Properties

Label 6223.2.a.o.1.9
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-11,38,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80084 q^{2} +3.27481 q^{3} +1.24303 q^{4} -1.98237 q^{5} -5.89741 q^{6} +1.36319 q^{8} +7.72436 q^{9} +3.56994 q^{10} -3.35625 q^{11} +4.07068 q^{12} +2.29226 q^{13} -6.49189 q^{15} -4.94094 q^{16} +0.137620 q^{17} -13.9104 q^{18} -0.990399 q^{19} -2.46415 q^{20} +6.04408 q^{22} -5.97904 q^{23} +4.46417 q^{24} -1.07020 q^{25} -4.12800 q^{26} +15.4714 q^{27} -9.52451 q^{29} +11.6909 q^{30} +9.64350 q^{31} +6.17147 q^{32} -10.9911 q^{33} -0.247832 q^{34} +9.60161 q^{36} -10.0947 q^{37} +1.78355 q^{38} +7.50672 q^{39} -2.70234 q^{40} +4.24513 q^{41} +3.91855 q^{43} -4.17192 q^{44} -15.3126 q^{45} +10.7673 q^{46} +3.08238 q^{47} -16.1806 q^{48} +1.92726 q^{50} +0.450679 q^{51} +2.84935 q^{52} +3.23436 q^{53} -27.8615 q^{54} +6.65334 q^{55} -3.24337 q^{57} +17.1521 q^{58} +7.78466 q^{59} -8.06960 q^{60} +3.32649 q^{61} -17.3664 q^{62} -1.23197 q^{64} -4.54412 q^{65} +19.7932 q^{66} -8.34418 q^{67} +0.171066 q^{68} -19.5802 q^{69} -5.67836 q^{71} +10.5297 q^{72} -7.22014 q^{73} +18.1790 q^{74} -3.50470 q^{75} -1.23109 q^{76} -13.5184 q^{78} -7.90576 q^{79} +9.79477 q^{80} +27.4927 q^{81} -7.64480 q^{82} -17.2797 q^{83} -0.272814 q^{85} -7.05669 q^{86} -31.1909 q^{87} -4.57519 q^{88} -5.07565 q^{89} +27.5755 q^{90} -7.43211 q^{92} +31.5806 q^{93} -5.55087 q^{94} +1.96334 q^{95} +20.2104 q^{96} -14.4942 q^{97} -25.9249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 11 q^{3} + 38 q^{4} - 16 q^{5} - 11 q^{6} + 47 q^{9} - 12 q^{10} - 2 q^{11} - 30 q^{12} - 21 q^{13} + 7 q^{15} + 46 q^{16} - 58 q^{17} - 13 q^{18} - 17 q^{19} - 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80084 −1.27339 −0.636693 0.771117i \(-0.719698\pi\)
−0.636693 + 0.771117i \(0.719698\pi\)
\(3\) 3.27481 1.89071 0.945356 0.326041i \(-0.105715\pi\)
0.945356 + 0.326041i \(0.105715\pi\)
\(4\) 1.24303 0.621514
\(5\) −1.98237 −0.886544 −0.443272 0.896387i \(-0.646182\pi\)
−0.443272 + 0.896387i \(0.646182\pi\)
\(6\) −5.89741 −2.40761
\(7\) 0 0
\(8\) 1.36319 0.481959
\(9\) 7.72436 2.57479
\(10\) 3.56994 1.12891
\(11\) −3.35625 −1.01195 −0.505974 0.862549i \(-0.668867\pi\)
−0.505974 + 0.862549i \(0.668867\pi\)
\(12\) 4.07068 1.17510
\(13\) 2.29226 0.635759 0.317880 0.948131i \(-0.397029\pi\)
0.317880 + 0.948131i \(0.397029\pi\)
\(14\) 0 0
\(15\) −6.49189 −1.67620
\(16\) −4.94094 −1.23523
\(17\) 0.137620 0.0333778 0.0166889 0.999861i \(-0.494688\pi\)
0.0166889 + 0.999861i \(0.494688\pi\)
\(18\) −13.9104 −3.27870
\(19\) −0.990399 −0.227213 −0.113607 0.993526i \(-0.536240\pi\)
−0.113607 + 0.993526i \(0.536240\pi\)
\(20\) −2.46415 −0.551000
\(21\) 0 0
\(22\) 6.04408 1.28860
\(23\) −5.97904 −1.24672 −0.623358 0.781937i \(-0.714232\pi\)
−0.623358 + 0.781937i \(0.714232\pi\)
\(24\) 4.46417 0.911245
\(25\) −1.07020 −0.214040
\(26\) −4.12800 −0.809568
\(27\) 15.4714 2.97747
\(28\) 0 0
\(29\) −9.52451 −1.76866 −0.884329 0.466865i \(-0.845383\pi\)
−0.884329 + 0.466865i \(0.845383\pi\)
\(30\) 11.6909 2.13445
\(31\) 9.64350 1.73202 0.866012 0.500024i \(-0.166675\pi\)
0.866012 + 0.500024i \(0.166675\pi\)
\(32\) 6.17147 1.09097
\(33\) −10.9911 −1.91330
\(34\) −0.247832 −0.0425028
\(35\) 0 0
\(36\) 9.60161 1.60027
\(37\) −10.0947 −1.65956 −0.829780 0.558090i \(-0.811534\pi\)
−0.829780 + 0.558090i \(0.811534\pi\)
\(38\) 1.78355 0.289330
\(39\) 7.50672 1.20204
\(40\) −2.70234 −0.427277
\(41\) 4.24513 0.662978 0.331489 0.943459i \(-0.392449\pi\)
0.331489 + 0.943459i \(0.392449\pi\)
\(42\) 0 0
\(43\) 3.91855 0.597573 0.298787 0.954320i \(-0.403418\pi\)
0.298787 + 0.954320i \(0.403418\pi\)
\(44\) −4.17192 −0.628940
\(45\) −15.3126 −2.28266
\(46\) 10.7673 1.58755
\(47\) 3.08238 0.449611 0.224806 0.974404i \(-0.427825\pi\)
0.224806 + 0.974404i \(0.427825\pi\)
\(48\) −16.1806 −2.33547
\(49\) 0 0
\(50\) 1.92726 0.272556
\(51\) 0.450679 0.0631077
\(52\) 2.84935 0.395134
\(53\) 3.23436 0.444273 0.222137 0.975016i \(-0.428697\pi\)
0.222137 + 0.975016i \(0.428697\pi\)
\(54\) −27.8615 −3.79147
\(55\) 6.65334 0.897136
\(56\) 0 0
\(57\) −3.24337 −0.429594
\(58\) 17.1521 2.25218
\(59\) 7.78466 1.01348 0.506738 0.862100i \(-0.330851\pi\)
0.506738 + 0.862100i \(0.330851\pi\)
\(60\) −8.06960 −1.04178
\(61\) 3.32649 0.425913 0.212956 0.977062i \(-0.431691\pi\)
0.212956 + 0.977062i \(0.431691\pi\)
\(62\) −17.3664 −2.20554
\(63\) 0 0
\(64\) −1.23197 −0.153996
\(65\) −4.54412 −0.563628
\(66\) 19.7932 2.43637
\(67\) −8.34418 −1.01940 −0.509702 0.860351i \(-0.670244\pi\)
−0.509702 + 0.860351i \(0.670244\pi\)
\(68\) 0.171066 0.0207448
\(69\) −19.5802 −2.35718
\(70\) 0 0
\(71\) −5.67836 −0.673898 −0.336949 0.941523i \(-0.609395\pi\)
−0.336949 + 0.941523i \(0.609395\pi\)
\(72\) 10.5297 1.24094
\(73\) −7.22014 −0.845053 −0.422526 0.906351i \(-0.638857\pi\)
−0.422526 + 0.906351i \(0.638857\pi\)
\(74\) 18.1790 2.11326
\(75\) −3.50470 −0.404688
\(76\) −1.23109 −0.141216
\(77\) 0 0
\(78\) −13.5184 −1.53066
\(79\) −7.90576 −0.889467 −0.444734 0.895663i \(-0.646702\pi\)
−0.444734 + 0.895663i \(0.646702\pi\)
\(80\) 9.79477 1.09509
\(81\) 27.4927 3.05475
\(82\) −7.64480 −0.844227
\(83\) −17.2797 −1.89669 −0.948345 0.317242i \(-0.897243\pi\)
−0.948345 + 0.317242i \(0.897243\pi\)
\(84\) 0 0
\(85\) −0.272814 −0.0295909
\(86\) −7.05669 −0.760942
\(87\) −31.1909 −3.34402
\(88\) −4.57519 −0.487717
\(89\) −5.07565 −0.538017 −0.269009 0.963138i \(-0.586696\pi\)
−0.269009 + 0.963138i \(0.586696\pi\)
\(90\) 27.5755 2.90671
\(91\) 0 0
\(92\) −7.43211 −0.774851
\(93\) 31.5806 3.27476
\(94\) −5.55087 −0.572529
\(95\) 1.96334 0.201434
\(96\) 20.2104 2.06271
\(97\) −14.4942 −1.47166 −0.735831 0.677166i \(-0.763208\pi\)
−0.735831 + 0.677166i \(0.763208\pi\)
\(98\) 0 0
\(99\) −25.9249 −2.60555
\(100\) −1.33029 −0.133029
\(101\) −9.72113 −0.967288 −0.483644 0.875265i \(-0.660687\pi\)
−0.483644 + 0.875265i \(0.660687\pi\)
\(102\) −0.811602 −0.0803606
\(103\) 9.87020 0.972540 0.486270 0.873809i \(-0.338357\pi\)
0.486270 + 0.873809i \(0.338357\pi\)
\(104\) 3.12478 0.306410
\(105\) 0 0
\(106\) −5.82457 −0.565732
\(107\) −20.3675 −1.96901 −0.984503 0.175370i \(-0.943888\pi\)
−0.984503 + 0.175370i \(0.943888\pi\)
\(108\) 19.2314 1.85054
\(109\) 6.19814 0.593674 0.296837 0.954928i \(-0.404068\pi\)
0.296837 + 0.954928i \(0.404068\pi\)
\(110\) −11.9816 −1.14240
\(111\) −33.0582 −3.13775
\(112\) 0 0
\(113\) −13.4769 −1.26780 −0.633902 0.773413i \(-0.718548\pi\)
−0.633902 + 0.773413i \(0.718548\pi\)
\(114\) 5.84079 0.547040
\(115\) 11.8527 1.10527
\(116\) −11.8392 −1.09925
\(117\) 17.7063 1.63695
\(118\) −14.0189 −1.29055
\(119\) 0 0
\(120\) −8.84964 −0.807858
\(121\) 0.264435 0.0240395
\(122\) −5.99047 −0.542352
\(123\) 13.9020 1.25350
\(124\) 11.9871 1.07648
\(125\) 12.0334 1.07630
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −10.1244 −0.894876
\(129\) 12.8325 1.12984
\(130\) 8.18323 0.717717
\(131\) −9.60089 −0.838833 −0.419417 0.907794i \(-0.637765\pi\)
−0.419417 + 0.907794i \(0.637765\pi\)
\(132\) −13.6622 −1.18914
\(133\) 0 0
\(134\) 15.0265 1.29810
\(135\) −30.6700 −2.63966
\(136\) 0.187602 0.0160867
\(137\) 0.675259 0.0576913 0.0288456 0.999584i \(-0.490817\pi\)
0.0288456 + 0.999584i \(0.490817\pi\)
\(138\) 35.2608 3.00160
\(139\) 8.99416 0.762875 0.381437 0.924395i \(-0.375429\pi\)
0.381437 + 0.924395i \(0.375429\pi\)
\(140\) 0 0
\(141\) 10.0942 0.850085
\(142\) 10.2258 0.858133
\(143\) −7.69342 −0.643356
\(144\) −38.1656 −3.18047
\(145\) 18.8811 1.56799
\(146\) 13.0023 1.07608
\(147\) 0 0
\(148\) −12.5480 −1.03144
\(149\) 10.1159 0.828726 0.414363 0.910112i \(-0.364004\pi\)
0.414363 + 0.910112i \(0.364004\pi\)
\(150\) 6.31142 0.515325
\(151\) 17.7508 1.44454 0.722271 0.691610i \(-0.243098\pi\)
0.722271 + 0.691610i \(0.243098\pi\)
\(152\) −1.35010 −0.109507
\(153\) 1.06303 0.0859407
\(154\) 0 0
\(155\) −19.1170 −1.53551
\(156\) 9.33107 0.747083
\(157\) −5.37588 −0.429042 −0.214521 0.976719i \(-0.568819\pi\)
−0.214521 + 0.976719i \(0.568819\pi\)
\(158\) 14.2370 1.13264
\(159\) 10.5919 0.839993
\(160\) −12.2342 −0.967195
\(161\) 0 0
\(162\) −49.5100 −3.88987
\(163\) 1.51523 0.118682 0.0593409 0.998238i \(-0.481100\pi\)
0.0593409 + 0.998238i \(0.481100\pi\)
\(164\) 5.27682 0.412050
\(165\) 21.7884 1.69623
\(166\) 31.1179 2.41522
\(167\) 1.54155 0.119289 0.0596443 0.998220i \(-0.481003\pi\)
0.0596443 + 0.998220i \(0.481003\pi\)
\(168\) 0 0
\(169\) −7.74553 −0.595810
\(170\) 0.491295 0.0376806
\(171\) −7.65020 −0.585026
\(172\) 4.87087 0.371400
\(173\) 6.51043 0.494979 0.247490 0.968891i \(-0.420394\pi\)
0.247490 + 0.968891i \(0.420394\pi\)
\(174\) 56.1699 4.25823
\(175\) 0 0
\(176\) 16.5830 1.24999
\(177\) 25.4933 1.91619
\(178\) 9.14043 0.685104
\(179\) −26.0035 −1.94359 −0.971796 0.235823i \(-0.924221\pi\)
−0.971796 + 0.235823i \(0.924221\pi\)
\(180\) −19.0340 −1.41871
\(181\) 11.6143 0.863285 0.431643 0.902045i \(-0.357934\pi\)
0.431643 + 0.902045i \(0.357934\pi\)
\(182\) 0 0
\(183\) 10.8936 0.805278
\(184\) −8.15053 −0.600865
\(185\) 20.0115 1.47127
\(186\) −56.8716 −4.17003
\(187\) −0.461888 −0.0337766
\(188\) 3.83149 0.279440
\(189\) 0 0
\(190\) −3.53566 −0.256504
\(191\) −0.698264 −0.0505246 −0.0252623 0.999681i \(-0.508042\pi\)
−0.0252623 + 0.999681i \(0.508042\pi\)
\(192\) −4.03445 −0.291162
\(193\) 18.0329 1.29804 0.649018 0.760773i \(-0.275180\pi\)
0.649018 + 0.760773i \(0.275180\pi\)
\(194\) 26.1017 1.87399
\(195\) −14.8811 −1.06566
\(196\) 0 0
\(197\) 19.0765 1.35914 0.679571 0.733609i \(-0.262166\pi\)
0.679571 + 0.733609i \(0.262166\pi\)
\(198\) 46.6867 3.31788
\(199\) 9.17020 0.650058 0.325029 0.945704i \(-0.394626\pi\)
0.325029 + 0.945704i \(0.394626\pi\)
\(200\) −1.45888 −0.103159
\(201\) −27.3256 −1.92740
\(202\) 17.5062 1.23173
\(203\) 0 0
\(204\) 0.560207 0.0392224
\(205\) −8.41542 −0.587759
\(206\) −17.7747 −1.23842
\(207\) −46.1843 −3.21003
\(208\) −11.3259 −0.785312
\(209\) 3.32403 0.229928
\(210\) 0 0
\(211\) −4.83013 −0.332520 −0.166260 0.986082i \(-0.553169\pi\)
−0.166260 + 0.986082i \(0.553169\pi\)
\(212\) 4.02040 0.276122
\(213\) −18.5955 −1.27415
\(214\) 36.6787 2.50731
\(215\) −7.76802 −0.529775
\(216\) 21.0904 1.43502
\(217\) 0 0
\(218\) −11.1619 −0.755976
\(219\) −23.6446 −1.59775
\(220\) 8.27029 0.557583
\(221\) 0.315462 0.0212202
\(222\) 59.5327 3.99557
\(223\) −5.63995 −0.377679 −0.188840 0.982008i \(-0.560473\pi\)
−0.188840 + 0.982008i \(0.560473\pi\)
\(224\) 0 0
\(225\) −8.26663 −0.551109
\(226\) 24.2698 1.61441
\(227\) −16.5884 −1.10101 −0.550505 0.834832i \(-0.685565\pi\)
−0.550505 + 0.834832i \(0.685565\pi\)
\(228\) −4.03160 −0.266999
\(229\) −4.83012 −0.319183 −0.159592 0.987183i \(-0.551018\pi\)
−0.159592 + 0.987183i \(0.551018\pi\)
\(230\) −21.3448 −1.40743
\(231\) 0 0
\(232\) −12.9837 −0.852420
\(233\) 10.1731 0.666464 0.333232 0.942845i \(-0.391861\pi\)
0.333232 + 0.942845i \(0.391861\pi\)
\(234\) −31.8862 −2.08447
\(235\) −6.11042 −0.398600
\(236\) 9.67656 0.629890
\(237\) −25.8898 −1.68173
\(238\) 0 0
\(239\) −9.21458 −0.596042 −0.298021 0.954559i \(-0.596326\pi\)
−0.298021 + 0.954559i \(0.596326\pi\)
\(240\) 32.0760 2.07050
\(241\) 5.67147 0.365331 0.182666 0.983175i \(-0.441527\pi\)
0.182666 + 0.983175i \(0.441527\pi\)
\(242\) −0.476205 −0.0306116
\(243\) 43.6192 2.79817
\(244\) 4.13492 0.264711
\(245\) 0 0
\(246\) −25.0353 −1.59619
\(247\) −2.27025 −0.144453
\(248\) 13.1459 0.834764
\(249\) −56.5876 −3.58609
\(250\) −21.6702 −1.37055
\(251\) 1.26471 0.0798277 0.0399139 0.999203i \(-0.487292\pi\)
0.0399139 + 0.999203i \(0.487292\pi\)
\(252\) 0 0
\(253\) 20.0672 1.26161
\(254\) −1.80084 −0.112995
\(255\) −0.893414 −0.0559478
\(256\) 20.6963 1.29352
\(257\) −28.2125 −1.75985 −0.879924 0.475114i \(-0.842407\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(258\) −23.1093 −1.43872
\(259\) 0 0
\(260\) −5.64847 −0.350303
\(261\) −73.5708 −4.55392
\(262\) 17.2897 1.06816
\(263\) −1.93566 −0.119358 −0.0596790 0.998218i \(-0.519008\pi\)
−0.0596790 + 0.998218i \(0.519008\pi\)
\(264\) −14.9829 −0.922133
\(265\) −6.41170 −0.393868
\(266\) 0 0
\(267\) −16.6218 −1.01724
\(268\) −10.3721 −0.633574
\(269\) 28.9149 1.76297 0.881485 0.472212i \(-0.156544\pi\)
0.881485 + 0.472212i \(0.156544\pi\)
\(270\) 55.2319 3.36130
\(271\) −15.5401 −0.943992 −0.471996 0.881601i \(-0.656466\pi\)
−0.471996 + 0.881601i \(0.656466\pi\)
\(272\) −0.679972 −0.0412294
\(273\) 0 0
\(274\) −1.21603 −0.0734633
\(275\) 3.59187 0.216598
\(276\) −24.3387 −1.46502
\(277\) −2.86619 −0.172213 −0.0861064 0.996286i \(-0.527442\pi\)
−0.0861064 + 0.996286i \(0.527442\pi\)
\(278\) −16.1971 −0.971435
\(279\) 74.4899 4.45959
\(280\) 0 0
\(281\) −14.3969 −0.858847 −0.429423 0.903103i \(-0.641283\pi\)
−0.429423 + 0.903103i \(0.641283\pi\)
\(282\) −18.1780 −1.08249
\(283\) 6.49121 0.385862 0.192931 0.981212i \(-0.438201\pi\)
0.192931 + 0.981212i \(0.438201\pi\)
\(284\) −7.05837 −0.418837
\(285\) 6.42956 0.380854
\(286\) 13.8546 0.819241
\(287\) 0 0
\(288\) 47.6707 2.80902
\(289\) −16.9811 −0.998886
\(290\) −34.0019 −1.99666
\(291\) −47.4657 −2.78249
\(292\) −8.97484 −0.525213
\(293\) −0.897213 −0.0524157 −0.0262079 0.999657i \(-0.508343\pi\)
−0.0262079 + 0.999657i \(0.508343\pi\)
\(294\) 0 0
\(295\) −15.4321 −0.898491
\(296\) −13.7610 −0.799840
\(297\) −51.9259 −3.01305
\(298\) −18.2171 −1.05529
\(299\) −13.7055 −0.792611
\(300\) −4.35645 −0.251520
\(301\) 0 0
\(302\) −31.9664 −1.83946
\(303\) −31.8348 −1.82886
\(304\) 4.89350 0.280661
\(305\) −6.59433 −0.377590
\(306\) −1.91434 −0.109436
\(307\) 5.70746 0.325742 0.162871 0.986647i \(-0.447925\pi\)
0.162871 + 0.986647i \(0.447925\pi\)
\(308\) 0 0
\(309\) 32.3230 1.83879
\(310\) 34.4267 1.95530
\(311\) 7.79332 0.441919 0.220959 0.975283i \(-0.429081\pi\)
0.220959 + 0.975283i \(0.429081\pi\)
\(312\) 10.2330 0.579332
\(313\) 1.91988 0.108518 0.0542590 0.998527i \(-0.482720\pi\)
0.0542590 + 0.998527i \(0.482720\pi\)
\(314\) 9.68111 0.546337
\(315\) 0 0
\(316\) −9.82708 −0.552817
\(317\) 11.2521 0.631981 0.315990 0.948762i \(-0.397663\pi\)
0.315990 + 0.948762i \(0.397663\pi\)
\(318\) −19.0743 −1.06964
\(319\) 31.9667 1.78979
\(320\) 2.44222 0.136524
\(321\) −66.6998 −3.72282
\(322\) 0 0
\(323\) −0.136299 −0.00758387
\(324\) 34.1742 1.89857
\(325\) −2.45318 −0.136078
\(326\) −2.72869 −0.151128
\(327\) 20.2977 1.12247
\(328\) 5.78690 0.319528
\(329\) 0 0
\(330\) −39.2375 −2.15995
\(331\) −20.3709 −1.11968 −0.559842 0.828599i \(-0.689138\pi\)
−0.559842 + 0.828599i \(0.689138\pi\)
\(332\) −21.4791 −1.17882
\(333\) −77.9753 −4.27302
\(334\) −2.77608 −0.151901
\(335\) 16.5413 0.903746
\(336\) 0 0
\(337\) −22.1231 −1.20512 −0.602561 0.798073i \(-0.705853\pi\)
−0.602561 + 0.798073i \(0.705853\pi\)
\(338\) 13.9485 0.758697
\(339\) −44.1344 −2.39705
\(340\) −0.339116 −0.0183911
\(341\) −32.3660 −1.75272
\(342\) 13.7768 0.744964
\(343\) 0 0
\(344\) 5.34171 0.288006
\(345\) 38.8152 2.08974
\(346\) −11.7243 −0.630300
\(347\) 5.07759 0.272579 0.136290 0.990669i \(-0.456482\pi\)
0.136290 + 0.990669i \(0.456482\pi\)
\(348\) −38.7712 −2.07836
\(349\) −0.944947 −0.0505818 −0.0252909 0.999680i \(-0.508051\pi\)
−0.0252909 + 0.999680i \(0.508051\pi\)
\(350\) 0 0
\(351\) 35.4645 1.89295
\(352\) −20.7130 −1.10401
\(353\) 7.50900 0.399664 0.199832 0.979830i \(-0.435960\pi\)
0.199832 + 0.979830i \(0.435960\pi\)
\(354\) −45.9093 −2.44005
\(355\) 11.2566 0.597440
\(356\) −6.30917 −0.334386
\(357\) 0 0
\(358\) 46.8281 2.47494
\(359\) 16.1613 0.852962 0.426481 0.904497i \(-0.359753\pi\)
0.426481 + 0.904497i \(0.359753\pi\)
\(360\) −20.8739 −1.10015
\(361\) −18.0191 −0.948374
\(362\) −20.9155 −1.09930
\(363\) 0.865974 0.0454518
\(364\) 0 0
\(365\) 14.3130 0.749176
\(366\) −19.6176 −1.02543
\(367\) −29.2953 −1.52920 −0.764601 0.644504i \(-0.777064\pi\)
−0.764601 + 0.644504i \(0.777064\pi\)
\(368\) 29.5420 1.53999
\(369\) 32.7909 1.70703
\(370\) −36.0375 −1.87350
\(371\) 0 0
\(372\) 39.2556 2.03531
\(373\) 10.4385 0.540487 0.270243 0.962792i \(-0.412896\pi\)
0.270243 + 0.962792i \(0.412896\pi\)
\(374\) 0.831787 0.0430107
\(375\) 39.4071 2.03497
\(376\) 4.20185 0.216694
\(377\) −21.8327 −1.12444
\(378\) 0 0
\(379\) 26.5965 1.36617 0.683085 0.730339i \(-0.260638\pi\)
0.683085 + 0.730339i \(0.260638\pi\)
\(380\) 2.44049 0.125194
\(381\) 3.27481 0.167773
\(382\) 1.25746 0.0643374
\(383\) −36.7529 −1.87799 −0.938993 0.343937i \(-0.888239\pi\)
−0.938993 + 0.343937i \(0.888239\pi\)
\(384\) −33.1554 −1.69195
\(385\) 0 0
\(386\) −32.4744 −1.65290
\(387\) 30.2683 1.53862
\(388\) −18.0167 −0.914659
\(389\) −22.8557 −1.15883 −0.579414 0.815033i \(-0.696719\pi\)
−0.579414 + 0.815033i \(0.696719\pi\)
\(390\) 26.7985 1.35700
\(391\) −0.822836 −0.0416126
\(392\) 0 0
\(393\) −31.4411 −1.58599
\(394\) −34.3537 −1.73071
\(395\) 15.6722 0.788552
\(396\) −32.2254 −1.61939
\(397\) −9.08520 −0.455973 −0.227987 0.973664i \(-0.573214\pi\)
−0.227987 + 0.973664i \(0.573214\pi\)
\(398\) −16.5141 −0.827775
\(399\) 0 0
\(400\) 5.28780 0.264390
\(401\) 32.8290 1.63940 0.819701 0.572792i \(-0.194140\pi\)
0.819701 + 0.572792i \(0.194140\pi\)
\(402\) 49.2091 2.45432
\(403\) 22.1054 1.10115
\(404\) −12.0836 −0.601183
\(405\) −54.5008 −2.70817
\(406\) 0 0
\(407\) 33.8804 1.67939
\(408\) 0.614360 0.0304153
\(409\) −29.5854 −1.46290 −0.731452 0.681893i \(-0.761157\pi\)
−0.731452 + 0.681893i \(0.761157\pi\)
\(410\) 15.1548 0.748444
\(411\) 2.21134 0.109078
\(412\) 12.2689 0.604447
\(413\) 0 0
\(414\) 83.1705 4.08761
\(415\) 34.2547 1.68150
\(416\) 14.1466 0.693596
\(417\) 29.4542 1.44238
\(418\) −5.98605 −0.292787
\(419\) −1.88338 −0.0920092 −0.0460046 0.998941i \(-0.514649\pi\)
−0.0460046 + 0.998941i \(0.514649\pi\)
\(420\) 0 0
\(421\) −4.88170 −0.237920 −0.118960 0.992899i \(-0.537956\pi\)
−0.118960 + 0.992899i \(0.537956\pi\)
\(422\) 8.69830 0.423426
\(423\) 23.8094 1.15765
\(424\) 4.40903 0.214121
\(425\) −0.147281 −0.00714419
\(426\) 33.4876 1.62248
\(427\) 0 0
\(428\) −25.3174 −1.22376
\(429\) −25.1945 −1.21640
\(430\) 13.9890 0.674608
\(431\) −14.4183 −0.694506 −0.347253 0.937771i \(-0.612885\pi\)
−0.347253 + 0.937771i \(0.612885\pi\)
\(432\) −76.4431 −3.67787
\(433\) 4.06302 0.195256 0.0976280 0.995223i \(-0.468874\pi\)
0.0976280 + 0.995223i \(0.468874\pi\)
\(434\) 0 0
\(435\) 61.8320 2.96462
\(436\) 7.70446 0.368977
\(437\) 5.92163 0.283270
\(438\) 42.5801 2.03456
\(439\) −10.8643 −0.518526 −0.259263 0.965807i \(-0.583480\pi\)
−0.259263 + 0.965807i \(0.583480\pi\)
\(440\) 9.06974 0.432383
\(441\) 0 0
\(442\) −0.568096 −0.0270216
\(443\) −9.86391 −0.468649 −0.234324 0.972158i \(-0.575288\pi\)
−0.234324 + 0.972158i \(0.575288\pi\)
\(444\) −41.0923 −1.95016
\(445\) 10.0618 0.476976
\(446\) 10.1567 0.480932
\(447\) 33.1276 1.56688
\(448\) 0 0
\(449\) 30.0837 1.41974 0.709869 0.704334i \(-0.248754\pi\)
0.709869 + 0.704334i \(0.248754\pi\)
\(450\) 14.8869 0.701774
\(451\) −14.2477 −0.670899
\(452\) −16.7522 −0.787959
\(453\) 58.1305 2.73121
\(454\) 29.8730 1.40201
\(455\) 0 0
\(456\) −4.42131 −0.207047
\(457\) −10.6100 −0.496317 −0.248158 0.968719i \(-0.579825\pi\)
−0.248158 + 0.968719i \(0.579825\pi\)
\(458\) 8.69827 0.406444
\(459\) 2.12917 0.0993813
\(460\) 14.7332 0.686940
\(461\) −29.4065 −1.36960 −0.684799 0.728732i \(-0.740110\pi\)
−0.684799 + 0.728732i \(0.740110\pi\)
\(462\) 0 0
\(463\) −14.6163 −0.679278 −0.339639 0.940556i \(-0.610305\pi\)
−0.339639 + 0.940556i \(0.610305\pi\)
\(464\) 47.0600 2.18471
\(465\) −62.6045 −2.90321
\(466\) −18.3202 −0.848666
\(467\) 10.3293 0.477982 0.238991 0.971022i \(-0.423183\pi\)
0.238991 + 0.971022i \(0.423183\pi\)
\(468\) 22.0094 1.01739
\(469\) 0 0
\(470\) 11.0039 0.507572
\(471\) −17.6050 −0.811195
\(472\) 10.6119 0.488454
\(473\) −13.1516 −0.604713
\(474\) 46.6235 2.14149
\(475\) 1.05993 0.0486328
\(476\) 0 0
\(477\) 24.9834 1.14391
\(478\) 16.5940 0.758992
\(479\) −8.63906 −0.394729 −0.197364 0.980330i \(-0.563238\pi\)
−0.197364 + 0.980330i \(0.563238\pi\)
\(480\) −40.0645 −1.82869
\(481\) −23.1397 −1.05508
\(482\) −10.2134 −0.465208
\(483\) 0 0
\(484\) 0.328700 0.0149409
\(485\) 28.7329 1.30469
\(486\) −78.5513 −3.56316
\(487\) −2.28698 −0.103633 −0.0518165 0.998657i \(-0.516501\pi\)
−0.0518165 + 0.998657i \(0.516501\pi\)
\(488\) 4.53461 0.205272
\(489\) 4.96208 0.224393
\(490\) 0 0
\(491\) −25.1332 −1.13425 −0.567123 0.823633i \(-0.691944\pi\)
−0.567123 + 0.823633i \(0.691944\pi\)
\(492\) 17.2806 0.779068
\(493\) −1.31076 −0.0590339
\(494\) 4.08837 0.183944
\(495\) 51.3928 2.30994
\(496\) −47.6479 −2.13945
\(497\) 0 0
\(498\) 101.905 4.56648
\(499\) −13.5966 −0.608666 −0.304333 0.952566i \(-0.598434\pi\)
−0.304333 + 0.952566i \(0.598434\pi\)
\(500\) 14.9579 0.668936
\(501\) 5.04827 0.225540
\(502\) −2.27754 −0.101652
\(503\) 12.2279 0.545217 0.272609 0.962125i \(-0.412114\pi\)
0.272609 + 0.962125i \(0.412114\pi\)
\(504\) 0 0
\(505\) 19.2709 0.857543
\(506\) −36.1378 −1.60652
\(507\) −25.3651 −1.12650
\(508\) 1.24303 0.0551505
\(509\) 15.6079 0.691808 0.345904 0.938270i \(-0.387572\pi\)
0.345904 + 0.938270i \(0.387572\pi\)
\(510\) 1.60890 0.0712432
\(511\) 0 0
\(512\) −17.0220 −0.752275
\(513\) −15.3228 −0.676520
\(514\) 50.8063 2.24097
\(515\) −19.5664 −0.862199
\(516\) 15.9512 0.702211
\(517\) −10.3452 −0.454983
\(518\) 0 0
\(519\) 21.3204 0.935862
\(520\) −6.19447 −0.271646
\(521\) −40.5639 −1.77714 −0.888569 0.458743i \(-0.848300\pi\)
−0.888569 + 0.458743i \(0.848300\pi\)
\(522\) 132.489 5.79890
\(523\) 11.4330 0.499929 0.249964 0.968255i \(-0.419581\pi\)
0.249964 + 0.968255i \(0.419581\pi\)
\(524\) −11.9342 −0.521347
\(525\) 0 0
\(526\) 3.48582 0.151989
\(527\) 1.32714 0.0578111
\(528\) 54.3063 2.36338
\(529\) 12.7489 0.554299
\(530\) 11.5465 0.501546
\(531\) 60.1316 2.60949
\(532\) 0 0
\(533\) 9.73095 0.421494
\(534\) 29.9332 1.29533
\(535\) 40.3761 1.74561
\(536\) −11.3747 −0.491311
\(537\) −85.1564 −3.67477
\(538\) −52.0711 −2.24494
\(539\) 0 0
\(540\) −38.1237 −1.64058
\(541\) 7.22979 0.310833 0.155416 0.987849i \(-0.450328\pi\)
0.155416 + 0.987849i \(0.450328\pi\)
\(542\) 27.9852 1.20207
\(543\) 38.0346 1.63222
\(544\) 0.849319 0.0364142
\(545\) −12.2870 −0.526318
\(546\) 0 0
\(547\) 28.3399 1.21173 0.605863 0.795569i \(-0.292828\pi\)
0.605863 + 0.795569i \(0.292828\pi\)
\(548\) 0.839366 0.0358559
\(549\) 25.6950 1.09664
\(550\) −6.46838 −0.275813
\(551\) 9.43306 0.401862
\(552\) −26.6914 −1.13606
\(553\) 0 0
\(554\) 5.16156 0.219293
\(555\) 65.5337 2.78175
\(556\) 11.1800 0.474138
\(557\) 21.2960 0.902341 0.451171 0.892438i \(-0.351007\pi\)
0.451171 + 0.892438i \(0.351007\pi\)
\(558\) −134.144 −5.67879
\(559\) 8.98235 0.379913
\(560\) 0 0
\(561\) −1.51259 −0.0638618
\(562\) 25.9265 1.09364
\(563\) −34.6578 −1.46065 −0.730326 0.683099i \(-0.760632\pi\)
−0.730326 + 0.683099i \(0.760632\pi\)
\(564\) 12.5474 0.528340
\(565\) 26.7163 1.12396
\(566\) −11.6896 −0.491352
\(567\) 0 0
\(568\) −7.74066 −0.324791
\(569\) 38.0599 1.59555 0.797777 0.602952i \(-0.206009\pi\)
0.797777 + 0.602952i \(0.206009\pi\)
\(570\) −11.5786 −0.484975
\(571\) −46.9386 −1.96432 −0.982160 0.188049i \(-0.939784\pi\)
−0.982160 + 0.188049i \(0.939784\pi\)
\(572\) −9.56314 −0.399855
\(573\) −2.28668 −0.0955274
\(574\) 0 0
\(575\) 6.39877 0.266847
\(576\) −9.51616 −0.396507
\(577\) −2.55401 −0.106325 −0.0531624 0.998586i \(-0.516930\pi\)
−0.0531624 + 0.998586i \(0.516930\pi\)
\(578\) 30.5802 1.27197
\(579\) 59.0542 2.45421
\(580\) 23.4698 0.974529
\(581\) 0 0
\(582\) 85.4781 3.54318
\(583\) −10.8553 −0.449582
\(584\) −9.84238 −0.407281
\(585\) −35.1004 −1.45122
\(586\) 1.61574 0.0667455
\(587\) 39.0979 1.61374 0.806871 0.590727i \(-0.201159\pi\)
0.806871 + 0.590727i \(0.201159\pi\)
\(588\) 0 0
\(589\) −9.55091 −0.393538
\(590\) 27.7907 1.14413
\(591\) 62.4718 2.56975
\(592\) 49.8773 2.04995
\(593\) −22.4591 −0.922283 −0.461141 0.887327i \(-0.652560\pi\)
−0.461141 + 0.887327i \(0.652560\pi\)
\(594\) 93.5103 3.83677
\(595\) 0 0
\(596\) 12.5743 0.515065
\(597\) 30.0306 1.22907
\(598\) 24.6815 1.00930
\(599\) −23.0291 −0.940942 −0.470471 0.882415i \(-0.655916\pi\)
−0.470471 + 0.882415i \(0.655916\pi\)
\(600\) −4.77756 −0.195043
\(601\) 19.0265 0.776106 0.388053 0.921637i \(-0.373148\pi\)
0.388053 + 0.921637i \(0.373148\pi\)
\(602\) 0 0
\(603\) −64.4535 −2.62475
\(604\) 22.0648 0.897804
\(605\) −0.524208 −0.0213121
\(606\) 57.3294 2.32885
\(607\) 3.24590 0.131747 0.0658735 0.997828i \(-0.479017\pi\)
0.0658735 + 0.997828i \(0.479017\pi\)
\(608\) −6.11222 −0.247883
\(609\) 0 0
\(610\) 11.8753 0.480819
\(611\) 7.06562 0.285845
\(612\) 1.32137 0.0534134
\(613\) 18.9340 0.764735 0.382368 0.924010i \(-0.375109\pi\)
0.382368 + 0.924010i \(0.375109\pi\)
\(614\) −10.2782 −0.414796
\(615\) −27.5589 −1.11128
\(616\) 0 0
\(617\) −5.25658 −0.211622 −0.105811 0.994386i \(-0.533744\pi\)
−0.105811 + 0.994386i \(0.533744\pi\)
\(618\) −58.2086 −2.34149
\(619\) 14.8394 0.596445 0.298222 0.954496i \(-0.403606\pi\)
0.298222 + 0.954496i \(0.403606\pi\)
\(620\) −23.7630 −0.954344
\(621\) −92.5040 −3.71206
\(622\) −14.0345 −0.562734
\(623\) 0 0
\(624\) −37.0902 −1.48480
\(625\) −18.5037 −0.740146
\(626\) −3.45740 −0.138185
\(627\) 10.8856 0.434727
\(628\) −6.68238 −0.266656
\(629\) −1.38924 −0.0553925
\(630\) 0 0
\(631\) −22.6218 −0.900558 −0.450279 0.892888i \(-0.648675\pi\)
−0.450279 + 0.892888i \(0.648675\pi\)
\(632\) −10.7770 −0.428686
\(633\) −15.8177 −0.628699
\(634\) −20.2632 −0.804756
\(635\) −1.98237 −0.0786680
\(636\) 13.1660 0.522067
\(637\) 0 0
\(638\) −57.5669 −2.27909
\(639\) −43.8617 −1.73514
\(640\) 20.0703 0.793347
\(641\) −7.00436 −0.276656 −0.138328 0.990386i \(-0.544173\pi\)
−0.138328 + 0.990386i \(0.544173\pi\)
\(642\) 120.116 4.74059
\(643\) 32.6067 1.28588 0.642940 0.765916i \(-0.277714\pi\)
0.642940 + 0.765916i \(0.277714\pi\)
\(644\) 0 0
\(645\) −25.4388 −1.00165
\(646\) 0.245452 0.00965720
\(647\) −31.6983 −1.24619 −0.623095 0.782146i \(-0.714125\pi\)
−0.623095 + 0.782146i \(0.714125\pi\)
\(648\) 37.4777 1.47226
\(649\) −26.1273 −1.02559
\(650\) 4.41779 0.173280
\(651\) 0 0
\(652\) 1.88347 0.0737625
\(653\) −30.3739 −1.18862 −0.594312 0.804235i \(-0.702575\pi\)
−0.594312 + 0.804235i \(0.702575\pi\)
\(654\) −36.5529 −1.42933
\(655\) 19.0325 0.743663
\(656\) −20.9749 −0.818933
\(657\) −55.7710 −2.17583
\(658\) 0 0
\(659\) 0.151867 0.00591590 0.00295795 0.999996i \(-0.499058\pi\)
0.00295795 + 0.999996i \(0.499058\pi\)
\(660\) 27.0836 1.05423
\(661\) 48.2442 1.87648 0.938242 0.345981i \(-0.112454\pi\)
0.938242 + 0.345981i \(0.112454\pi\)
\(662\) 36.6847 1.42579
\(663\) 1.03308 0.0401213
\(664\) −23.5554 −0.914126
\(665\) 0 0
\(666\) 140.421 5.44121
\(667\) 56.9474 2.20501
\(668\) 1.91619 0.0741396
\(669\) −18.4698 −0.714082
\(670\) −29.7882 −1.15082
\(671\) −11.1645 −0.431002
\(672\) 0 0
\(673\) −17.1107 −0.659570 −0.329785 0.944056i \(-0.606976\pi\)
−0.329785 + 0.944056i \(0.606976\pi\)
\(674\) 39.8402 1.53459
\(675\) −16.5575 −0.637299
\(676\) −9.62792 −0.370304
\(677\) −1.94027 −0.0745706 −0.0372853 0.999305i \(-0.511871\pi\)
−0.0372853 + 0.999305i \(0.511871\pi\)
\(678\) 79.4790 3.05237
\(679\) 0 0
\(680\) −0.371896 −0.0142616
\(681\) −54.3237 −2.08169
\(682\) 58.2860 2.23189
\(683\) 12.4756 0.477365 0.238683 0.971098i \(-0.423284\pi\)
0.238683 + 0.971098i \(0.423284\pi\)
\(684\) −9.50942 −0.363602
\(685\) −1.33861 −0.0511458
\(686\) 0 0
\(687\) −15.8177 −0.603483
\(688\) −19.3613 −0.738143
\(689\) 7.41400 0.282451
\(690\) −69.9001 −2.66105
\(691\) 3.87191 0.147295 0.0736473 0.997284i \(-0.476536\pi\)
0.0736473 + 0.997284i \(0.476536\pi\)
\(692\) 8.09265 0.307637
\(693\) 0 0
\(694\) −9.14392 −0.347099
\(695\) −17.8298 −0.676322
\(696\) −42.5190 −1.61168
\(697\) 0.584215 0.0221287
\(698\) 1.70170 0.0644103
\(699\) 33.3150 1.26009
\(700\) 0 0
\(701\) −32.6013 −1.23133 −0.615666 0.788007i \(-0.711113\pi\)
−0.615666 + 0.788007i \(0.711113\pi\)
\(702\) −63.8659 −2.41046
\(703\) 9.99779 0.377074
\(704\) 4.13479 0.155836
\(705\) −20.0105 −0.753637
\(706\) −13.5225 −0.508927
\(707\) 0 0
\(708\) 31.6889 1.19094
\(709\) −13.4445 −0.504918 −0.252459 0.967608i \(-0.581239\pi\)
−0.252459 + 0.967608i \(0.581239\pi\)
\(710\) −20.2714 −0.760772
\(711\) −61.0670 −2.29019
\(712\) −6.91905 −0.259302
\(713\) −57.6588 −2.15934
\(714\) 0 0
\(715\) 15.2512 0.570363
\(716\) −32.3231 −1.20797
\(717\) −30.1760 −1.12694
\(718\) −29.1040 −1.08615
\(719\) 12.1949 0.454792 0.227396 0.973802i \(-0.426979\pi\)
0.227396 + 0.973802i \(0.426979\pi\)
\(720\) 75.6584 2.81962
\(721\) 0 0
\(722\) 32.4496 1.20765
\(723\) 18.5730 0.690736
\(724\) 14.4369 0.536544
\(725\) 10.1931 0.378564
\(726\) −1.55948 −0.0578778
\(727\) 10.5423 0.390994 0.195497 0.980704i \(-0.437368\pi\)
0.195497 + 0.980704i \(0.437368\pi\)
\(728\) 0 0
\(729\) 60.3663 2.23579
\(730\) −25.7754 −0.953991
\(731\) 0.539271 0.0199457
\(732\) 13.5411 0.500492
\(733\) 52.6760 1.94563 0.972816 0.231581i \(-0.0743898\pi\)
0.972816 + 0.231581i \(0.0743898\pi\)
\(734\) 52.7562 1.94727
\(735\) 0 0
\(736\) −36.8995 −1.36013
\(737\) 28.0052 1.03158
\(738\) −59.0512 −2.17371
\(739\) 23.8910 0.878844 0.439422 0.898281i \(-0.355183\pi\)
0.439422 + 0.898281i \(0.355183\pi\)
\(740\) 24.8748 0.914417
\(741\) −7.43465 −0.273119
\(742\) 0 0
\(743\) −15.2274 −0.558641 −0.279320 0.960198i \(-0.590109\pi\)
−0.279320 + 0.960198i \(0.590109\pi\)
\(744\) 43.0502 1.57830
\(745\) −20.0534 −0.734701
\(746\) −18.7981 −0.688249
\(747\) −133.474 −4.88357
\(748\) −0.574140 −0.0209926
\(749\) 0 0
\(750\) −70.9659 −2.59131
\(751\) −15.6849 −0.572349 −0.286175 0.958178i \(-0.592384\pi\)
−0.286175 + 0.958178i \(0.592384\pi\)
\(752\) −15.2298 −0.555375
\(753\) 4.14168 0.150931
\(754\) 39.3172 1.43185
\(755\) −35.1887 −1.28065
\(756\) 0 0
\(757\) −48.0778 −1.74742 −0.873709 0.486449i \(-0.838292\pi\)
−0.873709 + 0.486449i \(0.838292\pi\)
\(758\) −47.8960 −1.73966
\(759\) 65.7161 2.38534
\(760\) 2.67639 0.0970830
\(761\) −29.1430 −1.05643 −0.528217 0.849110i \(-0.677139\pi\)
−0.528217 + 0.849110i \(0.677139\pi\)
\(762\) −5.89741 −0.213641
\(763\) 0 0
\(764\) −0.867962 −0.0314018
\(765\) −2.10732 −0.0761902
\(766\) 66.1861 2.39140
\(767\) 17.8445 0.644327
\(768\) 67.7764 2.44567
\(769\) 5.94776 0.214482 0.107241 0.994233i \(-0.465798\pi\)
0.107241 + 0.994233i \(0.465798\pi\)
\(770\) 0 0
\(771\) −92.3906 −3.32737
\(772\) 22.4154 0.806748
\(773\) −33.0476 −1.18864 −0.594321 0.804228i \(-0.702579\pi\)
−0.594321 + 0.804228i \(0.702579\pi\)
\(774\) −54.5084 −1.95926
\(775\) −10.3205 −0.370723
\(776\) −19.7583 −0.709280
\(777\) 0 0
\(778\) 41.1594 1.47564
\(779\) −4.20437 −0.150637
\(780\) −18.4976 −0.662322
\(781\) 19.0580 0.681950
\(782\) 1.48180 0.0529889
\(783\) −147.357 −5.26612
\(784\) 0 0
\(785\) 10.6570 0.380365
\(786\) 56.6204 2.01958
\(787\) 49.3581 1.75943 0.879713 0.475506i \(-0.157735\pi\)
0.879713 + 0.475506i \(0.157735\pi\)
\(788\) 23.7126 0.844727
\(789\) −6.33892 −0.225671
\(790\) −28.2231 −1.00413
\(791\) 0 0
\(792\) −35.3405 −1.25577
\(793\) 7.62518 0.270778
\(794\) 16.3610 0.580630
\(795\) −20.9971 −0.744690
\(796\) 11.3988 0.404020
\(797\) −4.85688 −0.172040 −0.0860198 0.996293i \(-0.527415\pi\)
−0.0860198 + 0.996293i \(0.527415\pi\)
\(798\) 0 0
\(799\) 0.424197 0.0150070
\(800\) −6.60472 −0.233512
\(801\) −39.2061 −1.38528
\(802\) −59.1198 −2.08759
\(803\) 24.2326 0.855150
\(804\) −33.9665 −1.19791
\(805\) 0 0
\(806\) −39.8084 −1.40219
\(807\) 94.6906 3.33327
\(808\) −13.2517 −0.466193
\(809\) −20.7623 −0.729964 −0.364982 0.931015i \(-0.618925\pi\)
−0.364982 + 0.931015i \(0.618925\pi\)
\(810\) 98.1473 3.44854
\(811\) −6.06265 −0.212888 −0.106444 0.994319i \(-0.533947\pi\)
−0.106444 + 0.994319i \(0.533947\pi\)
\(812\) 0 0
\(813\) −50.8907 −1.78482
\(814\) −61.0132 −2.13851
\(815\) −3.00375 −0.105217
\(816\) −2.22678 −0.0779528
\(817\) −3.88093 −0.135776
\(818\) 53.2786 1.86284
\(819\) 0 0
\(820\) −10.4606 −0.365300
\(821\) −49.7361 −1.73580 −0.867901 0.496736i \(-0.834532\pi\)
−0.867901 + 0.496736i \(0.834532\pi\)
\(822\) −3.98228 −0.138898
\(823\) −9.35498 −0.326094 −0.163047 0.986618i \(-0.552132\pi\)
−0.163047 + 0.986618i \(0.552132\pi\)
\(824\) 13.4549 0.468724
\(825\) 11.7627 0.409524
\(826\) 0 0
\(827\) 22.4842 0.781852 0.390926 0.920422i \(-0.372155\pi\)
0.390926 + 0.920422i \(0.372155\pi\)
\(828\) −57.4084 −1.99508
\(829\) 10.2099 0.354606 0.177303 0.984156i \(-0.443263\pi\)
0.177303 + 0.984156i \(0.443263\pi\)
\(830\) −61.6873 −2.14120
\(831\) −9.38623 −0.325605
\(832\) −2.82399 −0.0979043
\(833\) 0 0
\(834\) −53.0422 −1.83670
\(835\) −3.05592 −0.105755
\(836\) 4.13186 0.142903
\(837\) 149.198 5.15705
\(838\) 3.39167 0.117163
\(839\) 31.9667 1.10361 0.551806 0.833972i \(-0.313939\pi\)
0.551806 + 0.833972i \(0.313939\pi\)
\(840\) 0 0
\(841\) 61.7163 2.12815
\(842\) 8.79117 0.302964
\(843\) −47.1471 −1.62383
\(844\) −6.00399 −0.206666
\(845\) 15.3545 0.528212
\(846\) −42.8770 −1.47414
\(847\) 0 0
\(848\) −15.9808 −0.548782
\(849\) 21.2575 0.729554
\(850\) 0.265230 0.00909732
\(851\) 60.3567 2.06900
\(852\) −23.1148 −0.791900
\(853\) −49.9952 −1.71180 −0.855902 0.517138i \(-0.826997\pi\)
−0.855902 + 0.517138i \(0.826997\pi\)
\(854\) 0 0
\(855\) 15.1655 0.518651
\(856\) −27.7647 −0.948979
\(857\) −42.1916 −1.44124 −0.720618 0.693332i \(-0.756142\pi\)
−0.720618 + 0.693332i \(0.756142\pi\)
\(858\) 45.3712 1.54895
\(859\) 53.7062 1.83243 0.916216 0.400685i \(-0.131228\pi\)
0.916216 + 0.400685i \(0.131228\pi\)
\(860\) −9.65587 −0.329263
\(861\) 0 0
\(862\) 25.9651 0.884375
\(863\) 2.67063 0.0909093 0.0454547 0.998966i \(-0.485526\pi\)
0.0454547 + 0.998966i \(0.485526\pi\)
\(864\) 95.4812 3.24834
\(865\) −12.9061 −0.438821
\(866\) −7.31685 −0.248637
\(867\) −55.6097 −1.88860
\(868\) 0 0
\(869\) 26.5337 0.900095
\(870\) −111.350 −3.77511
\(871\) −19.1271 −0.648096
\(872\) 8.44921 0.286126
\(873\) −111.958 −3.78922
\(874\) −10.6639 −0.360712
\(875\) 0 0
\(876\) −29.3909 −0.993025
\(877\) 39.5491 1.33548 0.667739 0.744395i \(-0.267262\pi\)
0.667739 + 0.744395i \(0.267262\pi\)
\(878\) 19.5649 0.660284
\(879\) −2.93820 −0.0991030
\(880\) −32.8737 −1.10817
\(881\) 1.82159 0.0613709 0.0306854 0.999529i \(-0.490231\pi\)
0.0306854 + 0.999529i \(0.490231\pi\)
\(882\) 0 0
\(883\) 14.6049 0.491493 0.245746 0.969334i \(-0.420967\pi\)
0.245746 + 0.969334i \(0.420967\pi\)
\(884\) 0.392128 0.0131887
\(885\) −50.5371 −1.69879
\(886\) 17.7633 0.596771
\(887\) −24.3065 −0.816132 −0.408066 0.912952i \(-0.633797\pi\)
−0.408066 + 0.912952i \(0.633797\pi\)
\(888\) −45.0645 −1.51227
\(889\) 0 0
\(890\) −18.1197 −0.607375
\(891\) −92.2725 −3.09125
\(892\) −7.01062 −0.234733
\(893\) −3.05278 −0.102158
\(894\) −59.6575 −1.99525
\(895\) 51.5486 1.72308
\(896\) 0 0
\(897\) −44.8830 −1.49860
\(898\) −54.1760 −1.80788
\(899\) −91.8496 −3.06335
\(900\) −10.2757 −0.342522
\(901\) 0.445113 0.0148289
\(902\) 25.6579 0.854314
\(903\) 0 0
\(904\) −18.3716 −0.611029
\(905\) −23.0239 −0.765340
\(906\) −104.684 −3.47789
\(907\) −32.8383 −1.09038 −0.545190 0.838313i \(-0.683542\pi\)
−0.545190 + 0.838313i \(0.683542\pi\)
\(908\) −20.6198 −0.684293
\(909\) −75.0895 −2.49056
\(910\) 0 0
\(911\) 43.3639 1.43671 0.718355 0.695676i \(-0.244895\pi\)
0.718355 + 0.695676i \(0.244895\pi\)
\(912\) 16.0253 0.530650
\(913\) 57.9949 1.91935
\(914\) 19.1070 0.632003
\(915\) −21.5952 −0.713914
\(916\) −6.00397 −0.198377
\(917\) 0 0
\(918\) −3.83430 −0.126551
\(919\) −15.3957 −0.507858 −0.253929 0.967223i \(-0.581723\pi\)
−0.253929 + 0.967223i \(0.581723\pi\)
\(920\) 16.1574 0.532693
\(921\) 18.6908 0.615884
\(922\) 52.9565 1.74403
\(923\) −13.0163 −0.428437
\(924\) 0 0
\(925\) 10.8034 0.355213
\(926\) 26.3217 0.864984
\(927\) 76.2410 2.50408
\(928\) −58.7803 −1.92956
\(929\) 29.4087 0.964869 0.482435 0.875932i \(-0.339753\pi\)
0.482435 + 0.875932i \(0.339753\pi\)
\(930\) 112.741 3.69691
\(931\) 0 0
\(932\) 12.6455 0.414217
\(933\) 25.5216 0.835541
\(934\) −18.6014 −0.608656
\(935\) 0.915634 0.0299444
\(936\) 24.1369 0.788940
\(937\) 25.1984 0.823196 0.411598 0.911365i \(-0.364971\pi\)
0.411598 + 0.911365i \(0.364971\pi\)
\(938\) 0 0
\(939\) 6.28724 0.205176
\(940\) −7.59543 −0.247736
\(941\) 49.1919 1.60361 0.801805 0.597586i \(-0.203874\pi\)
0.801805 + 0.597586i \(0.203874\pi\)
\(942\) 31.7038 1.03297
\(943\) −25.3818 −0.826544
\(944\) −38.4635 −1.25188
\(945\) 0 0
\(946\) 23.6840 0.770034
\(947\) 33.0148 1.07284 0.536419 0.843952i \(-0.319777\pi\)
0.536419 + 0.843952i \(0.319777\pi\)
\(948\) −32.1818 −1.04522
\(949\) −16.5505 −0.537250
\(950\) −1.90876 −0.0619283
\(951\) 36.8485 1.19489
\(952\) 0 0
\(953\) 35.8422 1.16104 0.580522 0.814244i \(-0.302848\pi\)
0.580522 + 0.814244i \(0.302848\pi\)
\(954\) −44.9911 −1.45664
\(955\) 1.38422 0.0447923
\(956\) −11.4540 −0.370448
\(957\) 104.685 3.38398
\(958\) 15.5576 0.502642
\(959\) 0 0
\(960\) 7.99779 0.258128
\(961\) 61.9970 1.99990
\(962\) 41.6710 1.34353
\(963\) −157.326 −5.06977
\(964\) 7.04979 0.227059
\(965\) −35.7479 −1.15077
\(966\) 0 0
\(967\) 35.5185 1.14220 0.571100 0.820881i \(-0.306517\pi\)
0.571100 + 0.820881i \(0.306517\pi\)
\(968\) 0.360474 0.0115861
\(969\) −0.446352 −0.0143389
\(970\) −51.7433 −1.66138
\(971\) −27.3670 −0.878248 −0.439124 0.898427i \(-0.644711\pi\)
−0.439124 + 0.898427i \(0.644711\pi\)
\(972\) 54.2199 1.73910
\(973\) 0 0
\(974\) 4.11849 0.131965
\(975\) −8.03370 −0.257284
\(976\) −16.4360 −0.526102
\(977\) −48.2170 −1.54260 −0.771299 0.636472i \(-0.780393\pi\)
−0.771299 + 0.636472i \(0.780393\pi\)
\(978\) −8.93592 −0.285739
\(979\) 17.0352 0.544446
\(980\) 0 0
\(981\) 47.8767 1.52858
\(982\) 45.2610 1.44434
\(983\) 26.1721 0.834762 0.417381 0.908732i \(-0.362948\pi\)
0.417381 + 0.908732i \(0.362948\pi\)
\(984\) 18.9510 0.604135
\(985\) −37.8167 −1.20494
\(986\) 2.36048 0.0751729
\(987\) 0 0
\(988\) −2.82199 −0.0897795
\(989\) −23.4292 −0.745004
\(990\) −92.5503 −2.94144
\(991\) −29.0448 −0.922639 −0.461319 0.887234i \(-0.652624\pi\)
−0.461319 + 0.887234i \(0.652624\pi\)
\(992\) 59.5146 1.88959
\(993\) −66.7107 −2.11700
\(994\) 0 0
\(995\) −18.1787 −0.576305
\(996\) −70.3400 −2.22881
\(997\) 18.4810 0.585299 0.292649 0.956220i \(-0.405463\pi\)
0.292649 + 0.956220i \(0.405463\pi\)
\(998\) 24.4853 0.775068
\(999\) −156.179 −4.94129
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.o.1.9 38
7.3 odd 6 889.2.f.c.128.30 76
7.5 odd 6 889.2.f.c.382.30 yes 76
7.6 odd 2 6223.2.a.p.1.9 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.30 76 7.3 odd 6
889.2.f.c.382.30 yes 76 7.5 odd 6
6223.2.a.o.1.9 38 1.1 even 1 trivial
6223.2.a.p.1.9 38 7.6 odd 2