0.322861\pi\)
0.528217 + 0.849110i \(0.322861\pi\)
\(762\) 5.89741 0.213641
\(763\) 0 0
\(764\) −0.867962 −0.0314018
\(765\) −2.10732 −0.0761902
\(766\) −66.1861 −2.39140
\(767\) 17.8445 0.644327
\(768\) −67.7764 −2.44567
\(769\) −5.94776 −0.214482 −0.107241 0.994233i \(-0.534202\pi\)
−0.107241 + 0.994233i \(0.534202\pi\)
\(770\) 0 0
\(771\) −92.3906 −3.32737
\(772\) 22.4154 0.806748
\(773\) 33.0476 1.18864 0.594321 0.804228i \(-0.297421\pi\)
0.594321 + 0.804228i \(0.297421\pi\)
\(774\) −54.5084 −1.95926
\(775\) 10.3205 0.370723
\(776\) 19.7583 0.709280
\(777\) 0 0
\(778\) 41.1594 1.47564
\(779\) −4.20437 −0.150637
\(780\) 18.4976 0.662322
\(781\) 19.0580 0.681950
\(782\) −1.48180 −0.0529889
\(783\) 147.357 5.26612
\(784\) 0 0
\(785\) 10.6570 0.380365
\(786\) 56.6204 2.01958
\(787\) −49.3581 −1.75943 −0.879713 0.475506i \(-0.842265\pi\)
−0.879713 + 0.475506i \(0.842265\pi\)
\(788\) 23.7126 0.844727
\(789\) 6.33892 0.225671
\(790\) 28.2231 1.00413
\(791\) 0 0
\(792\) −35.3405 −1.25577
\(793\) 7.62518 0.270778
\(794\) −16.3610 −0.580630
\(795\) −20.9971 −0.744690
\(796\) −11.3988 −0.404020
\(797\) 4.85688 0.172040 0.0860198 0.996293i \(-0.472585\pi\)
0.0860198 + 0.996293i \(0.472585\pi\)
\(798\) 0 0
\(799\) 0.424197 0.0150070
\(800\) −6.60472 −0.233512
\(801\) 39.2061 1.38528
\(802\) −59.1198 −2.08759
\(803\) −24.2326 −0.855150
\(804\) 33.9665 1.19791
\(805\) 0 0
\(806\) −39.8084 −1.40219
\(807\) 94.6906 3.33327
\(808\) 13.2517 0.466193
\(809\) −20.7623 −0.729964 −0.364982 0.931015i \(-0.618925\pi\)
−0.364982 + 0.931015i \(0.618925\pi\)
\(810\) −98.1473 −3.44854
\(811\) 6.06265 0.212888 0.106444 0.994319i \(-0.466053\pi\)
0.106444 + 0.994319i \(0.466053\pi\)
\(812\) 0 0
\(813\) −50.8907 −1.78482
\(814\) −61.0132 −2.13851
\(815\) 3.00375 0.105217
\(816\) −2.22678 −0.0779528
\(817\) 3.88093 0.135776
\(818\) −53.2786 −1.86284
\(819\) 0 0
\(820\) −10.4606 −0.365300
\(821\) −49.7361 −1.73580 −0.867901 0.496736i \(-0.834532\pi\)
−0.867901 + 0.496736i \(0.834532\pi\)
\(822\) 3.98228 0.138898
\(823\) −9.35498 −0.326094 −0.163047 0.986618i \(-0.552132\pi\)
−0.163047 + 0.986618i \(0.552132\pi\)
\(824\) −13.4549 −0.468724
\(825\) −11.7627 −0.409524
\(826\) 0 0
\(827\) 22.4842 0.781852 0.390926 0.920422i \(-0.372155\pi\)
0.390926 + 0.920422i \(0.372155\pi\)
\(828\) −57.4084 −1.99508
\(829\) −10.2099 −0.354606 −0.177303 0.984156i \(-0.556737\pi\)
−0.177303 + 0.984156i \(0.556737\pi\)
\(830\) −61.6873 −2.14120
\(831\) 9.38623 0.325605
\(832\) 2.82399 0.0979043
\(833\) 0 0
\(834\) −53.0422 −1.83670
\(835\) −3.05592 −0.105755
\(836\) −4.13186 −0.142903
\(837\) 149.198 5.15705
\(838\) −3.39167 −0.117163
\(839\) −31.9667 −1.10361 −0.551806 0.833972i \(-0.686061\pi\)
−0.551806 + 0.833972i \(0.686061\pi\)
\(840\) 0 0
\(841\) 61.7163 2.12815
\(842\) 8.79117 0.302964
\(843\) 47.1471 1.62383
\(844\) −6.00399 −0.206666
\(845\) −15.3545 −0.528212
\(846\) 42.8770 1.47414
\(847\) 0 0
\(848\) −15.9808 −0.548782
\(849\) 21.2575 0.729554
\(850\) −0.265230 −0.00909732
\(851\) 60.3567 2.06900
\(852\) 23.1148 0.791900
\(853\) 49.9952 1.71180 0.855902 0.517138i \(-0.173003\pi\)
0.855902 + 0.517138i \(0.173003\pi\)
\(854\) 0 0
\(855\) 15.1655 0.518651
\(856\) −27.7647 −0.948979
\(857\) 42.1916 1.44124 0.720618 0.693332i \(-0.243858\pi\)
0.720618 + 0.693332i \(0.243858\pi\)
\(858\) 45.3712 1.54895
\(859\) −53.7062 −1.83243 −0.916216 0.400685i \(-0.868772\pi\)
−0.916216 + 0.400685i \(0.868772\pi\)
\(860\) 9.65587 0.329263
\(861\) 0 0
\(862\) 25.9651 0.884375
\(863\) 2.67063 0.0909093 0.0454547 0.998966i \(-0.485526\pi\)
0.0454547 + 0.998966i \(0.485526\pi\)
\(864\) −95.4812 −3.24834
\(865\) −12.9061 −0.438821
\(866\) 7.31685 0.248637
\(867\) 55.6097 1.88860
\(868\) 0 0
\(869\) 26.5337 0.900095
\(870\) −111.350 −3.77511
\(871\) 19.1271 0.648096
\(872\) 8.44921 0.286126
\(873\) 111.958 3.78922
\(874\) 10.6639 0.360712
\(875\) 0 0
\(876\) −29.3909 −0.993025
\(877\) 39.5491 1.33548 0.667739 0.744395i \(-0.267262\pi\)
0.667739 + 0.744395i \(0.267262\pi\)
\(878\) −19.5649 −0.660284
\(879\) −2.93820 −0.0991030
\(880\) 32.8737 1.10817
\(881\) −1.82159 −0.0613709 −0.0306854 0.999529i \(-0.509769\pi\)
−0.0306854 + 0.999529i \(0.509769\pi\)
\(882\) 0 0
\(883\) 14.6049 0.491493 0.245746 0.969334i \(-0.420967\pi\)
0.245746 + 0.969334i \(0.420967\pi\)
\(884\) 0.392128 0.0131887
\(885\) 50.5371 1.69879
\(886\) 17.7633 0.596771
\(887\) 24.3065 0.816132 0.408066 0.912952i \(-0.366203\pi\)
0.408066 + 0.912952i \(0.366203\pi\)
\(888\) 45.0645 1.51227
\(889\) 0 0
\(890\) −18.1197 −0.607375
\(891\) −92.2725 −3.09125
\(892\) 7.01062 0.234733
\(893\) −3.05278 −0.102158
\(894\) 59.6575 1.99525
\(895\) −51.5486 −1.72308
\(896\) 0 0
\(897\) −44.8830 −1.49860
\(898\) −54.1760 −1.80788
\(899\) 91.8496 3.06335
\(900\) −10.2757 −0.342522
\(901\) −0.445113 −0.0148289
\(902\) −25.6579 −0.854314
\(903\) 0 0
\(904\) −18.3716 −0.611029
\(905\) −23.0239 −0.765340
\(906\) 104.684 3.47789
\(907\) −32.8383 −1.09038 −0.545190 0.838313i \(-0.683542\pi\)
−0.545190 + 0.838313i \(0.683542\pi\)
\(908\) 20.6198 0.684293
\(909\) 75.0895 2.49056
\(910\) 0 0
\(911\) 43.3639 1.43671 0.718355 0.695676i \(-0.244895\pi\)
0.718355 + 0.695676i \(0.244895\pi\)
\(912\) 16.0253 0.530650
\(913\) −57.9949 −1.91935
\(914\) 19.1070 0.632003
\(915\) 21.5952 0.713914
\(916\) 6.00397 0.198377
\(917\) 0 0
\(918\) −3.83430 −0.126551
\(919\) −15.3957 −0.507858 −0.253929 0.967223i \(-0.581723\pi\)
−0.253929 + 0.967223i \(0.581723\pi\)
\(920\) −16.1574 −0.532693
\(921\) 18.6908 0.615884
\(922\) −52.9565 −1.74403
\(923\) 13.0163 0.428437
\(924\) 0 0
\(925\) 10.8034 0.355213
\(926\) 26.3217 0.864984
\(927\) −76.2410 −2.50408
\(928\) −58.7803 −1.92956
\(929\) −29.4087 −0.964869 −0.482435 0.875932i \(-0.660247\pi\)
−0.482435 + 0.875932i \(0.660247\pi\)
\(930\) −112.741 −3.69691
\(931\) 0 0
\(932\) 12.6455 0.414217
\(933\) 25.5216 0.835541
\(934\) 18.6014 0.608656
\(935\) 0.915634 0.0299444
\(936\) −24.1369 −0.788940
\(937\) −25.1984 −0.823196 −0.411598 0.911365i \(-0.635029\pi\)
−0.411598 + 0.911365i \(0.635029\pi\)
\(938\) 0 0
\(939\) 6.28724 0.205176
\(940\) −7.59543 −0.247736
\(941\) −49.1919 −1.60361 −0.801805 0.597586i \(-0.796126\pi\)
−0.801805 + 0.597586i \(0.796126\pi\)
\(942\) 31.7038 1.03297
\(943\) 25.3818 0.826544
\(944\) 38.4635 1.25188
\(945\) 0 0
\(946\) 23.6840 0.770034
\(947\) 33.0148 1.07284 0.536419 0.843952i \(-0.319777\pi\)
0.536419 + 0.843952i \(0.319777\pi\)
\(948\) 32.1818 1.04522
\(949\) −16.5505 −0.537250
\(950\) 1.90876 0.0619283
\(951\) −36.8485 −1.19489
\(952\) 0 0
\(953\) 35.8422 1.16104 0.580522 0.814244i \(-0.302848\pi\)
0.580522 + 0.814244i \(0.302848\pi\)
\(954\) −44.9911 −1.45664
\(955\) −1.38422 −0.0447923
\(956\) −11.4540 −0.370448
\(957\) −104.685 −3.38398
\(958\) −15.5576 −0.502642
\(959\) 0 0
\(960\) 7.99779 0.258128
\(961\) 61.9970 1.99990
\(962\) −41.6710 −1.34353
\(963\) −157.326 −5.06977
\(964\) −7.04979 −0.227059
\(965\) 35.7479 1.15077
\(966\) 0 0
\(967\) 35.5185 1.14220 0.571100 0.820881i \(-0.306517\pi\)
0.571100 + 0.820881i \(0.306517\pi\)
\(968\) 0.360474 0.0115861
\(969\) 0.446352 0.0143389
\(970\) −51.7433 −1.66138
\(971\) 27.3670 0.878248 0.439124 0.898427i \(-0.355289\pi\)
0.439124 + 0.898427i \(0.355289\pi\)
\(972\) −54.2199 −1.73910
\(973\) 0 0
\(974\) 4.11849 0.131965
\(975\) −8.03370 −0.257284
\(976\) 16.4360 0.526102
\(977\) −48.2170 −1.54260 −0.771299 0.636472i \(-0.780393\pi\)
−0.771299 + 0.636472i \(0.780393\pi\)
\(978\) 8.93592 0.285739
\(979\) −17.0352 −0.544446
\(980\) 0 0
\(981\) 47.8767 1.52858
\(982\) 45.2610 1.44434
\(983\) −26.1721 −0.834762 −0.417381 0.908732i \(-0.637052\pi\)
−0.417381 + 0.908732i \(0.637052\pi\)
\(984\) 18.9510 0.604135
\(985\) 37.8167 1.20494
\(986\) −2.36048 −0.0751729
\(987\) 0 0
\(988\) −2.82199 −0.0897795
\(989\) −23.4292 −0.745004
\(990\) 92.5503 2.94144
\(991\) −29.0448 −0.922639 −0.461319 0.887234i \(-0.652624\pi\)
−0.461319 + 0.887234i \(0.652624\pi\)
\(992\) −59.5146 −1.88959
\(993\) 66.7107 2.11700
\(994\) 0 0
\(995\) −18.1787 −0.576305
\(996\) −70.3400 −2.22881
\(997\) −18.4810 −0.585299 −0.292649 0.956220i \(-0.594537\pi\)
−0.292649 + 0.956220i \(0.594537\pi\)
\(998\) 24.4853 0.775068
\(999\) 156.179 4.94129
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.p.1.9 38
7.2 even 3 889.2.f.c.382.30 yes 76
7.4 even 3 889.2.f.c.128.30 76
7.6 odd 2 6223.2.a.o.1.9 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.30 76 7.4 even 3
889.2.f.c.382.30 yes 76 7.2 even 3
6223.2.a.o.1.9 38 7.6 odd 2
6223.2.a.p.1.9 38 1.1 even 1 trivial